

structural engineering and design

STRUCTURAL CALCULATION PACKAGE

SS19168 STOWMARKET COMMUNITY CENTRE

FOR

STOWMARKET COMMUNITY CENTRE

DATE: 23/05/2019 ISSUE: 2

ALL DIMENSIONS ARE FOR OUR DESIGN PURPOSES ONLY CALCULATIONS TO BE READ IN CONJUNCTION WITH LATEST DRAWINGS AND DETAILS INFORMATION RELATING TO RISKS TO HEALTH AND SAFETY IS INCLUDED IN OTHER DOCUMENTATION

Clydesdale House 1-5 Queen Street Ipswich Suffolk IP1 1SW Tel: 01473 217959 Email: info@super-structures.co.uk www.super-structures.co.uk

Superstructures is a trading name of Superstructures (East Anglia) Limited. Company registration number: 7879504. Registered in England. VAT Registration Number: 141 3499 21

RAFT FOUNDATION

RC RAFT FOUNDATION (BS8110)

RAFT FOUNDATION DESIGN (BS8110 : PART 1 : 1997)

Tedds calculation version 1.0.12

Mesh provided in bottom	A393 (A _{sslabbtm} = 393 mm²/m)
Top mesh bar diameter	$\phi_{\text{slabtop}} = 10 \text{ mm}$
Bottom mesh bar diameter	$\phi_{\text{slabbtm}} = 10 \text{ mm}$
Cover to top reinforcement	C _{top} = 30 mm
Cover to bottom reinforcement	C _{btm} = 30 mm
Average effective depth of top reinforcement	$d_{tslabav} = h_{slab}$ - C_{top} - $\phi_{slabtop} = 160 \text{ mm}$
Average effective depth of bottom reinforcement	ent dbslabav = hslab - Cbtm - \$\$ dslabbtm =
160 mm	
Overall average effective depth	$d_{slabav} = (d_{tslabav} + d_{bslabav})/2 = 160 \text{ mm}$
Minimum effective depth of top reinforcement	$d_{tslabmin} = d_{tslabav} - \phi_{slabtop}/2 = 155 \text{ mm}$
Minimum effective depth of bottom reinforcem	nent dbslabmin = dbslabav - \$\phi_slabbtm/2 =
155 mm	
Edge beam definition	
Overall depth	h _{edge} = 450 mm
Width	b _{edge} = 300 mm
Angle of chamfer to horizontal	$\alpha_{\text{edge}} = 60 \text{ deg}$
Strength of main bar reinforcement	f _y = 500 N/mm ²
Strength of link reinforcement	f _{ys} = 500 N/mm ²
Reinforcement provided in top	2 H16 bars (A _{sedgetop} = 402 mm ²)
Reinforcement provided in bottom	2 H16 bars (A _{sedgebtm} = 402 mm ²)
Link reinforcement provided	2 H10 legs at 200 ctrs (A _{sv} /s _v = 0.785 mm)
Bottom cover to links	C _{beam} = 30 mm
Effective depth of top reinforcement	$d_{edgetop} = h_{edge}$ - Ctop - $\phi_{slabtop}$ - $\phi_{edgelink}$ - $\phi_{edgetop}/2 = 392 \text{ mm}$
Effective depth of bottom reinforcement	$d_{edgebtm} = h_{edge}$ - Cbeam - $\phi_{edgelink}$ - $\phi_{edgebtm}/2 = 402 \text{ mm}$
Internal beam definition	
Asintlink	/ A _{sinttop} / A _{sslabtop}

09/10/20199

Revision 2

Page No. 2

Strength of main bar reinforcement	f _y = 500 N/mm ²	
Strength of link reinforcement	f _{ys} = 500 N/mm ²	
Reinforcement provided in top	2 H16 bars (A _{sinttop} = 402 mm ²)	
Reinforcement provided in bottom	2 H16 bars (A _{sintbtm} = 402 mm ²)	
Link reinforcement provided	2 H10 legs at 200 ctrs (A _{sv} /s _v = 0.785 mm)	
Effective depth of top reinforcement	$d_{inttop} = h_{int} - C_{top} - 2 \times \phi_{slabtop} - \phi_{inttop}/2 = 392 \text{ mm}$	
Effective depth of bottom reinforcement	$d_{intbtm} = h_{int} - C_{beam} - \phi_{intlink} - \phi_{intbtm}/2 = 402 \text{ mm}$	
Internal slab design checks		
Basic loading		
Slab self weight	$w_{slab} = 24 \text{ kN/m}^3 \times h_{slab} = \textbf{4.8 kN/m}^2$	
Hardcore	Wheoreslab = $\gamma_{hcore} \times h_{hcoreslab}$ = 3.0 kN/m ²	
Applied loading		
Uniformly distributed dead load	W _{Dudl} = 2.5 kN/m ²	
Uniformly distributed live load	W _{Ludl} = 1.5 kN/m ²	
Internal slab bearing pressure check		
Total uniform load at formation level	$W_{udl} = W_{slab} + W_{hcoreslab} + W_{Dudl} + W_{Ludl} = 11.8 \text{ kN/m}^2$	
P	ASS - w _{udl} <= q _{allow} - Applied bearing pressure is less t	han allowable
Internal slab bending and shear check		
Applied bending moments		
Span of slab	$I_{slab} = \phi_{depslab} + d_{tslabav} = 3510 \text{ mm}$	
Ultimate self weight udl	$w_{swult} = 1.4 \times w_{slab} = \textbf{6.7} \ kN/m^2$	
Self weight moment at centre	$M_{csw} = w_{swult} \times I_{slab}^2 \times (1 + \nu) / 64 = 1.6 \text{ kNm/m}$	
Self weight moment at edge	$M_{esw} = w_{swult} \times I_{slab}^2 / 32 = \textbf{2.6} \text{ kNm/m}$	
Self weight shear force at edge	$V_{sw} = w_{swult} \times I_{slab} \ / \ 4 = \textbf{5.9} \ kN/m$	
Moments due to applied uniformly distrib	uted loads	
Ultimate applied udl	$w_{udlult} = 1.4 \times w_{Dudl} + 1.6 \times w_{Ludl} = \textbf{5.9} \ kN/m^2$	
Moment at centre	$M_{cudl} = w_{udlult} \times I_{slab}^2 \times (1 + \nu) \ / \ 64 = \textbf{1.4 kNm/m}$	
Moment at edge	$M_{eudl} = w_{udlult} \times I_{slab}{}^2 \ / \ 32 = \textbf{2.3} \ kNm/m$	
Shear force at edge	$V_{udl} = w_{udlult} \times I_{slab} / 4 = $ 5.2 kN/m	
Resultant moments and shears		
Total moment at edge	M _{Σe} = 4.9 kNm/m	
Total moment at centre	M _{Σc} = 2.9 kNm/m	
Total shear force	V _Σ = 11.1 kN/m	
Reinforcement required in top		
K factor	$K_{slabtop} = M_{\Sigma e}/(f_{cu} \times d_{tslabav}^2) = 0.006$	
Lever arm	$z_{slabtop} = d_{tslabav} \times min(0.95, 0.5 + \sqrt{0.25 - K_{slabtop}/0})$.9)) = 152.0
mm		
Area of steel required for bending	Asslabtopbend = $M_{\Sigma e}/((1.0/\gamma_s) \times f_{yslab} \times z_{slabtop}) = 74 \text{ mm}$	²/m
Minimum area of steel required	$A_{sslabmin} = 0.0013 \times h_{slab} = \textbf{260} \ mm^2/m$	
roject		
STOWMARKET COMMUNITY CEN	ſRE	JOD NO.

