

DAVID SMITH ASSOCIATES LLP
 Consulting Structural & Civil Engineers
 London
 Northampton
 Cheltenham
 Birmingham
 www.dsagroup.co.uk

North Northamptonshire Council Leisure Services Deene House New Post Office Square Corby NN17 1GD

FAO Dylan Smith

23rd July 2024

JB/24/55099/CS

dylan.smith@northnorthants.gov.uk

Dear Dylan

RE: SPLASH POOL, RUSHDEN - ROOF ASSESSMENT

Thank you for your request for us to carry out a design assessment with regards to the above project. We confirm we have visited the above property on 11th July 2024. The scope of our services was to carry out a design assessment of the existing roof structure. The purpose of the design assessment was to assess the existing structural roof for the installation of solar PV panels.

In principle, this is a multi-bay single storey steel framed with infill masonry panels. The steel frames are comprised of steel trusses with a 31m span supported by steel columns at 5.625m centres. The frames are braced laterally with diagonal roof bracing members.

The existing metal sheeting on the 31m trusses is supported by steel purlins (PFC 180 x 75) spaced at approximately 1700 mm centres and spanning between the trusses. Refer to typical Photographs in Appendix A of this report.

DSA LLP VAT REG : 443 6613 95

Eur Ing **David Smith** BSc(Hons), C.Eng, MICE, FIStructE, CMaPS, MFPWS, FCABE, ACIArb, **Hitesh Jethwa** BSc Eng (Hons), I.Eng, IMIStructE **Steven Ainge** B.Eng (Hons), I.Eng, IMIStructE **Thomas Garrod** B.Eng (Hons), **Ben Mason** BSc (Hons), IEng, MICE

The proposed loading was supplied by yourselves and can be found in Appendix B of this report.

The design assessment shows that the existing roof structure can safely support the proposed new loading without effecting the existing structure and its relevant safety factors. A copy of our load assessment can be found in Appendix C of this report.

We trust the above is satisfactory for your immediate requirements. However, should you require any further information, please do not hesitate to contact the above office.

Yours sincerely

Hornaby

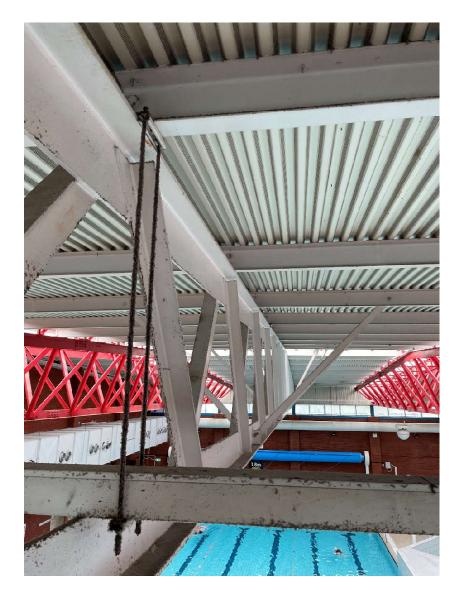
JACQUELINE BARNABY David Smith Associates LLP

C.C - Joe.Bailey@northnorthants.gov.uk

APPENDIX A

Typical Photographs

Photograph 1


Photograph 2

Photograph 3

Photograph 4

Photograph 5

APPENDIX B

Proposed Loading

N-Type MONO-FACIAL MODULE Type: DMXXXM10T-54HSW/HBW

Power Range: 420 - 435 W Max. Efficiency: 22.28 %

Better Performance

Our modules perform better on sunny and hot days thanks to its optimized temperature coefficient.

Excellent Low Light Performance

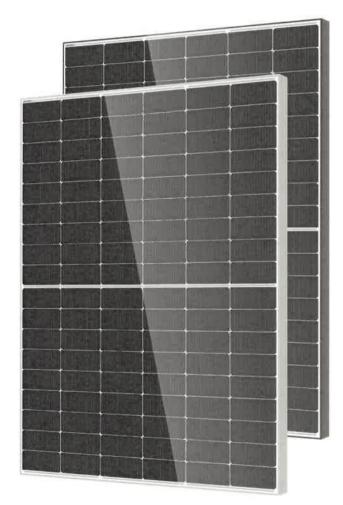
Our modules can also provide higher power output under low light conditions, such as sunset, cloudy, or dawn.

Excellent Quality

More than 40 years' experience of manufacturing and intensive quality tests above the IEC standard ensures reliable modules and a secured investment.

Assumption of Environmental, Social and

Governance Responsibility (ESG) DMEGC stands for his responsibility. Production is certified according to SA 8000 (ILO standards).



High-quality service

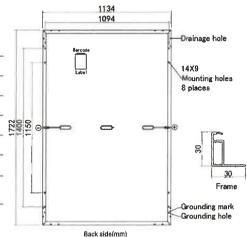
We provide a customer-oriented and localized services, covering pre-sale, sale and after-sales.

Certifications

SA 8000	ILO Standards. Social responsibility standards
ISO 9001	Quality management system
ISO 14001	Environmental management system
ISO 45001	Occupational health and safety management system
ISO 50001	Energy management system

SolarPower Europe Member

A member of Hengdian Group



DMXXXM10T-54HSW/HBW

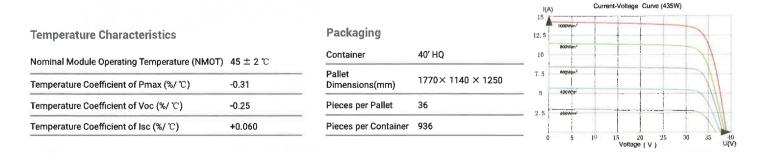
Module Specification

Celi Type	N -type Mono-crystalline , 108 (6x18)	
Dimensions (mm)	1722 x 1134 x 30	
Weight (kg)	21.2	
Front Cover	3.2 mm tempered solar glass with anti -reflective coating	
Rear Cover	Backsheet	722
Junction Box	3 Diodes, IP68 according to IEC 62790	
Cables	4 mm ² solar cable, 1.1 m or Customized Length	
Connector Type	PV-ZH202B or MC4 (1000V)	
Connector Type	PV-ZH202B or MC4-EVO 2A (1500V)	

Electrical Specifications¹

Module Type		54HSW/HBW 54HSW/HBW -V	DM425M10T- DM425M10T-	54HSW/HBW 54HSW/HBW-V	DM430M10T-3 DM430M10T-3	54HSW/HBW 54HSW/HBW -V	DM435M10T- DM435M10T-	54HSW/HBW 54HSW/HBW -V
Testing Condition	STC ²	NMOT ³	STC	NMOT	STC	NMOT	STC	NMOT
Maximum Power (Pmax/W)	420	316	425	320	430	323	435	327
Maximum Power Current (Imp/A)	13.14	10.54	13.20	10.59	13.27	10.64	13.34	10.70
Maximum Power Voltage (Vmp/V)	32.01	30.01	32.21	30.20	32.41	30.39	32.61	30.57
Short-circuit Current (Isc/A)	13.78	11.12	13.83	11.16	13.88	11.21	13.93	11.25
Open-circuit Voltage (Voc/V)	38.39	36.47	38.58	36.65	38.77	36.83	38.96	37.01
Module Efficiency STC (%)	21	.51	21	.76	22	.02	22	.28

