

Southwold Town Council

PRE-DEMOLITION INFORMATION

Produced in accordance with the CDM Regulations 2015

SUFFOLK: Registered Office: 7 Museum Street Ipswich Suffolk IP1 1HQ T 01473 280699 F 01473 280701 E ipswich@chick.co.uk (Registered No: 4806356) ESSEX: 8 Atlantic Square Station Road Witham Essex CM8 2TL T 01376 503020 E chelmsford@chick.co.uk NORFOLK: 23 St Stephens Road Norwich NR1 3SP T 01603619093 F 01603 619840 E norwich@chick.co.uk

DOCUMENT CONTROL

Documentation Produced by:	
Allowthan	
Yvonne Crowther - CMaPS	
On behalf of J P Chick & Partners Limited	
JPC ISSUING OFFICE	7 Museum Street, Ipswich, IP1 1HQ

ISSUE AND REVISIONS RECORD

Document No:	Issue Date:	Issued to:		Format Issued				
					Email	Disk	Digital upload	Post
lc21/005	.13 April 2021	Jason Wells – Richard Utting					✓	
		Associates						
Document Revision	Issue Date:	Document Revision	Revised	Reviewed				
No:		Comments	by (INT):	by (INT):				
Job no/report/RevA	Click or tap to							
	enter a date.							
	Click or tap to							
	enter a date.							
	Click or tap to							
	enter a date.							
	Click or tap to							
	enter a date.							
	Click or tap to							
	enter a date.							

This document is to assist with the compilation of the Demolition Phase Plan. The Principal Contractor is to ensure that this document is made available/issued together with the Principal Contractor's Demolition phase plan to all contractors prior to working on site. When the Demolition phase plan is completed, the Client is responsible for ensuring that it is adequate before a start can commence on site. The Principal Designer will require to have a copy of the Client's/Client advisor's confirmation of adequacy.

J P Chick & Partners Limited Competence:

We have highly experienced and trained team undertaking the CDM roles of Principal Designer and Client Advisor who are qualified to Nebosh construction certificate level (qualifying them to inspect construction sites) and are members of the Association of Project Safety. As Designers (Civil & Structural Engineers) we are well placed to undertake all aspects of CDM. We had been undertaking CDM Co-ordinator role since 2007 up until the 2015 regulation changes. We now undertake the Principal Designer and Assistant Principal Designer role as well as the non-regulatory Client Advisor role.

JP Chick & Partners Ltd Consulting Civil & Structural Engineers

Table of Contents

DOCU	MENT CONTROL				
1.0	Brief				
2.0	Planning and Status of Project				
3.0	Description of the Project:				
4.0	Contact Details:				
5.0	Existing records				
6.0	CLIENT'S CONSIDERTATIONS AND MANAGEMENT REQUIREMENTS:				
6.1	Arrangements for Planning & Management8				
6.2	Communications and Liaison between Client and Others				
6.3	Welfare				
7.0	SITE WIDE CONSIDERATIONS AND PRINCIPAL CONTRACTOR REQUIREMENTS:				
7.1	Significant design assumptions requiring risk assessment and method statement				
8.0	FIRE PRECAUTIONS:				
9.0	EMERGENCY PROCEDURES AND MEANS OF ESCAPE:				
10.0	RISK ASSESSMENTS AND METHOD STATEMENTS:				
11.0	ARRANGEMENTS FOR CO-ORDINATION OF ONGOING DESIGN AND DESIGN CHANGES:				
12.0	HEALTH RISK APPLICABLE TO THE SITE/STRUCTURE:				
13.0	HEALTH & SAFETY FILE: 23				
APPEN	DICES:				
Appen	dix A – Welfare Requirements A				
Appen	dix B – Risk RegisterB				
Appendix C – Contamination Report C					
Appen	Appendix D – Asbestos Report – within demolition specification belowD				
Appen	dix E – Demolition SpecificationE				

FIGURES

Figure 1 – Extract of Site Location Map showing buildings to be demolished and retained	7
Figure 2 – Extract of Google Maps showing boundaries and public footpaths	7
Figure 3 - Extract from UXO map showing high- risk	12
Figure 4 - Google map extract showing overhead cables.	15
Figure 5 - BGS extract of geological deposits	16

1.0 Brief

J P Chick & Partners Limited were appointed by Southwold Town Council to undertake the Principal Designer/Assistant role for the project described below, on 08 April 2021.