super/structures ctural (

Clydesdale House, Queen Street, Ipswich, Suffolk, IP1 1SW Tel: 01473 217959 Email: info@super-structures.co.uk www.super-structures.co.uk

SS19168

CS

DN

09/10/20199

Revision 2

Calc By

Checked By

Calc Date

Page No. 3

Area of steel required PASS - Asslabtopreg <= Asslabtop - Area of I	Asslabtopreq = max(Asslabtopbend, Asslabmin) = 260 mm ² /n reinforcement provided in top to span local depression	n Is is adequate
Reinforcement required in bottom		
K factor	$K_{slabbtm} = M_{yc}/(f_{cu} \times d_{bslabay}^2) = 0.004$	
	$\frac{1}{2} = \frac{1}{2} $	(0, 0)) = 152.0
mm	2 slabbtm - Ubslabav \times min (0.93, 0.3 + \times (0.23 - Kslabbtm)	0.9)) = 132.0
Area of steel required for bending	$\Delta_{\text{relations}} = M_{\text{S}}/((1 0/v_{\text{s}}) \times f_{\text{relative}} \times 7_{\text{relations}}) = 44 \text{ mm}$	m ² /m
Area of steel required	Assiably more $-max(\Delta_{salably} - \Delta_{salably}) - 260 \text{ mm}^2/$	m
PASS - Asslabhtmreg <= Asslabhtm - Area of rein	forcement provided in bottom to span local depression	ns is adequate
Shear check	······································	
Annlied shear stress	$v = V_{\rm N}/d_{\rm tolohomin} = 0.071 \rm N/mm^2$	
Tension steel ratio	$v = 100 \times A_{\text{outbound}}/d_{\text{outbound}} = 0.254$	
From BS8110-1:1007 - Table 3.8	$p = 100 \times Assiabtop/ dtsiabmin = 0.234$	
Design concrete shear strength	$v_{c} = 0.539 \text{ N/mm}^{2}$	
Design concrete shear strength	PASS - v <= v _c - Shear capacity of the sla	b is adequate
Internal slab deflection check		
Basic allowable span to depth ratio	Bationasic = 26.0	
Moment factor	$M_{\text{factor}} = M_{\text{Va}}/(d_{\text{helabor}}^2 = 0.114 \text{ N/mm}^2$	
Steel service stress	$f_z = 2/3 \times f_{crists} \times \Delta_{crists} + 100000000000000000000000000000000000$	n ²
Modification factor	$ME_{res} = min(2.0, 0.55 \pm [(477N)/mm^2 - f_{c})/(120 \times (0.055))$	$\Omega N / mm^2 \pm$
Menter()])	$\sin \sin \theta = \min\{2.0, 0.00 + [(4771)(1111) - 15)(120 \times (0.00))\}$	J.JN /IIIII +
(Vilactor))])	$MF_{clob} = 2.000$	
Modified allowable span to depth ratio	$Bationalow = Bationacio \times MEstab = 52 000$	
Actual span to depth ratio	Ratioantual = $ c ab/dbs/abay = 21.938$	
	PASS - Ratio _{actual} <= Ratio _{allow} - Slab span to depth rati	io is adequate
Edge beam design checks		
Basic loading		
Hardcore	When thick = $\frac{1}{2}$ because $\frac{1}{2}$ becaus	
Edge beam		
Rectangular beam element	Wheam = $24 \text{ kN/m}^3 \times \text{hedre} \times \text{bedre} = 3.2 \text{ kN/m}$	
Chamfer element	$W_{chamfer} = 24 \text{ kN/m}^3 \times (h_{edge} - h_{slab})^2 / (2 \times tan(\alpha_{edge}))$	= 0.4 kN/m
Slab element	Welabelmt = $24 \text{ kN/m}^3 \times \text{helab} \times (\text{hedge - helab})/\text{tan}(\alpha \text{edge})$	= 0.7 kN/m
Edge beam self weight	Wedge = Wheam + Wchamfer + Wstabelmt = 4.4 kN/m	,
Edge load number 1		
Load type	Longitudinal line load	
Dead load	W _{Dedge1} = 0.8 kN/m	
Live load	w _{Ledge1} = 0.0 kN/m	
Ultimate load	$w_{ultedge1} = 1.4 \times w_{Dedge1} + 1.6 \times w_{Ledge1} = 1.1 \text{ kN/m}$	
Longitudinal line load width	b _{edge1} = 215 mm	
Centroid of load from outside face of raft	x _{edge1} = 0 mm	
Edge load number 2		
roject		Job No.
STOWMARKET COMMUNITY CEN	TRE	SS19168
		Calc By CS

structural engineering and design

Clydesdale House, Queen Street, Ipswich, Suffolk, IP1 1SW Tel: 01473 217959 Email: info@super-structures.co.uk www.super-structures.co.uk