¹ Measurements according to IEC 60904-3, Measurement tolerance: ISC: ±4 %,VOC: ± 3 %,
 ² STC (Standard Test Condition): Radiation 1000 W/m², Module temperature 25°, AM = 1.5
 ³ NMOT: Radiation 800 W/m², Ambient temperature 20°, AM = 1.5, Wind Speed 1 m/s


Certifications and Warranty

	IEC 61215, IEC 61730
	Ammonia Corrosion Test: IEC 62716
Certifications	Salt Mist Corrosion Test: IEC 61701
	PID (IEC TS 62804); LeTID (IEC TS 63342)
	Dust & Sand (IEC 60068)
WEEE Registration No.	DE 50188598
Product Warranty	20 years
Peak Power Warranty	30 years linear warranty

Operating conditions

Operating Temperature (°C)	-40 to +85	
Maximum System Voltage(V)	1000V/1500V DC (IEC)	
Overcurrent protection rating (A)	25	
Power Performance Tolerance (%)	0 / +3	
Protection class	11	
Max. Test Load, Push/Pull (Pa)	Snow 5400 / Wind 2400	
Max. Design Load, Push/Pull (Pa)	3600 / 1600	

1.) First year: min. 99 🐁 2.) From the 2nd year: Max. 0.4 % degradation annually. 3.) Min. 87.4 % in the 30th year.

Hengdian Group DMEGC Magnetics Co.,Ltd. Hengdian Industrial Zone, Dongyang City Zhejiang Province, China 322118

Tel: 0086-579-8658-8825 Fax: 0086-579-8655-4845

E-mail: solar@dmegc.com.cn, Website: www.dmegcsolar.com

All information in this data sheet corresponds to EN 50380. Changes and errors excepted.

Status: 09/2023, Document: EN_DS-M10T-54HSW/HBW-202309_3

Copyright © 2023 Hengdian Group DMEGC Magnetics. All rights reserved.

<u>APPENDIX C</u>

Load Assessment

DAVID SMITH ASSOCIATES LLP
 Consulting Structural & Civil Engineers
 London
 Northampton
 Cheltenham
 Birmingham
 www.dsagroup.co.uk

ROOF INSPECTION SPLASH POOL RUSHDEN

STRUCTURAL CALCULATIONS

Prepared by: OAM / HBJ Date: JULY 2024

Reference: 24 / 55099

DSA LLP VAT REG : 443 6613 95

Eur Ing **David Smith** BSc(Hons), C.Eng, MICE, FIStructE, CMaPS, MFPWS, FCABE, ACIArb, **Hitesh Jethwa** BSc Eng (Hons), I.Eng, IMIStructE **Steven Ainge** B.Eng (Hons), I.Eng, IMIStructE **Thomas Garrod** B.Eng (Hons), **Ben Mason** BSc (Hons), IEng, MICE

DAVID SMITH ASSOCIATES LLP
 Consulting Structural & Civil Engineers
 London
 Northampton
 Cheltenham
 Birmingham
 www.dsagroup.co.uk

Design Notes

Job Ref: 24/55099

RE: ROOF INSPECTION, SPLASH POOL, RUSHDEN

The following calculations are in respect of our clients brief relating to **specific structural elements listed on the following page(s).** No responsibility is accepted in respect of other elements of the building. Any assumed bearing stresses must be confirmed on site to the satisfaction of the Building Control Officer.

Dimensions have been obtained from information provided and where no figured dimensions have been provided, scaling has been used. <u>Dimensions indicated on the following calculations are for design purposes only and must not be used for constructional purposes. All dimensions for construction are to be obtained by site measurements prior to manufacture / building.</u>

Appended sketches are to demonstrate certain features of the design and are not intended as working drawings. Where shown, details are intended to identify the main structural features. It is assumed that the work will be carried out by experienced and competent personnel, therefore exhaustive detailing is not required.

Where constructional connection details are indicated on these calculations, these shall not be varied. Any proposed changes should be substantiated by calculation, submitted and approved in writing by the Engineer before fabrication is commenced.

Where Building Control approval is required it is essential that this be obtained before the works proceed or materials are ordered. The contractor must ensure the stability of each element, and overall stability of the construction is maintained until all the works are completed.

These calculations and designs are copyright and must not be reproduced, defaced or passed to any other person or persons for any purpose other than as originally intended

DSA LLP VAT REG : 443 6613 95

Eur Ing **David Smith** BSc(Hons), C.Eng, MICE, FIStructE, CMaPS, MFPWS, FCABE, ACIArb, **Hitesh Jethwa** BSc Eng (Hons), I.Eng, AMIStructE **Steven Ainge** B.Eng (Hons), I.Eng, AMIStructE **Thomas Garrod** B.Eng (Hons), **Ben Mason** BSc (Hons), IEng, MICE

REFERENCES

British Standards and Codes of Practice indicated below have been used in the preparation of these calculations - all constructional details must be in accordance with all relevant clauses contained in these same standards, associated standards or manufacturer's recommendations and details and normal good practice.

Loadings	[BS 6399 - Part 1:1996, Part 2:1997, Part 3:1988] [BS 648:1964]
Concrete	[BS 8110 - Part 1:1997, Part 3:1985] [BS 8007 : 1987]
Foundations	[BS 8004:1986] [BS 8002 : 1994]
Timber	[BS 5268 - Part 2:2002]
Masonry	[BS 5628 - Part 1:2005, Part 2:2005, Part 3:2005]
Industrial Floor Slabs	[Concrete Society Technical Report 34 (2nd Edition)] [C & CA Technical Report 550] [BCA Tech Note 11]
Steelwork	[BS 5950 - Part 1:2000, Part 3:1990, Part 5:1987, Part 8:1990] [BS 2853:1957]

ISSUE RECORD

Prep. by	Chkd by	Documents / Sheets / Drawings Issued	Description of Relating Structural Elements	lssue Date
OAM	Harthan	Structural calculations Pages 1-15	ASSESSMENT OF EXISTING ROOF STEELWORKS.	22/07/2024

DAVID SMITH ASSOCIATES LLP Consulting Structural & Civil Engineers

London Northampton Cheltenham Birmingham www.dsagroup.co.uk

HEALTH & SAFETY

Where appropriate, the Client will be the/or appoint a, Principal Designer to act on his behalf who will ensure that where applicable the "Construction (Design and Management) Regulations 2015" are adhered to.

The Principal Contractor must at all times ensure safe working practices, maintain the integrity of the existing structures and conform to all the appropriate requirements of the Health and Safety Executive including the "Construction (Design and Management) Regulations 2015".

The working methods of any hazardous operations must first be discussed with the Principal Designer and the designer prior to commencement.

Below are identified hazards that are either impractical or uneconomic to eliminate at the design stage. The list is not exhaustive and must be read in conjunction with the main contractors own Health & Safety policy.

Hazard	Solution/Precaution/Sequence	
Demolition and creation of new openings	To be carried out in accordance with prepared demolition statement ensuring structural integrity of existing building at all times. Openings should follow published procedure in Building Research Establishment publication GBG20 "Removing internal loadbearing walls in older dwellings".	
Scaffolds	Scaffolds erected and used in accordance with BS5973. Scaffolds and propping must be inspected by a qualified person before use and at least once per week to ensure they are fit for use.	
Personnel working at height	Works to be properly supervised with personnel provided with safe working platforms.	
Lifting	Adequate means for moving and positioning elements to be available. Handling and construction to be carried out in accordance with relevant HSE 7 BS guidelines. Individuals are not to manually lift more than 25kg.	
Deep excavation	No one shall enter an excavation deeper than 1.2m without adequately designed temporary shoring being in place. Where foundations are deeper than 2.5m they should be constructed in two pours.	
Open trenched footings	Access to unattended trenches to be protected.	