2.0 Planning and Status of Project

Has the design process started?	Yes
Under CDM Regulations, is the client domestic or commercial?	Commercial
Has planning been granted?	Yes
Has the Client appointed a PD prior to our appointment?	No
Does the demolition require an F10 notification?	N/A

3.0 Description of the Project:

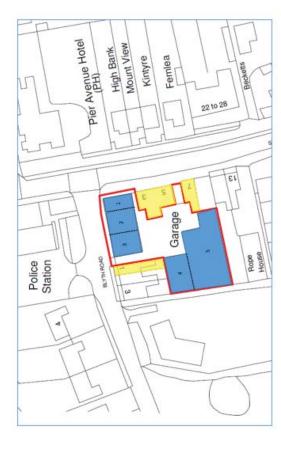
The Project is: Demolition of garages, together with decommissioning of underground tanks.
 Located; at the junction of Blyth Road and Station Road, Southwold, Suffolk in accordance with the Demolition specification produced by J P Chick & Partners Ltd.

Grid Reference:	X (Easting):	650470	Y (Northing):	276597
-----------------	--------------	--------	---------------	--------

3.2 The client must allow the Principal Contractor sufficient mobilisation time between appointment and start of the demolition phase, so they have enough time to carry out their duties to plan and manage the demolition phase.

Minimum mobilisation time	3 Weeks
When is the project expected to start?	ТВА
Approximately how many weeks will the project last?	ТВА
Is the site contaminated	Yes
Is any part of the site expected to be occupied during demolition?	Yes

JP Chick & Partners Ltd Consulting Civil & Structural Engineers


4.0 Contact Details:

Design Team	Company Name, Address, email, telephone no.,	Contact Name
Client	Southwold Town Council Town Hall Market Place, Southwold, Suffolk, IP18 6EF	Will Windell - Councillor
Principal Designer for demolition only	J P Chick & Partners Ltd 7 Museum Street, Ipswich, Suffolk IP1 1HQ - Tel: 01473 280699	Yvonne Crowther Mob: 07766542958
Quantity Surveyor and Project Manager	Richard Utting Associates LLP 63c Thorpe Road Norwich, Norfolk, NR1 1UD Tel: 01603 611 281	Jason Wells Mob: 07702 098779
Structural Engineer/	LD Chiele & Destroys Ltd	Gavin Brundell
Structural Engineer/ Environmental Engineer	J P Chick & Partners Ltd 7 Museum Street, Ipswich, Suffolk IP1 1HQ - Tel: 01473 280699	Robin Crowther Mob: 07525 909184

5.0 Existing records

Description of records	YES/NO	LOCATION ITEM CAN BE SOURCED/Associated Risk	APPENDED to this document
Electrical service drawings	No	Strike of live service	No
Gas service drawings	No	Strike of live service	No
Water service drawings	No	Strike of live service	No
Drainage service drawings	No	Contamination of existing service	No
Asbestos Survey – within demolition specification	Yes	Ashbee Surveying Ltd	Yes
Contamination Reports Phase I, II	Yes	J P Chick & Partners Ltd – See Appendices	Yes
Demolition Specification	Yes	J P Chick & Partners Limited – see appendices to this document	Yes

Buildings being retained which are occupied required access from within the site boundary. Boundary of the site.

Figure 1 – Extract of Site Location Map showing buildings to be demolished and retained.