Checked By

Calc Date

Page No. 4

DN

09/10/20199

Load type	Longitudinal line load
Dead load	w _{Dedge2} = 5.2 kN/m
Live load	w _{Ledge2} = 0.0 kN/m
Ultimate load	$W_{ultedge2} = 1.4 \times W_{Dedge2} + 1.6 \times W_{Ledge2} = 7.2 \text{ kN/m}$
Longitudinal line load width	b _{edge2} = 215 mm
Centroid of load from outside face of raft	X _{edge2} = 100 mm
Edge beam bearing pressure check	
Effective bearing width of edge beam	$b_{bearing} = b_{edge} + (h_{edge} - h_{slab})/tan(\alpha_{edge}) = 444 \text{ mm}$
Total uniform load at formation level	$W_{udledge} = W_{Dudl} + W_{Ludl} + W_{edge} / b_{bearing} + W_{hcorethick} = 16.8 \text{ kN/m}^2$
Centroid of longitudinal and equivalent	t line loads from outside face of raft
Load x distance for edge load 1	Moment ₁ = w _{ultedge1} × x _{edge1} = 0.0 kN
_oad x distance for edge load 2	$Moment_2 = w_{ultedge2} \times x_{edge2} = 0.7 \text{ kN}$
Sum of ultimate longitud'l and equivalent l	line loads $\Sigma UDL = 8.3 \text{ kN/m}$
Sum of load x distances	Σ Moment = 0.7 kN
Centroid of loads	$x_{bar} = \Sigma Moment / \Sigma UDL = 87 mm$
nitially assume no moment transferred	d into slab due to load/reaction eccentricity
Sum of unfactored longitud'l and eff'tive li	ine loads Σ UDLsIs = 5.9 kN/m
Allowable bearing width	$b_{allow} = 2 \times x_{bar} + 2 \times h_{hcoreslab} \times tan(30) = 347 \text{ mm}$
Bearing pressure due to line/point loads	$q_{\text{linepoint}} = \Sigma UDLsls/b_{allow} = 17.1 \text{ kN/m}^2$
otal applied bearing pressure	$q_{edge} = q_{linepoint} + W_{udledge} = 33.9 \text{ kN/m}^2$
	PASS - q _{edge} <= q _{allow} - Allowable bearing pressure is not exceede
Edge beam bending check	
Divider for moments due to udl's	β _{udl} = 10.0
applied bending moments	
Span of edge beam	$l_{edge} = \phi_{denthick} + d_{edgeton} = 3742 \text{ mm}$
Jltimate self weight udl	We deput $= 1.4 \times W_{edge} = 6.1 \text{ kN/m}$
Iltimate slab udl (approx)	Wedgeslah = max(0 kN/m 1 4×Wslah×(($\frac{1}{4}$ denthick/2×3/4)-(hedge+(hedge-
α_{red})/tan(α_{red}))))	
	Wedgeslab = 5.5 kN/m
Self weight and slab bending moment	$M_{edgesw} = (W_{edgeult} + W_{edgeslab}) \times I_{edge}^2 / \beta_{udl} = 16.2 \text{ kNm}$
Self weight shear force	Vedgesw = (Wedgeult + Wedgeslab) × ledge/2 = 21.6 kN
Aoments due to applied uniformly dist	tributed loads
lltimate udl (approx)	Wedgeudl = Wudlult × $\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{4}$ = 7.4 kN/m
Bending moment	Medagudi = Wadagudi × Jodag ² /βudi = 10.4 kNm
Moment and shear due to load number 1	
Moment and shear due to load number 1 Bending moment	$M_{edge1} = W_{ultedge1} \times I_{edge}^2/\beta_{udl} = 1.5 \text{ kNm}$
Moment and shear due to load number 1 Bending moment Shear force	$M_{edge1} = W_{ultedge1} \times I_{edge^2} / \beta_{udl} = 1.5 \text{ kNm}$ $V_{edge1} = W_{ultedge1} \times I_{edge} / 2 = 2.0 \text{ kN}$
Moment and shear due to load number 1 Bending moment Shear force Moment and shear due to load number 2	$\begin{split} M_{edge1} &= w_{ultedge1} \times l_{edge}^2 / \beta_{udl} = \textbf{1.5 kNm} \\ V_{edge1} &= w_{ultedge1} \times l_{edge} / 2 = \textbf{2.0 kN} \end{split}$

STOWMARKET (COMMUNITY	CENTRE

super/structures structural en ering and desig

Clydesdale House, Queen Street, Ipswich, Suffolk, IP1 1SW Tel: 01473 217959 Email: info@super-structures.co.uk www.super-structures.co.uk