DSA LLP VAT REG : 443 6613 95

Eur Ing David Smith BSc(Hons), C.Eng, MICE, FIStructE, CMaPS, MFPWS, FCABE, ACIArb, Hitesh Jethwa BSc Eng (Hons), I.Eng, AMIStructE Steven Ainge B.Eng (Hons), I.Eng, AMIStructE Thomas Garrod B.Eng (Hons), Ben Mason BSc (Hons), IEng, MICE

DAVID SMITH ASSOCIATES LLP
 Consulting Structural & Civil Engineers
 London
 Northampton
 Cheltenham
 Birmingham

www.dsagroup.co.uk

Job Ref: 24/55099

RE: ROOF INSPECTION, SPLASH POOL, RUSHDEN

Dimensions

1. All dimensions for construction to be obtained by site measurements prior to manufacture / building

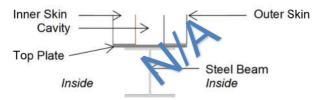
Steelwork Specifications

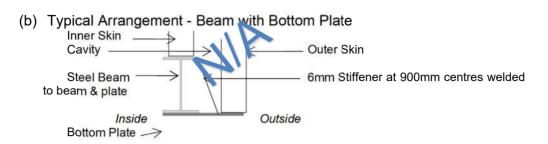
- Unless noted otherwise, all steelwork to be Grade S275 to BS 5950-2. All materials to comply with BS 5950:2000 and to B.S.C.A. 1/89 - National Structural Steelwork Specification.
- 2. Unless noted otherwise, all steelwork to be shot blasted to SA 2.5 or mechanically wire brushed to remove all surface contamination, rust or millscale and have 2 coats of zinc phosphate primer applied to achieve a minimum dry film thickness of 75 microns per coat, prior to site delivery.
- 3. Grade 4.6 bolts to BS4190 and Grade 8.8 bolts to BS3692.
- Unless stated otherwise, all structural connections to have minimum of 2 bolts.
 Minimum bolt size for any connection to be M16 Grade 8.8 bolts.
- 5. Fire surround to all steelwork as per Architects/Local Authority requirements but generally cased in a layer of 12.5mm thick plasterboard and skim.
- 6. For steel within an external wall cavity (this includes shelf angles and plates supporting external skins that are welded to the bottom flange of beams) the steel should be shot blasted to SA2½ and use 450µm coat of solvent free epoxy applied. Alternatively, the steel may be galvanized to a thickness of 85µm and 200µm of heavy duty bitumen applied in two coats.

DSA LLP VAT REG : 443 6613 95

Eur Ing **David Smith** BSc(Hons), C.Eng, MICE, FIStructE, CMaPS, MFPWS, FCABE, ACIArb, **Hitesh Jethwa** BSc Eng (Hons), I.Eng, AMIStructE **Steven Ainge** B.Eng (Hons), I.Eng, AMIStructE **Thomas Garrod** B.Eng (Hons), **Ben Mason** BSc (Hons), IEng, MICE

London	Northampton	Cheltenham	Birmingham	
16 Upper Woburn Place	8 Duncan Close	Unit 2, 1 The Hayloft	Central Boulevard,	
London	Moulton Park	Far Peak	Blythe Valley Business Park	
WC1H 0AF	Northampton, NN3 6WL	Northleach, GL54 3AP	Solihull, B90 8AG.	
0203 741 8042	01604 782620	01285 657328	01564 711008	
london@dsagroup.co.uk	northampton@dsagroup.co.uk	cheltenham@dsagroup.co.uk	birmingham@dsagroup.co.uk	
Our Privacy Notice can be viewed by visiting www.dsagroup.co.uk/privacy-policy				




General Notes

Works to be carried out regarding installation of new beams/lintels

All works should be carried out by a competent contractor/builder familiar and experienced with the procedures.

- 1. All works to comply with current British EN Standards and Building Regulations and to be to good building practice.
- 2. All new steelwork to be to BS EN 10025 1993: Minimum Grade S275 unless noted otherwise.
- 3. Any bolts to be Grade 8.8 and zinc plated with washers and nuts.
- 4. All mortar to be 1: 1: 6 (cement: lime: sand) unless noted otherwise.
- 5. Where new steelwork or other fabricated components are specified, site dimensions must be undertaken by the builder/fabricator to ensure an accurate fit and adequate clearance, etc.
- 6. Unless noted otherwise, generally steel beam is to be installed so that its centerline coincides with centerline of the wall it is supporting. In case of cavity walls, this will generally be centerline of the overall thickness of the wall including the thickness of the inner skin, cavity and outer-skin (See also Note 8 for variations).
- 7. Where multiple beams/lintels are indicated to support existing walls, the exact number of beams/lintel is to be determined by the builder on site to suit thickness of wall(s) prior to commencing works in that area and ordering/fabrication of materials. Report immediately to DSA for further advice if site conditions differ to that indicated on the drawings/details.
- 8. Scenarios for supporting external walls on single beam:
 - (a) Typical Arrangement Beam with Top Plate

- 9. Where steel beams bear into walls at right angles, fully surround the beam with brickwork to prevent any rotation of the beam.
- 10. Where steel beams/lintels are required to be concealed within floor/ceiling void, the contractor must take measurements of floor/ceiling void and review the size of beam/lintel specified on the drawings prior to ordering/fabrication of material. Report to DSA for further advice if the specified beam/lintel size cannot be concealed within the floor/ceiling zone due to existing site details.
- 11. Where walls are to be removed:
 - a) Fully support wall over the new beams by needling through the wall and supporting needles on Acrow props. Number of needles and props required will depend on the existing structural format, loading and site conditions. Contractor/Builder to be responsible for the necessary temporary works.
 - b) When wall is supported cut out openings and prepare piers and padstones. Ensure padstone size and full bearing lengths as specified are achieved.
 - c) Install steel beams and shim / dry pack beams as necessary onto padstones to ensure full load transfer.
 - d) To minimize cracking of the walls above, preload the new beams by using machined steel folding wedges rammed home.
 If the beam is not preloaded there is a risk of initial cracking to the walls above as the load is transferred but this will not be progressive.
 - e) After preloading the beams dry pack the gap between existing wall and the beam using a minimum thickness of 30mm of sand and cement 3:1 mixed to just bind and then rammed home to ensure a fully packed joint for the full width of the beam/wall.
 - f) Leave props in place for at least 7 days until the packing is cured.

Exact arrangement of works to suit site specific conditions; if in doubt, Contractor/Builder to contact DSA for further advice prior to commencing of works and ordering/fabrication of materials.

◆DAVID SMITH ASSOCIATES ◆ Consulting Structural & Civil Engineers ◆

Job TitleJob No.ROOF INSPECTION, SPLASH POOL, RUSHDEN24/55099

Compliance with BS EN 1090-1:2009 +A1:2011

Execution of steel structures and aluminium structures.