COLLATION OF INFORMATION OF SIGNIFICANT RISK IDENTIFIED DURING DESIGN:

- Demolition Risks
- Adjacent neighbouring occupied properties security, debris protection
- Tennant/occupiers accesses within the site boundary security management, debris protection
 - Adjacent roads and public footpaths diversion/temporary closure, debris protection
 - Neighbouring local allotments debris/ dust contamination protection
- Party walls forming part of buildings to be demolished Security for occupants and debris protection.
 Services isolation
 - Unexploded Bomb Ordinance (UXO) Preliminary survey required a detailed survey being undertaken by the Client.
 - Asbestos removal by licensed operator
- Dust and Noise nuisance to neighbours and adjacent road users
- Stability of existing structures to remain during excavation of slabs and tanks

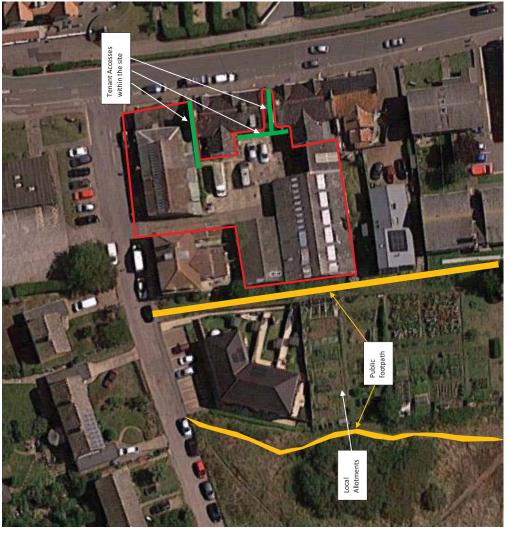


Figure 2 – Extract of Google Maps showing boundaries and public footpaths.

6.0 CLIENT'S CONSIDERTATIONS AND MANAGEMENT REQUIREMENTS:

6.1 Arrangements for Planning & Management

- 6.1.1 The Principal Contractor is responsible for the arrangements for planning and managing the demolition work including any health & safety goals for the project. Together with the production of a demolition plan.
- 6.1.2 The Client must make suitable arrangements for managing a project, including the allocation of sufficient in time and other resources. Arrangements are suitable if they ensure that:
- 6.1.3 Demolition work can be carried out, so far as is reasonably practicable, without risks to the health or safety of any person affected by the project.
- 6.1.4 The facilities required by Schedule 2 are provided in respect to any person carrying out demolition work.
- 6.1.5 To ensure that the demolition Plan is drawn up by the Principal Contractor before demolition work begins.
- 6.2 Communications and Liaison between Client and Others
- 6.2.1 The design team will communicate on an as needed basis to allow for the co-ordination of the tank removal on site.
- 6.2.2 State how communications will take place via email and Microsoft Teams.
- 6.2.3 The Principal Contractor is to ensure that the site is secure at all times.
- 6.3 Welfare
- 6.3.1 The Client must ensure that there is sufficient welfare on site from the start of the project through to the completion of it. The Principal Contractor will demonstrate and report on the welfare arrangements. See Appendix A for CDM Regulations 2015 Schedule 2 Welfare.

Description	Risk/Mitigation	Information
		Required within CPP
Welfare Arrangements		Yes
cold, drying facilities and re	<pre>provided on site (must include male & fe st room provision - minimum of kettle an ad from HSE website. <u>http://www.hse.g</u></pre>	d microwave) All indicated in HSE –

What will be the arrangements on site? - please indicate on a site plan where the facilities are located.