Calc By

Checked By

Calc Date

Page No. 5

CS

DN

09/10/20199

Shear force	$V_{edge2} = w_{ultedge2} \times I_{edge}/2 = 13.5 \text{ kN}$	
Resultant moments and shears		
Total moment (hogging and sagging)	M _{2.edge} = 38.2 kNm	
Maximum shear force	$V_{\Sigma edge} = 51.0 \text{ kN}$	
Deinfersoment required in ten	0030	
Width of eaction in compression zone	h. h. 200 mm	
Average web width	Dedgetop = Dedge = 300 mm	
K factor	$K_{addectop} = M_{xadac}/(f_{au} \times b_{addectop} \times d_{adactop}^2) = 0.028$	
	$Z_{\text{redgetop}} = \frac{1}{10000000000000000000000000000000000$	(0 9)) - 372
mm		0.0)) = 312
Area of steel required for bending	Assignment = $M_{\text{Nedge}}/((1.0/v_{\text{s}}) \times f_{\text{v}} \times Z_{\text{edgetop}}) = 236 \text{ m}$	nm ²
Minimum area of steel required	Acadesteering = $0.0013 \times 1.0 \times h_{W} \times h_{edge} = 251 \text{ mm}^2$	
Area of steel required	Acadestoprog = $max(Acadestophond, Acadestoprin) = 251 mm$	n ²
PASS - Asedaetoprea <= Asedaeto	- Area of reinforcement provided in top of edge beam	'' Is is adequate
Reinforcement required in bottom	,	
Width of section in compression zone	$b_{1} = b_{2} = b_{1} = t (b_{1} = b_{2})/tap(\alpha_{1} = 0.1 \times b_{1})$	– 910 mm
K factor	$\mathbf{K} = \mathbf{M}_{\text{res}} + \frac{1}{2} \left[\frac{1}{2} + $	ge — 019 mm
	$Redgebtm = IVI_{\Sigma edge}/(Icu \times Dedgebtm \times Cedgebtm^{-}) = 0.010$	(0,0)) - 282
	Zedgebtm = Gedgebtm × IIIII (0.95, 0.5 + V(0.25 - Kedgebt	m/0.9)) = 362
Area of steel required for banding	$(1,,,, M_{n-1},, M_{n-1}, $	mm^2
Minimum area of steel required	Asedgebtmbend = $102 \text{ edge}/((1.0/\text{ /s}) \times 1\text{ y} \times 2\text{ edgebtm}) = 250 \text{ f}$	
Area of steel required	Asedgebtmmin = $0.0013 \times 1.0 \times D_W \times Hedge = 251 HIII^{-1}$	m^2
PASS - Academberran - Academberran	Asedgebtmreq = IIIaX(Asedgebtmbend, Asedgebtmmin) = 231 II	iiii- is adequate
	nea of remotement provided in bottom of eage beam	is is adequate
Lage beam shear check	(1, 1)	
Applied shear stress	$V_{edge} = V_{\Sigma edge}/(D_W \times Q_{edgetop}) = 0.303 \text{ N/mm}^2$	
Lension steel ratio	$\rho_{edge} = 100 \times A_{sedgetop} / (D_w \times d_{edgetop}) = 0.239$	
From BS8110-1:1997 - Table 3.8	0.440 N/mm ²	
Design concrete shear strength	$V_{cedge} = 0.419 \text{ N/IIIII}^2$	links required
Link area to spacing ratio required	Any upon supported = $0.4N/mm^2 \times hu/((1.0/y_0) \times f_{eq})$	-0.396 mm
Link area to spacing ratio provided	A upon source $= N_{\rm start} \times \pi \times \Phi_{\rm start} \times 2/(4 \times s_{\rm start})$	- 0.785 mm
PASS - Asy upon surged as = Asy upon	Suprovedge - Neagelink // + - Sveage)	s is adequate
		is is adequate
Corner design checks		
Basic loading		
Corner bearing pressure check		
Total uniform load at formation level	Wudlcorner = WDudl+WLudl+Wedge/bbearing+Whcorethick = 16.8	3 kN/m ²
PASS	S - Wudlcorner <= qallow - Applied bearing pressure is less t	han allowable
Corner beam bending check		
Cantilever span of edge beam	$I_{corner} = \phi_{depthick} / \sqrt{(2)} + d_{edgetop} / 2 = 2565 \text{ mm}$	
STOWMARKET COMMUNITY CEN	TRE	Job No. SS19168
SUPErstructures		Calc By
structural engineering and design		CS

Clydesdale House, Queen Street, Ipswich, Suffolk, IP1 1SW Tel: 01473 217959 Email: info@super-structures.co.uk www.super-structures.co.uk