Requirements for conformity assessment of structural components

CE Marking of Fabricated Structural Steelwork

DERIVATION OF EXECUTION CLASS

Table A.1 - Categorisation of Consequence Classes

Example of categorisation of building type and occupancy	Consequence Class
Single occupancy house not exceeding 4 storeys.	
	1

Table A.1 - Definition of Consequence Classes			
Description	Consequence Class		
Medium consequence for loss of human life; economic, social or environmental consequences considerable Example Residential and office buildings, public buildings where consequences of failure are medium (e.g. an office building)	CC2		

Table B.1 - Suggested Criteria for Service Categories

Criteria	Categories
Buildings and components designed for quasi static actions only (Example: Buildings)	SC1

Table B.2 - Suggested Criteria for Production Categories

Criteria	Categories
Welded components manufactured from steel grade products below S355	
	PC1

Table B.3 - Recommended Matrix for Determination of Execution Classes

Consequence classes	CC2
Service categories	SC1
Production categories	PC1
Execution Class	EXC2

a EXC4 should be applied to special structures or structures with extreme consequences of a structural failure as required by national provisions

Execution Class

EXC2

David Smith Associates LLP

8 Duncan Close ♦ Moulton Park ♦ Northampton NN3 6WL Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: northampton@dsagroup.co.uk

	Project No:	24/55099	Sheet No:	1			
	Made By:	OAM	Revision:				
	Date:	Jul-24	Checked By:	HJ			
SHDEN							

Project: ROOF INSPECTION, SPLASH POOL, RUSHDEN

DIMENSIONS IN THESE CALCULATIONS ARE ONLY APPROXIMATE AND THE CONTRACTOR MUST CHECK THE LATEST ARCHITECTURAL DRAWINGS AND MEASURE UP ON SITE BEFORE ORDERING ANY MATERIALS.NO WORK SHOULD START BEFORE THE CALCULATIONS HAVE BEEN RECEIVED AND APPROVED BY THE LA BUILDING CONTROL.

EXISTING ROOF		<u>SLS</u>			ULS
0.7 mm external metal profile sheet	=	0.100	KN/m2	x 1.4=	0.140 KN/m2
150 mm insulation	=	0.000	KN/m2	x 1.4=	0.000 KN/m2
0.4 mm internal metal profile sheet		0.000	KN/m2	x 1.4=	0.000 KN/m2
Services	=	<u>0.150</u>	KN/m2	x 1.4=	<u>0.210</u> KN/m2
		0.250	KN/m2		0.350 KN/m2
PURLIN		<u>0.050</u>		1.4=	<u>0.070</u> KN/m2
		0.300			0.420 KN/m2
IMPOSED	=	<u>0.600</u>	KN/m2	x 1.6=	<u>0.960</u> KN/m2
	TOTAL =	0.900	KN/m2		1.380 KN/m2
DESIGN F	OR UDL =	0.900	KN/m2	1.53	1.38 KN/m2
WIND LOAD					
	=	0.660	KN/m2	x 1.4=	0.924 KN/m2
		S	SEE PAGE	2 -	7
PV PANELS					
NEW ROOF					
MAIN		0.300	KN/m2		
PV PANELS	=	<u>0.150</u>	KN/m2	x 1.4=	<u>0.210</u> KN/m2
SL	JM(0.300 to 0.150)=	0.450	KN/m2		
IMPOSED	=	<u>0.600</u>	KN/m2	1.0)50 KN/m2

(1.050-0.900)*100/0.900=

16.67 % INCREASED

go to page 8

All design calculations have been author reviewed and subject to additional review by the project team, as required by David Smith Associates Quality Assurance procedures.

Project:

David Smith Associates LLP+ 8 Duncan Close Moulton Park Northampton NN3 6WL

◆ David Smith Associates LLP◆	Project No:	24/55099	Sheet No:	2				
8 Duncan Close ♦ Moulton Park ♦ Northampton NN3 6WL Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: northampton@dsagroup.co.uk	Made By:	OAM	Revision:					
	Date:	Jul-24	Checked By:	HJ				
ROOF INSPECTION, SPLASH POOL, RUSHDEN								

DIMENSIONS IN THESE CALCULATIONS ARE ONLY APPROXIMATE AND THE CONTRACTOR MUST CHECK THE LATEST ARCHITECTURAL DRAWINGS AND MEASURE UP ON SITE BEFORE ORDERING ANY MATERIALS.

CHECKING EXISTING

PURLINS			EX-P1				
SITE SURVEY				FOR CAL.	ASSUMED	Grade	S275
Max span =	5.625	m	DL=	0.470 KNm2	DL=	0.470* 1.7=	0.80 KN/m'
Cover =	1.7	m	LL=	0.600 KNm2	LL=	1.7*0.600=	1.02 KN/m'

Local capacity	PASS	0.235
Overall buckling 1	PASS	0.274
Overall buckling 2	PASS	0.672
Deflection (dead)=	PASS	1/ 1251
Deflection(live)=	PASS	1/ 1188
Deflection (d+I)=	PASS	1/ 609

EXISTING ROOF PURLINS ARE CONSIDERED

SEE PAGE 3 -5

			<u>ES TRIANGULAR TRUSS)</u>			ASSUMED	Grade S275	
Max span =		m	DL= 0.470 KNm2	DL=	0.470* 5.625=	2.64 KN/m'	MULTI SPA	
Cover =	5.625	m	LL= 0.600 KNm2	LL=	5.625*0.600=	3.38 KN/m'	WORST C	ASE FRAME
7 7	Reto	-	200 XLOO XKO H		T	+	T	
*		10	29 2 NO RSA 200×100×10		ч ц	1		
Local capacity	PASS	0.698	Deflection	dead)=	PASS	1/ 1105		
Overall buckling 1	PASS	0.663	Deflectio	n(live)=	PASS	1/ 863		
Overall buckling 2	PASS	0.698	Deflection	n (d+l)=	PASS	1/ 484		
Unfactored dead lo	ad defle	ection=	27.69 mm					
Unfactored live loa	d deflec	tion=	<u>35.45</u> mm					
STEEL FRAMES	ARE AD	EQUATE -	TO SUPPORT THE EXTRA	OADIN	G FROM THE S	OLAR PENELS		
					SEE PAGE	6 -	9	
VERTICAL TRUSS	<u>SES</u>							
Local capacity	PASS	0.781	Deflection	dead)=	PASS	1/711	10 # 10 x 10	
Overall buckling 1	PASS	0.742	Deflectio	n(live)=	PASS	1/ 555	T-Sectorian T	
Overall buckling 2	PASS	0.934	Deflection	n (d+l)=	PASS	1/ 312	First Auto	
Unfactored dead lo	ad defle	ection=	42.99 mm				, inc	
Unfactored live loa	d deflec	tion=	<u>55.04</u> mm					
STEEL FRAMES	ARE AD	EQUATE "	TO SUPPORT THE EXTRA	OADIN	G FROM THE S	OLAR PENELS		
					SEE PAGE	10 -	13	

All design calculations have been author reviewed and subject to additional review by the project team, as required by David Smith Associates Quality Assurance procedures.