Demolition of Buildings at the Junction of Blyth Road and Station Road, Southwold, Suffolk JP Chick & Partners Ltd

7.0 SITE WIDE CONSIDERATIONS AND PRINCIPAL CONTRACTOR REQUIREMENTS:

Description	Risk/Mitigation	Information Required within		
Is the site in a rural area or	situ (town). Will the public he close hu?	Demolition plan Yes		
is the site in a rural area of	r city/town? Will the public be close by?	res		
 Management arrangem Traffic management pla Fire plan 				
Delivery and Access Restrie	ctions	Yes/No/N/A		
-	to plan any deliveries in advance to avoid clashing with	any activities of adjacent		
	to ensure that the safety of the public when unloading an should be utilised to control these deliveries.	deliveries if not within		
The site is accessed off the Southwold	A12 off the A1095 on the junction of Blyth Road and S	itation Road in		
Will the site/structure be o	occupied by the Client/employees during the works	Yes		
precautions will need to be are properly controlled. Se	ain in occupation during demolition work. In these circu considered to make sure the risks to the occupants (a parating the occupiers from the work, storage of mater e required to be set out within the demolition phase pla	nd adjacent public areas) rials and preventing		
 Access arrangements Phasing requirements Protection/Segregation 	1			
The principal contractor is to have adequate COVID-19 procedures in place. These COVID-19 procedures are to include social distancing arrangements, cleaning routines, systems of travel etc. The COVID 19 procedures are to be communicated with all visitors to site. This is to be included within the demolition phase plan (CPP).				
Site Security/Hoarding		Yes		
The principal contractor mu	ust define boundaries physically, where necessary, by s e nature of the site and its surroundings. Either heras	uitable fencing. The type		
Determining the boundary	is an important aspect of managing public risk. You ne	ed to:		
a. provide the fencing	;; and			

Demolition of Buildings at the Junction of Blyth Road and Station Road, Southwold, Suffolk JP Chick & Partners Ltd

The boundaries and public right of ways and accesses will need to be planned for.

b. maintain the fencing.

•

.

Consulting Civil & Structural Engineers

The Principal Contractor is to outline security arrangements within their Demolition	Plan.
Site Transport arrangements and or vehicle movement restrictions	Yes
The following actions will help keep pedestrians and vehicles apart:	
 a. Entrances and exits - provide separate entry and exit gateways for pedestria b. Walkways - provide firm, level, well-drained pedestrian walkways that take possible; c. Crossings - where walkways cross roadways, provide a clearly signed and lit drivers and pedestrians can see each other clearly; d. Visibility - make sure drivers driving out onto public roads can see both way before they move on to it; e. Obstructions – do not block walkways so that pedestrians have to step onto f. Parking – establish on site if room or utilise the surrounding areas ensuring caused locally or to adjacent residents. 	a direct route where crossing point where as along the footway the vehicle route; and
Are there any working area (time restrictions?	Vac
Are there any working area/time restrictions? The Town and Country Planning Act 1990 permits the planning authority to attach of	Yes
 decisions and it is a requirement to fully comply with any conditions imposed. The Control of Pollution Act 1974 and Environmental Protection Act 1990 places spectra contractors to ensure that noise, smoke and dust is kept to a minimum. The demolition works shall not take place other than between the following times, by East Suffolk District Council: 07.30 – 1800 hours (Monday to Friday) 08.00 – 13.00 hours - Saturday No Sunday or Bank Holiday working will be permitted. 	
Any areas with restricted access and egress, natural ventilation and not used as a re	gular place of work
must be treated as a confined space. This includes excavations, loft spaces etc.	
• There are existing inspection pits within the garages.	
	Page 10 of 26
Pre-demolition Information – Produced by J P Chick & Partners Ltd For: Southwold Town Council Our Reference: Job No. IC21/004 Date: 14/04/2021	

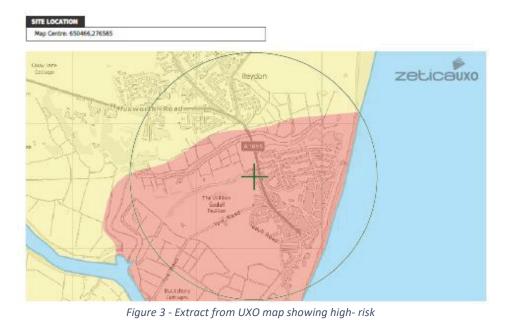
Are there any	no go areas –permit to work systems?	Yes			
Some work of	a particularly hazardous nature may need to be carried out under a fo	rmal permit-to-work			
system.					
 The Pr 	ncipal Contractor may need to utilise a permit to work for the followi	ng:			
0	Isolation of electrical works.				
0	Hot works.				
0	Excavation.				
0	 Lone working. 				
 Lifting operations. 					
0	Work in confined spaces.				
0	Work at height.				
0	Work to roofs.				
0	Temporary works.				
Are there any	restrictions on waste collection or storage on site?	Yes			
- Eullal					
	tails of the proposed waste disposal routes will be provided by	the Principal			
Contra	actor prior to start on site.				