Do not Scale. Dimensions are for our design purposes only

Checked By

Calc Date

Page No. 6

DN

09/10/20199

Moment and shear due to self weight		
Ultimate self weight udl	$w_{edgeult} = 1.4 \times w_{edge} = 6.1 \text{ kN/m}$	
Average ultimate slab udl (approx)	$w_{cornerslab} = max(0 \text{ kN/m}, 1.4 \times w_{slab} \times (\phi_{depthick} / (\sqrt{2}) \times 2) - (b_{edge} + (h_{edge}) \times (\phi_{depthick} / (\sqrt{2}) \times 2) - (b_{edge}) + (h_{edge} + (h_{edge}) \times 2) - (b_{edge}) + (h_{edge} + (h_{edge}) \times 2) - (b_{edge}) + (h_{edge} + (h_{edge}) \times 2) - (b_{edge}) + (h_{edge}) +$	ledge-
h _{slab})/tan(α _{edge}))))		
	wcornerslab = 5.0 kN/m	
Self weight and slab bending moment	$M_{cornersw} = (W_{edgeult} + W_{cornerslab}) \times I_{corner}^2/2 = 36.5 \text{ kNm}$	
Self weight and slab shear force	$V_{cornersw} = (W_{edgeult} + W_{cornerslab}) \times I_{corner} = 28.4 \text{ kN}$	
Moment and shear due to udls		
Maximum ultimate udl	$W_{cornerudl} = ((1.4 \times W_{Dudl}) + (1.6 \times W_{Ludl})) \times \phi_{depthick} / \sqrt{2} = 14.0$) kN/m
Bending moment	$M_{cornerudl} = w_{cornerudl} \times I_{corner}^2/6 = 15.3 \text{ kNm}$	
Shear force	$V_{cornerudl} = W_{cornerudl} \times I_{corner}/2 = 17.9 \text{ kN}$	
Resultant moments and shears		
Total design moment	M _{Σcorner} = M _{cornersw} + M _{cornerudl} = 51.8 kNm	
Total design shear force	V ₂ corner = V _{cornersw} + V _{cornerudl} = 46.4 kN	
Reinforcement required in top of edge	e beam	
K factor	$K_{corner} = M_{\Sigma corner} / (f_{cu} \times b_{edgetop} \times d_{edgetop}^2) = 0.037$	
Lever arm	$z_{corner} = d_{edaetop} \times min(0.95, 0.5 + \sqrt{(0.25 - K_{corner}/0.9)}) =$	372 mm
Area of steel required for bending	Ascornerbend = $M_{\Sigma corner}/((1.0/\gamma_s) \times f_y \times Z_{corner}) = 320 \text{ mm}^2$	
Minimum area of steel required	Ascornermin = $A_{sedgetopmin} = 251 \text{ mm}^2$	
Area of steel required	$A_{scorner} = max(A_{scornerbend}, A_{scornermin}) = 320 \text{ mm}^2$	
PASS - Ascorner <= Asedgetop - Area	a of reinforcement provided in top of edge beams at corners is a	adequate
Corner beam shear check		
Average web width	$b_w = b_{edge} + (h_{edge}/tan(\alpha_{edge}))/2 = 430 \text{ mm}$	
Applied shear stress	$v_{corner} = V_{\Sigma corner} / (b_w \times d_{edgetop}) = 0.275 \text{ N/mm}^2$	
Tension steel ratio	$\rho_{corner} = 100 \times A_{sedgetop} / (b_w \times d_{edgetop}) = 0.239$	
From BS8110-1:1997 - Table 3.8		
Design concrete shear strength	V _{ccorner} = 0.417 N/mm ²	
	v _{corner} <= v _{ccorner} + 0.4N/mm ² - Therefore minimum links	required
Link area to spacing ratio required	Asv_upon_svreqcorner = 0.4N/mm ² × bw/((1.0/ γ s) × fys) = 0.	.396 mm
Link area to spacing ratio provided	$A_{sv}_upon_s_{vprovedge} = N_{edgelink} \times \pi \times \phi_{edgelink} / (4 \times s_{vedge}) = 0.7$	785 mm
PASS - Asv_UPON_Svreqcorner <= Asv_UP	ion_Syprovedge - Snear reinforcement provided in edge beams at c	orners is adequate
Corner beam deflection check		
Basic allowable span to depth ratio	Rationasiccorper = 7.0	
Moment factor	$M_{factorcorner} = M_{\Sigma corner}/(b_{edgetop} \times d_{edgetop}^2) = 1.123 \text{ N/mm}^2$	
Steel service stress	$f_{scorner} = 2/3 \times f_V \times A_{scornerbend}/A_{seducton} = 265.115 \text{ N/mm}^2$	
Modification factor	MF _{comer} =min(2.0,0.55+[(477N/mm ² -	
f _{scorner})/(120×(0.9N/mm ² +M _{factorcorner}))])		
	MF _{corner} = 1.423	
Modified allowable span to depth ratio	Ratio _{allowcorner} = Ratio _{basiccorner} × MF _{corner} = 9.959	
Actual span to depth ratio	Ratio _{actualcorner} = I _{corner} / d _{edgetop} = 6.543	
ot	Job N	0.
STOWMARKET COMMUNITY C	CENTRE	SS19168
Super structures	Calc By	CS
suructural engineering and désign	Checke	ed By

Clydesdale House, Queen Street, Ipswich, Suffolk, IP1 1SW Tel: 01473 217959 Email: info@super-structures.co.uk www.super-structures.co.uk

Do not Scale. Dimensions are for our design purposes only

DN

09/10/20199

Revision 2

Calc Date

Page No. 7

Internal beam design checks	
Basic loading	
Hardcore	$w_{hcorethick} = \gamma_{hcore} \times h_{hcorethick} = \textbf{3.0} \ kN/m^2$
Internal beam self weight	$w_{int}=24 \text{ kN/m}^3 \times [(h_{int} \times b_{int}) + (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab})^2 / tan(\alpha_{int}) + 2 \times h_{slab} \times (h_{int} - h_{slab}) + 2 \times h_{slab} \times (h_{int} - h_{$
h_{slab})/tan(α_{int})]	
	$w_{int} = 5.5 \text{ kN/m}$
Internal beam bearing pressure check	
Total uniform load at formation level	$w_{udlint} = w_{Dudl} + w_{Ludl} + w_{hcorethick} + 24kN/m^3 \times h_{int} = 17.8 kN/m^2$
P	ASS - w _{udlint} <= q _{allow} - Applied bearing pressure is less than allowable
Internal beam bending check	
Divider for moments due to udl's	$\beta_{udl} = 10.0$
Applied bending moments	
Span of internal beam	$l_{int} = \phi_{depthick} + d_{inttop} = 3742 \text{ mm}$
Ultimate self weight udl	$W_{intult} = 1.4 \times W_{int} = 7.7 \text{ kN/m}$
Ultimate slab udl (approx)	Wintslab = max(0 kN/m,1.4×Wslab×((\$\$\phi_depthick*3/4)-(bint+2*(hint-
h_{slab} /tan(α_{int})))	
	w _{intslab} = 12.9 kN/m
Self weight and slab bending moment	$M_{intsw} = (w_{intult} + w_{intslab}) \times I_{int}^2 / \beta_{udl} = 28.9 \text{ kNm}$
Self weight shear force	Vintsw = (Wintult + Wintslab) × lint/2 = 38.6 kN
Moments due to applied uniformly distri	buted loads
Ultimate udl (approx)	$W_{intudl} = W_{udlult} \times \phi_{depthick} \times 3/4 = 14.8 \text{ kN/m}$
Bending moment	$M_{intudl} = W_{intudl} \times I_{int}^2 / \beta_{udl} = 20.8 \text{ kNm}$
Shear force	$V_{intudl} = W_{intudl} \times I_{int}/2 = 27.7 \text{ kN}$
Resultant moments and shears	
Total moment (hogging and sagging)	M _{Σint} = 49.6 kNm
Maximum shear force	$V_{\Sigma int} = 66.3 \text{ kN}$
Reinforcement required in top	
Width of section in compression zone	$b_{introp} = b_{int} = 300 \text{ mm}$
Average web width	$b_{wint} = b_{int} + b_{int}/tan(\alpha_{int}) = 560 \text{ mm}$
K factor	$K_{inttop} = M_{\Sigma int}/(f_{cu} \times b_{inttop} \times d_{inttop}^2) = 0.036$
Lever arm	$z_{inttop} = d_{inttop} \times min(0.95, 0.5 + \sqrt{(0.25 - K_{inttop}/0.9))} = 372 \text{ mm}$
Area of steel required for bending	Asinttopbend = $M_{\Sigma int}/((1.0/\gamma_s) \times f_y \times z_{inttop}) = 306 \text{ mm}^2$
Minimum area of steel	Asinttopmin = $0.0013 \times b_{wint} \times h_{int} = 327 \text{ mm}^2$
Area of steel required	$A_{sinttopreq} = max(A_{sinttopbend}, A_{sinttopmin}) = 327 \text{ mm}^2$
PASS - Asinttopreq <= Asinttop	- Area of reinforcement provided in top of internal beams is adequate
Reinforcement required in bottom	
	$b_{1} = b_{1} + 2 \times (b_{2} + b_{1})/(a_{1}) + 0.2 \times b_{2} = 1227 \text{ mm}$
Width of section in compression zone	Dintbtm = Dint + $2 \times (\text{Hint} - \text{Histab})/(\text{all}(\text{all}) + 0.2 \times \text{Hint} = 1337 \text{Hint}$