David Smith Associates LLP

8 Duncan Close ♦ Moulton Park ♦ Northampton NN3 6WL Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/55099	Sheet No:	3
Made By:	OAM	Revision:	
Date:	Jul-24	Checked By:	HJ

ROOF INSPECTION, SPLASH POOL, RUSHDEN Project:

LOCATION= EX-P1									Calcula	ation in	accor	dance			
Loads are	e unfacto	ored									S 5950:				
Wd=	0.45	KN/m2													
WI=	0.60	KN/m2		8 KN		₽♥₽₩₽₽₽₽	<u>***</u> *	****	****	****	****	\$\$\$\$	*****	* *	
•••	0.00	100/11/2		0 Kit	∧ ≰									- A R	
				1											
Span=	5.63	m			0)									
Cover=	1.70	m												5.63	\$
									61	PAN					8
									31						
Load on b	beam	un	factored	fa	actore	d				12 KNr					
_			0.1411		4 0 0			Partia	al safety i		r load				
Dea	ad+s/w=		8 KN/m'			KN/m'			dead=						
	Live=		2 KN/m'			KN/m'			live=	1.6					
Position		1.9	9 KN/m'		2.99	KN/m'									
Reaction	RA=	F	6 KN		Q /	KN									
	RB=		6 KN			KN									
	ко– Shear z			<u>X=</u>	0.4 2.81										
Maximum			nt	<u>~-</u> Mx =		KNm									
maximum	- Donull	9 Monie		- AIN	11.0	1314111									
											factor				
Maximum	BM for	check		M LT=	10.9	KNm		Local	capacity	PASS		0.235			
Maximum			Y	MY=		KNm	Ov		uckling 1			0.274			
Axial com	pressive	e load		Fc=	1.0	KN			uckling 2			0.672			
Shear for	cein xa	axis		Fv=	8.4	KN			-			1/	1251		
Beam spa	an			L=	5.63	m			on(live)=			1/	1188		
Effective I	length a	bout axis	sХ	LX eff=	5.63	m	D	eflectio	on (d+l)=	PASS		1/	609		
Effective I	length a	bout axis	sΥ	LYeff=	5.63	m	Fully res	straint f	or Ly& L	X <1.					
Limiting s	pan/def	ection (li	ive)	=	360.0	or 14 mm									
				z rep=	43	cm3									
Continu u															
<u>Section p</u> Section si		es	(Ref. No=	411)		180X75	20.3	ka		PFC	S275				
Depth of s		ction			180	mm	20.3	kg		PFC	52/0)			
Width of s		,0011		B=		mm			Pcy=	80	KN				
Thickness				t=		mm			Mcx=		KNm				
Thickness				τ= T=	10.5				Mcy=					93.867	,
Root radiu		<u>,</u> ~		r=		mm			Mb L=		KNm			00.007	
Second m		of area x	-x	lx=	1370					0.925			Pcy=	79.586	γĸ
Second m				ly=		cm4							,	. 5.000	
Plastic mo		•	,	Sx=		cm3	Sx eff=		149.31	cm3					
Plastic mo				Sy=	51.8		Sy eff=		26.23						
Area of se				Ag=	25.9		An=	=	21.58			ke=	1.2		
				-											
	N										unfacto	red			
FLECTIO	<u></u>	lood dofl	ection=		4.49	mm				E UDL:	=	0.97	KN/m'		
					4 72					E UDL:	=	1.02	KN/m'		
FLECTIO	ed dead		ction=		<u>4.73</u>	mm							,		
FLECTIO Unfactore Unfactore Unfactore	ed dead ed live lo ed dead+	ad defleo ⊦ live loao	d def =		9.23					E UDL:	=	1.99	KN/m'		
FLECTIO Unfactore Unfactore	ed dead ed live lo ed dead+ ratio fo	ad defleo ⊦ live loao r dead lo	d def = ad=								=	1.99			

♦ David Smith Associates LLP ♦

8 Duncan Close ♦ Moulton Park ♦ Northampton NN3 6WL Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/55099	Sheet No:	4
Made By:	OAM	Revision:	
Date:	Jul-24	Checked By:	HJ

Project: ROOF INSPECTION, SPLASH POOL, RUSHDEN

CONTINUE OF EX-P1

Strength of steel		Clause 3.1.							
Design strength	(Grade	S 27	-)	N/ 0				
for thickness of		mm	py= E=	275 205	N/mm2 KN/mm2	py=	275.0	N/mm2	руw= ру
Young's Modulus			C -	205	KIN/IIIIIZ				
Classification of cr	oss sectio	<u>n</u>		(clause	3.5.2)		TA	BLE 11	rolled section
Constant (table 1	1 note b)	= 3		1.000			class 1	class 2	class 3
Outstand of flang	e		b=	75	mm		plastic	compac	semi compact
Ratio			b/T=	7.14		b/Tlim=	9.00	10.00	15.00
The classification	is based o	on the outsa	itnd eler	ment			The section i	s class1	plastic
r1 =min(1.0,max(-0.1,Fc/(dx	txpyw)))=		0.00		r2=	=Fc/(Agxpyw)=	0.001	
Depth between fi	llets		d=	135	mm		TA	BLE 11	rolled section
ratio			d/t=	22.50			class 1	class 2	class 3
	40	= 3		40		d/tlim=	79.64	99.33	119.66
The classification	is based o	on the gener	ral web	conditio	on		The section i	s class1	plastic
Shear capacity	CL 4.2.3								
Shear area			Av y=	1080	mm2	(t x D)			
Shear capacity	(0.6pyA)		Pvy=	178	KN				
Shear force			Fvy=	8.4	KN		Fvy/Pvy=	0.05	SHEAR PASS OK
Moment Capacity									
Elastic modulus			Zx=	152	cm3		Mcx1=	41.8	
Plastic modulus			Sx=	176	cm3		Mcx2=	48.4	
Moment capacity	for section		Mcx=	48	KNm				
Elastic modulus			Zy=	28.8	cm3		Mcy1=	7.92	
Plastic modulus			Sy=	52	cm3		mcy2=	14.25	
Moment capacity	for section		Mcy=	14	KNm				
			-						
Local capacity c	heck Clau	se 4.8.3.2							
<u> </u>	Mx	+	Μv	= <=1					
Ag. py	Mcx		Mcy						
, (g. p)	Mox		mey						
0.001 +	0.226	+	0.008	=	0.235		CAPACITY IS	SATISFI	FD
0.001	0.220	·	0.000	_	0.200	LUUAL			
restraint/effective l	onath Clau	100 / 21 to	125				TABLE 13		
	engin Giau			FROF		normal			
Effective length			_e lt1=	5625		normal c			
Effective length			Lelt2=	5625					
		L	e lt=	5625	mm				
				0.05					
Radius of gyratio	n y-y		ry=	2.38					
			rx=	7.27	cm				
			am'y=	236.3					
		La	a'mx=	77.4					

David Smith Associates LLP

8 Duncan Close ♦ Moulton Park ♦ Northampton NN3 6WL Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

	Project No:	24/55099	Sheet No:	5			
L	Made By:	OAM	Revision:				
	Date:	Jul-24	Checked By:	HJ			
ICL							

ROOF INSPECTION, SPLASH POOL, RUSHDEN Project:

CONTINUE OF EX-P1						
Buckling resistance Clause						
Compressive strength:perry Limiting slenderness	lam 0=		<u>U.1</u>	p./=	275 N/mm2	
For buckling about y-y		17.10	λι	py=	34.80 TABLE 16	
Robertson constant for section			λL	_0- 、	54.00 TABLE 10	
Robertson constant for section	-	5.5 for table	00			
Dannistantan	a=		23 c	,		
Perry factor	eta=	1.21				
Euler strength	pe=	36 N/mm2				
Factor	phi=	177 N/mm2				
Compressive strength	pcy=	30.7 N/mm2				
Slenderness of section	Lam'y= Lamda=	236.3 236.3	La'mx=	77.37	Lamy/x= Lamx/x=	15.447 5.057
Torsic	onal index x=	15.3				
	N=	0.5				
Slenderness factor	v=	0.53 from Tal	ole 19			
	β w =	1.0				
Buckling parameter	u=	0.946				
Equivalent slenderness	lamlt=	117.9		<i>.</i>	100	
Buckling strength (Table 16)	pb=	96 N/mm2		for lamlt=	120 ру=	275
Buckling resisrance moment	Mb=	17 KNm				
	Mb L=	17 KNm				
	Mry=	14 KNm				
		79.59 KN				
	Pcy=	79.59 KN		14/	0.05	
Fc +W <u>x Mx</u>	<u> </u>	= <=1		W x=		
PC Py Zx	ру			W y=	= 0.95	
0.013 + 0.248	+ 0.013	= 0.274	I	The interaction	formula is satisfied	l
<u>Fc</u> +W <u>LT M It</u> Pcy Mb	+W <u>y My</u> py Zy	= <=1				
0.013 + 0.647	+ 0.013	= 0.672	I	The interaction	formula is satisfied	<u>l</u>

1111			A Davie 8 Duncan Close			ciates LL		Project No:	24/5	5099	Sheet No:		6
D	S A	1	Tel: (01) 🕈 Fax: ()1604) 78262		Made By:	OAM		Revision:		
					0			Date:	Jul-24	4	Checked	By:	HJ
Projec	ct:	RC	DOF INSPE	CTION,	SPLA	SH POOI	L, RUS	HDEN					
DESIGN	OF STE	FI F	BEAM, SIMPL		RTED				H rolled section	n	S	275	
			IANGULAR TH						Calculation in				
Loads are									with BS 5950:				
Wd=	2.64		/m2		, <u>†</u> t	┇┇┇╗	╞╌┥┿┝┥┶	·↓ ↓ <u>↓</u> ↓ <u>↓</u> ↓↓	++++++++++++++++++++++++++++++++++++				_
WI=	2.04		/m2	139 KN									
VVI-	0.00	IXIN,	/1112	100 100	ļ								30.60
Span-	30.60	m											
Span= Cover=	30.60 1.00												
50vei -	1.00	m											139 KN
								SF	PAN				
Load on b	beam		unfactored		factore	d			1,066 KNm				
								Partial safety f	actor for load				
Dea	ad+s/w=	•	2.64 KN/m'			KN/m'		dead=	1.4				
	Live=	•	<u>3.38</u> KN/m'			KN/m'		live=	1.6		in the		
			6.02 KN/m'		9.10	KN/m'			7 100	-0.21	40 ESA 200 x	100000	1
Reaction			00 4 1/1		400.0				1	R		.9/	~11
	RA= RB=		92.1 KN 92.1 KN		139.3 139.3				1506	14 20-	-	5%	B+B
		oro o		v-	15.30						0+0	7 -	7
Maximum	Shear z			<u>×=</u> Mx =		KNm			+		1/2	2 NO	RSA 100×10
Maximum	Dendin	ig ivic	Jinent	WIX -	1000							2001	Nox (D
Maximum	BM for	chor	~k	M LT=	086	KNm		Local capacity	factor PASS	0.698			
Maximum				MY=		KNm	Ov	erall buckling 1		0.663			
Axial com				Fc=		KN		erall buckling 2		0.698			
Shear for	•			Fv=	139.3			lection (dead)=	PASS		1105		
Beam spa	an			L=	30.60			eflection(live)=		1/	863		
Effective	length a	bout	axis X	LX eff=	30.60	m	D	eflection (d+l)=	PASS	1/	484		
Effective	length a	bout	axis Y	LYeff=	30.60	m	Fully res	straint for Ly& L	X <1.				
Limiting s	pan/def	lectio	on (live)	=	360.0	or 14 mm							
				z rep=	4736	cm3							
Section p		es		100	`					_			
Section si		otier	(Ref. No=)	TRIANGU	LAR TRU	JSS	S275	ō			
Depth of a Width of a		uun			1200 2100	mm mm		Pcy=	3915 KN				
Thickness)		в- t=	10	mm		Mcx=	1413 KNm				
Thickness				τ= T=	10	mm		Mcy=	2475 KNm			7850	
Root radi		90		r=	500	mm		Mb L=	1413 KNm			, 000	
Second m		of ar	ea x-x	-	5E+05				0.925		Pcy=	3915	KN
Second m					1E+06						-		
Plastic m					7290		Sx eff=	6167.69	cm3				
Plastic m	odulus y	/-у		Sy=	12200	cm3	Sy eff=	10866.57	cm3				
Area of se	ection			Ag=	174	cm2	An=	145.00	cm2	ke=	1.2		
FLECTIO	N								unfacto	ored			
		load	deflection=		27.69	mm			E UDL=	2.64	KN/m'		
Unfactore	ed live lo	ad d	eflection=		<u>35.45</u>	mm			E UDL=	3.38	KN/m'		
Unfactore	ed dead+	+ live	load def =		63.1	mm			E UDL=	6.02	KN/m'		
Span/def.					1105								
Span/def.					863		>360						
Snan/dof	ratio fo	rdea	d+ live load=		485								

◆ David Smith Associates LLP ◆ 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL

Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Date:	Jul-24	Checked By:	HJ
Made By:	OAM	Revision:	
Project No:	24/55099	Sheet No:	7

Project: ROOF INSPECTION, SPLASH POOL, RUSHDEN

CONTINUE OF TRIANGULAR TRUSS

<u>Strength of steel</u> Design strength	(Grade	Clause 3.1 S 2)					
for thickness o	•	mm 52	py=	, 225	N/mm2	py=	225.0	N/mm2	pyw= py
Young's Modulus			E=		KN/mm2	Py-	220.0	N/IIIIZ	pyw-py
roung o moduluo			-	200					
Classification of cr		<u>n</u>		(clause	,				lled section
Constant (table 1		= 3		1.106		cl	ass 1	class 2 cl	
Outstand of flang	е		b=	2100	mm	pl	astic	compac se	emi compact
Ratio			b/T=			b/Tlim=	9.95	11.06	16.58
The classification			atnd ele	ement					semi compact
r1 =min(1.0,max(txpyw)))=		0.00		r2=F	c/(Agxpyw)=		
Depth between fi	llets		d=				TA		lled section
ratio			d/t=				ass 1	class 2	class 3
	40	-		44.22		d/tlim=	88.40	0 110.48	132.60
The classification	is based o	on the gene	eral web	conditio	on	T	he section	is class2 c	ompact
Shear capacity	CL 4.2.3								
Shear area			Av y=	174	mm2	(t x D)			
Shear capacity	(0.6pyA)		Pvy=	23	KN				
Shear force			Fvy=	139.3	KN		Fvy/Pvy=	= 5.93 H	IGH SHEAR LOAD
Moment Capacity									
Elastic modulus			Zx=	6280	cm3	Μ	lcx1=	1413	
Plastic modulus			Sx eff=	6168	cm3	Μ	lcx2=	1388	
Moment capacity	for section		Mcx=	1413	KNm				
Elastic modulus			Zy=	11000	cm3	Μ	lcy1=	2475	
Plastic modulus			Sy eff=	10867	cm3	m	icy2=	2445	
Moment capacity	for section		Mcy=		KNm				
Local capacity of	heck Clau	se 4.8.3.2							
<u> </u>	Mx	+	Μv	= <=1					
Ag. py	Mcx		Mcy						
Ag. py	INICA		wey						
0.000 +	0.698	+	0.000	=	0.698		PACITY IS	CATICELE	`
0.000 +	0.090	т	0.000	-	0.090	LOCAL CA		SATISFIEL	<u>,</u>
us stusiust/sffs stives	an ath Clas		495			-			
restraint/effective l	ength Clat	ise 4.31 to		00000			ABLE 13		
Effective length				30600		normal con	dition		
Effective length				30600					
		L	e It=	30600	mm				
Radius of gyratio	n y-y		ry=	853					
			rx=	552	cm				
		L	.am'y=	3.6					
			.a'mx=	5.5					