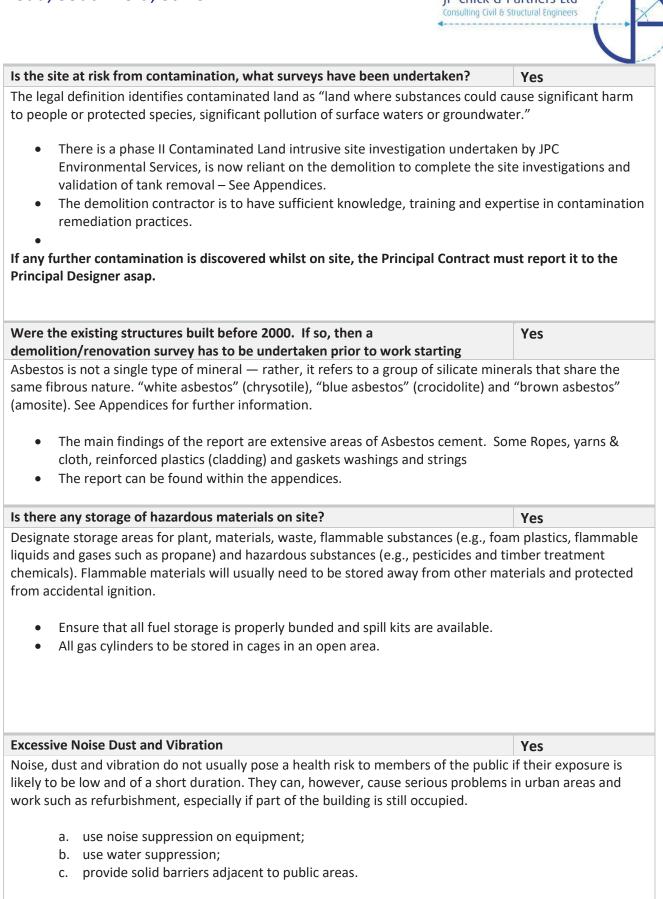
Consulting Civil & Structural Engineers

- All waste will be legally managed. Any waste operations that the Principal Contractor carried out on site needs to be authorised by the appropriate exemption letter, licence, or permit. A copy of a valid Environmental Permit, Waste Management Licence or Waste Exemption registration letter (including a schedule of the waste categories and activities authorised as part of the licence/ exemption) will be recorded on site and available for inspection.
- If hazardous waste is produced on site, the Principal Contractor will comply with the Hazardous Waste Regulations.
- As the Site Waste Management Plan (SWMP) is implemented, the Principal Contractor will obtain evidence of actual waste management routes and provide Waste Transfer Notes as required.
- Waste Transfer Notes (WTNs) and Hazardous Waste Consignment Notes (HWCNs) must be completed with full details of the waste being removed, in accordance with Duty of Care legislation and Hazardous Waste Regulations. A copy of all WTNs, HWCNs and any other supporting evidence must be recorded and available for inspection.

JP CNICK & Partners Ltd Consulting Civil & Structural Engineers

What is the previous land usage?


Up until 1904, this parcel of land was lying between Southwold Railway Station and Southwold's Gas Works on Station Road. Blyth Road was not yet in existence, it was a track to the town's sewage works. By 1905 Hurren Terrace had been constructed on the site, these appeared to be domestic properties with a laundry and garage in the courtyard behind the houses.