Project		Job No.	
STOWMARKET COMMUNITY CENTRE		SS1	9168
SUPER Structures		Calc By C	S
Clydesdale House, Queen Street, Ipswich, Suffolk, IP1 1SW Tel: 01473 217959 Email: info@super-structures.co.uk www.super-structures.co.uk		Checked By	N
		Calc Date 09/10/	/20199
	Do not Scale. Dimensions are for our design purposes only	Page No. 8	Revision 2

Lever arm	$Z_{intbtm} = d_{intbtm} \times min(0.95, 0.5 + \sqrt{(0.25 - K_{intbtm}/0.9)}) = 382 \text{ mm}$	
Area of steel required for bending	$A_{sintbtmbend} = M_{\Sigma int}/((1.0/\gamma_s) \times f_y \times z_{intbtm}) = 299 \text{ mm}^2$	
Minimum area of steel required	$A_{sintbtrmmin} = 0.0013 \times 1.0 \times b_{wint} \times h_{int} = \textbf{327} \ mm^2$	
Area of steel required	$A_{sintbtmreq} = max(A_{sintbtmbend}, A_{sintbtmmin}) = 327 \text{ mm}^2$	
PASS - A _{sintbtmreq} <= A _{sintbtm} - Area of reinforcement provided in bottom of internal beams is adequate		
Internal beam shear check		
Applied shear stress	$v_{int} = V_{\Sigma int} / (b_{wint} \times d_{inttop}) = 0.302 \text{ N/mm}^2$	
Tension steel ratio	$\rho_{\text{int}} = 100 \times A_{\text{sinttop}} / (b_{\text{wint}} \times d_{\text{inttop}}) = 0.183$	
From BS8110-1:1997 - Table 3.8		
Design concrete shear strength	V _{cint} = 0.381 N/mm ²	
	vint <= vcint + 0.4N/mm ² - Therefore minimum links required	
Link area to spacing ratio required	$A_{sv_upon_svreqint} = 0.4N/mm^2 \times b_{wint}/((1.0/\gamma_s) \times f_{ys}) = \textbf{0.515} \ mm$	
Link area to spacing ratio provided	$A_{sv}_upon_s_{vprovint} = N_{intlink} \times \pi \times \phi_{intlink}^2 / (4 \times s_{vint}) = 0.785 \text{ mm}$	
	Change existing a second and a single second s	

 $PASS - A_{sv_upon_svreqint} <= A_{sv_upon_svprovint} - Shear reinforcement provided in internal beams is adequate$

Project

STOWMARKET COMMUNITY CENTRE

super/structures ctural (

Clydesdale House, Queen Street, Ipswich, Suffolk, IP1 1SW Tel: 01473 217959 Email: info@super-structures.co.uk www.super-structures.co.uk

	Calc Date	
	09/10/	20199
Do not Scale. Dimensions are for our design purposes only	Page No. 9	Revi

Job No.

Calc By

Checked By

SS19168

CS

DN

HANDRAIL BLOCKWORK WALL

FOUNDATION ANALYSIS & DESIGN (EN1992/EN1997)

FOUNDATION ANALYSIS (EN1997-1:2004)

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

TEDDS calculation version 3.2.19

Strip foundation details - considering a one metre strip

Length of foundation $L_x = 1000 \text{ mm}$ Width of foundation $L_y = 450 \text{ mm}$ Foundation area $A = L_x \times L_y = 0.450 \text{ m}^2$ Depth of foundationh = 225 mmDepth of soil over foundation $h_{soil} = 300 \text{ mm}$ Level of water $h_{water} = 0 \text{ mm}$ Density of water $\gamma_{water} = 9.8 \text{ kN/m}^3$ Density of concrete $\gamma_{conc} = 23.5 \text{ kN/m}^3$

263 kN/m

Wall no.1 details

Width of wall $I_{y1} = 215 \text{ mm}$ position in y-axis $y_1 = 225 \text{ mm}$

Soil properties

Density of soil $\gamma_{soil} = 18.0 \text{ kN/m}^3$ Characteristic cohesion c'_k = 0 kN/m²

Project STOWMARKET COMMUNITY CENTRE		Job No.	
		SS19	9168
SUPER Structures		Calc By	S
Clydesdale House, Queen Street, Ipswich, Suffolk, IP1 1SW Tel: 01473 217959 Email: info@super-structures.co.uk www.super-structures.co.uk		Checked By D	N
		Calc Date 09/10/2	20199
	Do not Scale. Dimensions are for our design purposes only	Page No. 10	Revision 2