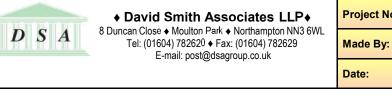
David Smith Associates LLP

8 Duncan Close ♦ Moulton Park ♦ Northampton NN3 6WL Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

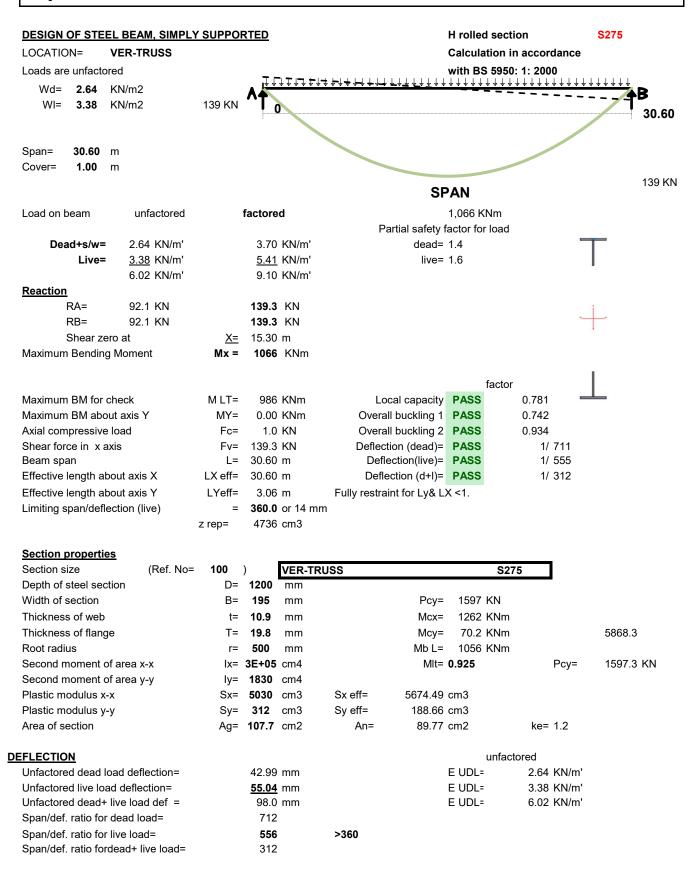
	Project No:	24/55099	Sheet No:	8			
-	Made By:	OAM	Revision:				
	Date:	Jul-24	Checked By:	HJ			

Project:

ROOF INSPECTION, SPLASH POOL, RUSHDEN


CONTINUE OF TRIANGULAI							
Buckling resistance Clause 4. Compressive strength:perry s		from A	opendex C 1				
Limiting slenderness	lam 0=			ру	/= 235 N/	/mm2	
For buckling about y-y				λ L0=	37.10 T/	ABLE 16	
Robertson constant for section							
	a=	5.5	for table 23	С			
Perry factor	eta=	0.00					
Euler strength	pe=	65840	N/mm2				
Factor	phi=	33033	N/mm2				
Compressive strength	pcy=	225.0	N/mm2				
	Lam'y=	3.6	La'm	x= 5.5	54	Lamy/x= 0).2697
Slenderness of section	Lamda=	5.5				,).4168
Torsion	nal index x=	13.3					
	N=	0.5					
Slenderness factor	v=		from Table 19				
	β w =	1.0					
Buckling parameter	u=						
Equivalent slenderness Buckling strength (Table 16)	lamlt= pb=	4.7	N/mm2	for lamlt	t= 25	D //=	235
Buckling resistance moment	рb= Mb=		KNm		- 25	ру=	233
Bucking resistance moment	Mb L=	1413					
	Mry=	2475					
	Pc=	3915					
	Pcy=	3915	KN				
<u>Fc</u> +W <u>x Mx</u>	+W <u>y My</u>	= <=1		١	N x= 0.	95	
PC Py Zx	py Zy			١	N y= 0.	95	
0.000 + 0.663	+ 0.000	=	0.663	The interac	tion formula	a is satisfied	
Fc +W LT M It	+W <u>y My</u>	= <=1					
Pcy Mb	py Zy						
	P7 - Y						
0.000 + 0.698	+ 0.000	=	0.698	The interac	tion formula	a is satisfied	

	David Smith Associates LLP Structural & Civil Engineering Design & Detailing	Project No:	24/55099	Sheet No:	9
DSA	Party Wall Structural Surveys Expert Witness Reports Flood Risk Assessments Temporary Works Design	Made by: OAM Revision:			
Calcs for: TRIANG	ULAR TRUSSES	Date:	16/07/2024	Checked by:	HJ
Project: ROOF IN	ISPECTION, SPLASH POOL, RUSHDEN				


			T	Tedds calculation version 2.0.07
		vv		
• X				
	Area A = 174.00 cm ²			
	2 nd moment of area I _{uu} = 1.27×10 ⁶ cm ⁴	I _{vv} = 531.×10 ³ cm ⁴	I _{xx} = 531.×10 ³ cm ⁴	l _{yy} = 1.27×10 ⁶ cm ⁴
	Radius of gyration r _{uu} = 853.4 mm	r _{vv} = 552.6 mm	r _{xx} = 55.3 cm	r _{yy} = 85.3 cm
	Plastic section modulus (or S _{xx} = 7.29×10 ³ cm ³	nly shapes with all rectangles a S _{yy} = 12.2×10 ³ cm ³	at 90 degs)	
	Distance to combined centre $X_e = 0.1 \text{ mm}$	roid Y _e = 741.6 mm		
	Distance to equal axis area $X_p = 0.1 \text{ mm}$	(only shapes with all rectangle Y _p = 1072.8 mm	es at 90 degs)	
	Elastic section modulus Z _{xx} = 6.28×10 ³ cm ³	Z _{yy} = 11.0×10 ³ cm ³		

	www.dsagro	oup.co.uk	
Northampton	London	Birmingham	Cheltenham
northampton@dsagroup.co.uk	london@dsagroup.co.uk	birmingham@dsagroup.co.uk	cheltenham@dsagroup.co.uk

Project No:	24/55099	Sheet No:	10
Made By:	OAM	Revision:	
Date:	Jul-24	Checked By:	HJ