Does the site have a risk of Unexploded Ordinance (UXO)? Ye	Yes
---	-----

Southwold is within a high area for UXO. The Client has undertaken a Preliminary UXO Risk Assessment, which recommends a further detailed risk assessment is undertaken. The preliminary report is within the Appendices of the Demolition Specification.

The client will undertake a detailed UXO desk study and risk assessment, a copy of which will be provided to you. If the risk is found to be high the following must be followed:

- The Principal Contractor must have an operational UXO Emergency Response Plan held on site with planned actions in the event of a UXO discovery.
- The Principal Contractor must give UXO safety briefings and awareness training on the identification of an UXO/UXB and following procedures to all site workers.
- During excavations, trial pitting and trenching into the site, UXO survey equipment should be utilised prior to breaking ground.

Demolition of Buildings at the Junction of Blyth Road and Station Road, Southwold, Suffolk JP Chick & Partners Ltd

	structural Engineers
	U U
Security of excavations skips plant and machinery out of working hours	Yes
All plant should be immobilised out of hours; remove keys and starting handles and secure area; cab covers also make vehicles more difficult to enter. Excavations shour overnight or out of hours unless protected from people falling in. a. place excavator buckets, lift-truck forks etc on the ground at the end of the	ould not be left open
 b. check that all plant and equipment operatives are competent; c. remove small hand tools from site or lock them up at the end of the day. 	. ody,
Does the project involve septic tanks or manhandling of existing drainage systems – Weil's Disease?	Yes
 The risk of Weil's disease is linked to areas where rats are or have been present. We risk where there is evidence of rat infestation. This is most likely to be during refur work. Other potential situations include work linked to canals, rivers or sewers. Buildings on the site have been empty for many months. Capping off drainage 	-
If the project involves contact with Lead information on control within demolition plan	Yes
Lead can contaminate the skin and hands. The contamination can then be passed t when they eat or smoke. This is a particular problem when handling lead and sand Make sure people do not smoke or eat without washing first.	•
Are there any adjacent construction sites or any proposed?	No
None known.	
Are there any adjacent land users (Schools, railway lines, busy road etc., which may impact on the site?	Yes
 Station Road is the main route into Southwold, and this is extremely busy espension summer season. Blyth Road is access to neighbouring properties, the old police station area (stic community support officer) and the sewage works further down the road this is for access only. 	ll utilised for a Policy
Location of existing services/plans and their location	Yes
The Principal Contractor is to isolate services on site before works begin. The Principal contractor is to consult all available drawings to determine the l	ipal Contractor is to also
services. The Principal Contractor is to then survey ground with a CAT/Genny scanne	_

1

Demolition of Buildings at the Junction of Blyth Road and Station Road, Southwold, Suffolk JP Chick & Partners Ltd consulting Civil & Structural Engineers

the exact location of underground services on site. The Principal Contractor is to mark the location of services on a drawing,

Protection of drainage to prevent demolition contamination of the sewer system. Overhead services are in existence.

Figure 4 - Google map extract showing overhead cables.

Existing structures – stability, fragility, hazardous materials/ (Anchorage points for fall arrest systems during demolition):

Yes

If during the project, there is doubt of the building's stability then advice must be sort from a structural engineer.

- Stability of steel structures in the temporary state when roofs have been removed.
- Excavation of tanks destabilising existing structures.

Ground conditions –which may affect plant and ground workers:

Yes

Consulting Civil & Structural Engineers

The site is within flood zone 1.