Characteristic effective shear resistance	angle $\phi'_k = 30 \text{ deg}$	
Characteristic friction angle $\delta_k = 20$ c	deg	
Foundation loads		
Self weight $F_{swt} = h \times \gamma_{conc} = 5.3 \text{ kN/m}^2$		
Soil weight $F_{soil} = h_{soil} \times \gamma_{soil} = 5.4 \text{ kN/m}^2$		
Wall no.1 loads per linear metre		
Permanent load in $z F_{Gz1} = 5.2 \text{ kN}$		
Variable load in y $F_{Qy1} = 1.2 \text{ kN}$		
Design approach 1		
Partial factors on actions - Combination1		
Partial factor set A1		
Permanent unfavourable action - Table A	λ.3γ _G = 1.35	
Permanent favourable action - Table A.3	γ _{Gf} = 1.00	
Variable unfavourable action - Table A.3	γ _Q = 1.50	
Variable favourable action - Table A.3	$\gamma_{Qf} = 0.00$	
Partial factors for soil parameters - Combi	ination1	
Soil factor set M1		
Angle of shearing resistance - Table A.4	$\gamma_{\phi'} = 1.00$	
Effective cohesion - Table A.4 $\gamma_{c'} = 1.00$	D	
Weight density - Table A.4 $\gamma_{\gamma} = 1.00$	-	
Partial factors for spread foundations - Co	ombination1	
Resistance factor set R1		
Rearing - Table A 5 $v_{Ry} = 1.00$		
Sliding - Table A 5 $v_{\rm R,h} = 1.00$		
Rearing resistance (Section 6.5.2)		
Forces on foundation per linear metre		
Force in v-axis $F_{dv} = v_0 \times F_{0v1} = 1.8 \text{ kN}$		
Force in z-axis $F_{dz} = v_G \times (A \times (F_{sud} + F_{sr}))$	$(a_1) + F_{C_{24}} = 13.5 \text{ kN}$	
Moments on foundation per linear metre		
Moment in v-axis $M_{dv} = v_G \times (A \times (F_{swt} + F_s))$	$h^{(i)} \times L_{V} / 2 + F_{G_{21}} \times V_{1} + (v_{O} \times F_{OV1}) \times h = 3.4 \text{ kNm}$	
Eccentricity of base reaction		
Eccentricity of baco reaction in v axis	$a = M_{\odot} / E_{\odot} + / 2 = 30 \text{ mm}$	
Effective area of base per linear metre	$e_y = Md_y / Fd_z - L_y / Z = 30 IIIIII$	
Effective width $L'_y = L_y - 2 \times e_y = 390 \text{ mm}$	n	
Effective length $L'_x = 1000 \text{ mm}$		
Effective area $A' = L'_x \times L'_y = 0.390 \text{ m}^2$		
Pad base pressure		
Design base pressure $f_{dz} = F_{dz} / A' = 34$	I.5 kN/m ²	
Ultimate bearing capacity under drained c	onditions (Annex D.4)	
Design angle of shearing resistance ϕ'_d = ata	n(tan(φ' _k) / γ _{φ'}) = 30.000 deg	
	DE	Job No.
		SS19168
SUPET Structures structural engineering and design		CS
Clydesdale House Queen Street Inswich Suffolk IP1 15W		Checked By
Tel: 01473 217959 Email: info@ super-structures.co.uk www.super-structures.co.uk		Calc Date
		09/10/20199 Page No. Revision
	Do not Scale. Dimensions are for our design purposes only	11 2

Design effective cohesion $c'_d = c'_k / \gamma_{c'} = 0.000 \text{ kN/m}^2$ Effective overburden pressure $q = (h + h_{soil}) \times \gamma_{soil} - h_{water} \times \gamma_{water} = 9.450 \text{ kN/m}^2$ $q' = q / \gamma_{\gamma} = 9.450 \text{ kN/m}^2$ Design effective overburden pressure Bearing resistance factors $N_q = Exp(\pi \times tan(\phi'_d)) \times (tan(45 \text{ deg} + \phi'_d / 2))^2 = 18.401$ $N_c = (N_q - 1) \times cot(\phi'_d) = 30.140$ $N_{\gamma} = 2 \times (N_{q} - 1) \times tan(\phi'_{d}) = 20.093$ Foundation shape factors s_q = **1.000** s_γ = **1.000** $S_c = 1.000$ Load inclination factors $H = abs(F_{dy}) = 1.8 kN$ $m_y = [2 + (L'_y / L'_x)] / [1 + (L'_y / L'_x)] = 1.720$ $m_x = [2 + (L'_x / L'_y)] / [1 + (L'_x / L'_y)] = 1.280$ $m = m_y = 1.720$ $i_q = [1 - H / (F_{dz} + A' \times c'_d \times cot(\phi'_d))]^m = 0.781$ $i_v = [1 - H / (F_{dz} + A' \times C'_d \times cot(\phi'_d))]^{m+1} = 0.677$ $i_c = i_q - (1 - i_q) / (N_c \times tan(\phi'_d)) = 0.769$ Ultimate bearing capacity $n_f = c'_d \times N_c \times s_c \times i_c + q' \times N_q \times s_q \times i_q + 0.5 \times \gamma_{soil} \times L'_y \times N_y \times s_y \times i_y = 183.6 \text{ kN/m}^2$ PASS - Ultimate bearing capacity exceeds design base pressure Sliding resistance (Section 6.5.3) Forces on foundation per linear metre Force in y-axis $F_{dy} = \gamma_Q \times F_{Qy1} = 1.8 \text{ kN}$ Force in z-axis $F_{dz} = \gamma_{Gf} \times (A \times (F_{swt} + F_{soil}) + F_{Gz1}) = 10.0 \text{ kN}$ Sliding resistance verification per linear metre (Section 6.5.3) Horizontal force on foundation $H = abs(F_{dy}) = 1.8 \text{ kN}$ Sliding resistance (exp.6.3a) $R_{H.d} = F_{dz} \times tan(\delta_k) / \gamma_{\phi'} = 3.6 \text{ kN}$ H / R_{H.d} = **0.496** PASS - Foundation is not subject to failure by sliding Library item: Check sliding output Design approach 1 Partial factors on actions - Combination2 A2 Partial factor set Permanent unfavourable action - Table A.3 γ_{G} = **1.00** Permanent favourable action - Table A.3 γ_{Gf} = 1.00 Variable unfavourable action - Table A.3 γ_Q = 1.30 Variable favourable action - Table A.3 $\gamma_{Qf} = 0.00$ Partial factors for soil parameters - Combination2 Soil factor set M2 Angle of shearing resistance - Table A.4 γ_{ϕ} = **1.25** Effective cohesion - Table A.4 $\gamma_{c'} = 1.25$ Weight density - Table A.4 $\gamma_{\gamma} = 1.00$ Project Job No. STOWMARKET COMMUNITY CENTRE SS19168 Calc By super/structures CS Checked By Clydesdale House, Queen Street, Ipswich, Suffolk, IP1 1SW DN Tel: 01473 217959 Email: info@super-structures.co.uk Calc Date www.super-structures.co.uk 09/10/20199