Project: ROOF INSPECTION, SPLASH POOL, RUSHDEN

David Smith Associates LLP +

8 Duncan Close ♦ Moulton Park ♦ Northampton NN3 6WL Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/55099	Sheet No:	11
Made By:	OAM	Revision:	
Date:	Jul-24	Checked By:	HJ

ROOF INSPECTION, SPLASH POOL, RUSHDEN Project:

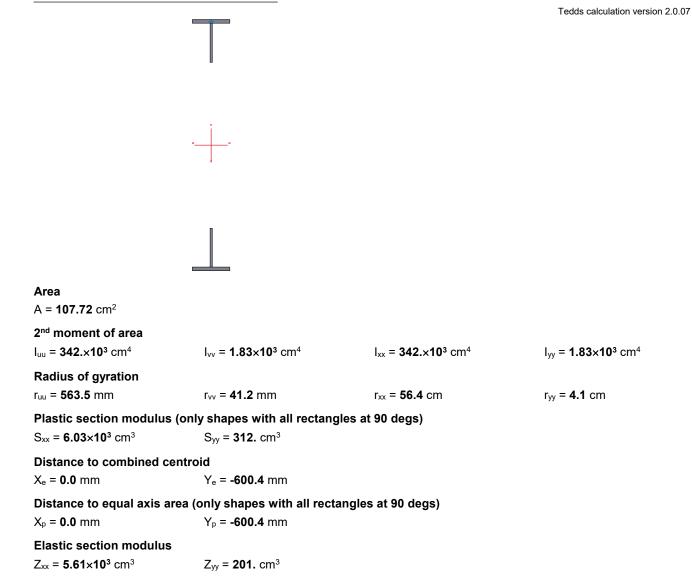
CONTINUE OF VER-TRUSS

<u>Strength of steel</u> Design strength	((Grade	2120 Clause 3.1.1 S 275	_)					
for thickness o	f 19.8 r	nm	ру=	225	N/mm2	py=	225.0	N/mm2	pyw= py
Young's Modulus	;		E=	205	KN/mm2				
Classification of cr	oss section	<u>1</u>		(clause	3.5.2)		TA	ABLE 11 r	olled section
Constant (table 1	1 note b)	= 3		1.106		с	lass 1	class 2 c	ass 3
Outstand of flang	e		b=	195	mm	р	lastic	compaces	emi compact
Ratio			b/T=	9.8		b/Tlim=	9.95	11.06	16.58
The classification	n is based or	n the outsat	nd ele	ment			he section		<u>plastic</u>
r1 =min(1.0,max(xpyw)))=		0.00		r2=F	c/(Agxpyw)		
Depth between fi	llets		d=	1200	mm				olled section
ratio			d/t=	110.1		-	lass 1	class 2	class 3
	40 a			44.22		d/tlim=		0 110.48	132.56
The classification	n is based or	n the genera	al web	conditio	on	<u>T</u>	he section	is class 3	<u>semi compact</u>
Chase seresity	0 400								
<u>Shear capacity</u> Shear area	CL 4.2.3		\	107 7	mm2	(t v D)			
	(0,0		Av y=		mm2	(t x D)			
Shear capacity	(0.6pyA)		Pvy=		KN		F (D	0 50 1	
Shear force			Fvy=	139.3	KN		Fvy/Pvy=	= 9.58 H	HIGH SHEAR LOAD
Moment Capacity									
Elastic modulus			Zx=	5610	cm3	Ν	lcx1=	1262	
Plastic modulus			Sx=	5030	cm3	N	lcx2=	1132	
Moment capacity	for section	l	Mcx=	1262	KNm				
Elastic modulus			Zy=	201	cm3	Ν	1cy1=	45.23	
Plastic modulus			Sy=	312	cm3		ncy2=	70.2	
Moment capacity	for section		Mcy=	70	KNm		,		
Local capacity of	heck Claus	e 4.8.3.2							
<u>F</u> +	Mx	+	My	= <=1					
Ag. py	Mcx		Mcy						
017			,						
0.000 +	0.781	+ (0.000	=	0.781	LOCAL C	APACITY IS	SATISFIE	D
restraint/effective l	ength Clau	se 4.31 to 4	.3.5			Т	ABLE 13		
Effective length				30600	mm	normal cor			
Effective length			elt2=	3060					
		Le		16830					
		20		10000					
Radius of gyratio	n v-v		ry=	4.1	cm				
	·· y-y		rx=	4.1 56.4					
		1							
			n'y=	74.6					
		Lai	mx=	54.3					

David Smith Associates LLP

8 Duncan Close ♦ Moulton Park ♦ Northampton NN3 6WL Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/55099	Sheet No:	12
Made By:	OAM	Revision:	
Date:	Jul-24	Checked By:	HJ


Project:

ROOF INSPECTION, SPLASH POOL, RUSHDEN

CONTINUE OF VER-TRUSS						
Buckling resistance Clause 4.8.3.3.1 Compressive strength:perry strust formula from Appendex C.1						
Limiting slenderness	lam 0=		opendex C.1	nu- 225 I	N/mm2	
For buckling about y-y		10.97	3	17	TABLE 16	
Robertson constant for section			Χ	. LU- 37.10	TABLE 10	
Robertson constant for section	a=	5 5	for table 23	с		
Perry factor	a- eta=	0.31		C		
•			N/mm2			
Euler strength Factor	pe= phi=		N/mm2			
	•					
Compressive strength	pcy=	148.3	N/mm2			
	Lam'y=	74.6	La'mx=	54.26	Lamy/x= 5.6116	
Slenderness of section	Lamda=	74.6	La IIIX-	04.20	Lamx/x = 4.0793	
	al index x=	13.3				
	N=	0.5				
Slenderness factor	v=	0.79	from Table 19			
	β w =	1.0				
Buckling parameter	u=	0.848				
Equivalent slenderness	lamlt=	50.0				
Buckling strength (Table 16)	pb=	210	N/mm2	for lamlt= 50	ру= 235	
Buckling resisrance moment	Mb=	1056	KNm			
	Mb L=	1056				
	Mry=		KNm			
	Pc=	1597				
	Pcy=	1597	KN			
<u>Fc</u> +W <u>x Mx</u>	, , ,	= <=1			0.95	
PC Py Zx	ру			W y= 0	0.95	
0.001 + 0.742 +	+ 0.000	=	0.742	The interaction formu	la is satisfied	
<u>Fc</u> +W <u>LT M It</u>	+W <u>y My</u>	= <=1				
Pcy Mb	py Zy					
0.001 + 0.933 +	+ 0.000	=	0.934	The interaction formu	la is satisfied	

	David Smith Associates LLP Structural & Civil Engineering Design & Detailing	Project No:	24/55099	Sheet No:	13
DSA	Party Wall Structural Surveys Expert Witness Reports Flood Risk Assessments Temporary Works Design	Made by:	OAM	Revision:	
Calcs for: VERTICAL TRUSSES		Date:	16/07/2024	Checked by:	HJ
Project: ROOF INSPECTION, SPLASH POOL, RUSHDEN					

CALCULATION OF SECTION PROPERTIES

www.dsagroup.co.uk							
Northampton	London	Birmingham	Cheltenham				
northampton@dsagroup.co.uk	london@dsagroup.co.uk	birmingham@dsagroup.co.uk	cheltenham@dsagroup.co.uk				