> Page No. 12

Do not Scale. Dimensions are for our design purposes only

Partial factors for spread foundations - Combination2	
Resistance factor set R1	
Bearing - Table A.5 $\gamma_{R.v} = 1.00$	
Sliding - Table A.5 $\gamma_{R,h} = 1.00$	
Bearing resistance (Section 6.5.2)	
Forces on foundation per linear metre	
Force in y-axis $F_{dy} = \gamma_Q \times F_{Qy1} = 1.6 \text{ kN}$	
Force in z-axis $F_{dz} = \gamma_G \times (A \times (F_{swt} + F_{soil}) + F_{Gz1}) = 10.0 \text{ kN}$	
Moments on foundation per linear metre	
Moment in y-axis $M_{dy} = \gamma_G \times (A \times (F_{swt} + F_{soil}) \times L_y / 2 + F_{Gz1} \times y_1) + (\gamma_Q \times F_{Qy1}) \times h = 2.6 \text{ kNm}$	
Eccentricity of base reaction	
Eccentricity of base reaction in y-axis $e_y = M_{dy} / F_{dz} - L_y / 2 = 35 \text{ mm}$	
Effective area of base per linear metre	
Effective width $L'_y = L_y - 2 \times e_y = 380 \text{ mm}$	
Effective length L' _x = 1000 mm	
Effective area $A' = L'_x \times L'_y = 0.380 \text{ m}^2$	
Pad base pressure	
Design base pressure $f_{dz} = F_{dz} / A' = 26.3 \text{ kN/m}^2$	
Ultimate bearing capacity under drained conditions (Annex D.4)	
Design effective cohesion $c'_d = c'_k / \gamma_{c'} = 0.000 \text{ kN/m}^2$ Effective overburden pressure $q = (h + h_{soil}) \times \gamma_{soil} - h_{water} \times \gamma_{water} = 9.450 \text{ kN/m}^2$ Design effective overburden pressure $q' = q / \gamma_{\gamma} = 9.450 \text{ kN/m}^2$ Bearing resistance factors $N_q = \text{Exp}(\pi \times \tan(\phi'_d)) \times (\tan(45 \text{ deg} + \phi'_d / 2))^2 = 10.431$ $N_c = (N_q - 1) \times \cot(\phi'_d) = 20.418$ $N_{\gamma} = 2 \times (N_q - 1) \times \tan(\phi'_d) = 8.712$ Foundation shape factors $s_q = 1.000$ $s_c = 1.000$ Load inclination factors $H = abs(F_{dy}) = 1.6 \text{ kN}$ $m_y = [2 + (L'_y / L'_x)] / [1 + (L'_y / L'_x)] = 1.725$ $m_x = [2 + (L'_x / L'_y)] / [1 + (L'_x / L'_y)] = 1.275$ $m = m_y = 1.725$ $i_q = [1 - H / (F_{dz} + A' \times c'_d \times \cot(\phi'_d))]^m = 0.746$ $i_y = [1 - H / (F_{dz} + A' \times c'_d \times \cot(\phi'_d))]^m + 1 = 0.629$ $i_c = i_q - (1 - i_q) / (N_c \times \tan(\phi'_d)) = 0.719$ Ultimate bearing capacity $n_f = c'_d \times N_c \times s_c \times i_c + q' \times N_q \times s_q \times i_q + 0.5 \times \gamma_{soil} \times L'_y \times N_y \times s_y \times i_y \times PASS - Ultimate bearing capacity exceeds designt R$	= 92.2 kN/m² base pressure
PASS - Onimale bearing capacity exceeds design b	ase pressure
Project STOWMARKET COMMUNITY CENTRE	Job No. SS19168
Super/structures	Calc By CS
Chudaedala Hausa Augan Straat Jaswich Suffelt 104.45W	Checked By
Tel: 01473 217959 Email: info@ super-structures.co.uk www.super-structures.co.uk	DN Calc Date

09/10/20199

Revision 2

Page No. 13

Do not Scale. Dimensions are for our design purposes only

Sliding resistance (Section 6.5.3)

Forces on foundation per linear metre

PASS - Foundation is not subject to failure by sliding

Library item: Check sliding output

Project

STOWMARKET COMMUNITY CENTRE

SUPER Structures

Clydesdale House, Queen Street, Ipswich, Suffolk, IP1 1SW Tel: 01473 217959 Email: info@super-structures.co.uk www.super-structures.co.uk

	Checked By	
	DN	
	Calc Date	
	09/10/	20199
Do not Scale. Dimensions are for our design purposes only	Page No. 14	Revision 2

Job No.

Calc By

SS19168

CS