SIGNIFICANT DEMOLITION HAZARDS IDENTIFIED:

7.1 Significant design assumptions requiring risk assessment and method statement.

Demolition Risks	Required within Plan
Adjacent neighbouring occupied properties – security, debris protection	Yes
 Tennant/occupiers accesses within the site boundary – security management, debris protection 	Yes

JP Chick & Partners Ltd Consulting Civil & Structural Engineers

blic footpath – diversion/temporary closure, debris Yes	Adjacent road and public for protection
otments - debris protection Yes	Neighbouring local allotme
art of buildings to be demolished – Security for occupants Yes	Party walls forming part of and debris protection.
dinance (UXO) Preliminary survey required a detailed Yes	Unexploded Bomb Ordinar survey being undertaken b
Yes	Services isolation
v licensed operator Yes	Asbestos – removal by licer
ance to neighbours and adjacent road users Yes	Dust and Noise – nuisance
ructures to monitored during excavation of slabs and Yes	Stability of existing structur tanks.
mination under tanks Yes	Possible further contamina
mination under tanks Yes	Possible further contamina

8.0 FIRE PRECAUTIONS:

- 9.1 **Contractor to provide a comprehensive fire plan (which has to be updated regularly during Demolition).** Principal contractor is to take into account the joint code of practice of the protection from fire on Demolition sites and buildings undergoing renovation.
- 9.2 The Principal Contractor must strictly comply with the Regulatory Reform (Fire Safety) Order 2005 and Construction Design Management (CDM) Regulations 2015 (Regulation 32). A hot works permit should be issued for any hot works that takes place on site. In addition, if deemed necessary, a fire watch should be established during and after the work has finished. It is suggested to maintain a fire watch for 60 minutes after hot work finishes. For more information refer to HSE Leaflet *INDG 297(rev1) Safety in Gas Welding, Cutting and Similar Processes*.

Demolition of Buildings at the Junction of Blyth Road and Station Road, Southwold, Suffolk JP Chick & Partners Ltd consulting Civil & Structural Engineers

9.3 NO SMOKING ON SITE – Designated areas to be established at site set up. In accordance with current UK legislation, a 'no smoking' policy must be established. Any designated safe open-air locations where smoking is allowed should be of a low fire risk design, away from any combustible or flammable materials and provided with metal ashtrays filled with sand.

Description	Risk/Mitigation	Information Required within Plan
Fire precautions		Yes
Please ensure that a	fire plan is completed and within the der	nolition plan.

9.0 EMERGENCY PROCEDURES AND MEANS OF ESCAPE:

- 9.1 The Principal Contractor is to provide emergency procedures as required under Regulation 30 and 31 of the CDM 2015 Regulations. The Contractor is to outline the Fire/Emergency procedures within their Demolition Phase Plan.
- 9.2 The Principal Contractor when planning emergency procedures is to take into consideration the Emergency Workers (Obstruction) Act 2006 which makes it an offence to obstruct or hinder emergency workers who are responding to emergency circumstances.
- 9.3 Principal contractor is to ensure that safe means of access and egress from the site is maintained at all times.

Demolition of Buildings at the Junction of Blyth Road and Station Road, Southwold, Suffolk JP Chick & Partners Ltd

JP Chick & Partners Ltd Consulting Civil & Structural Engineers

Description	Risk/Mitigation	Information Required within Plan
Emergency Procedures		Yes
oreseeable incidents and The principal contractor v	or any emergency event, the principa prepare a plan outlining procedure vill, in consultation with workers and at to identify foreseeable major incid	to be followed in such an event.
Nearest accident and em	ergency department:	Yes
Reydon	Care/Location Corton Corton Covestoft Covestof	es Paget University Hospital 93 452452 Road mouth

First Aid

The Health and Safety (First Aid) Regulations 1981 require all construction sites to have:

- A first aid box with enough equipment to cope with the number of workers on site.
- An appointed person to take charge of first aid arrangements.
- Information telling workers the name of the appointed person or first aider and where to find them. A notice in the site hut is a good way of doing this.

Consulting Civil & Structural Engineers

Yes

- Fewer than 5 people on site at least one appointed person
- 5-50 people on site at least one first aider trained in EFAW or FAW.
- More than 50 people on site At least one first aider trained in FAW for every 50 people (or part of)

Details regarding name and qualifications for the site first aider are to be noted within the demolition plan

JP Chick & Partners Ltd Consulting Civil & Structural Engineers

10.0 RISK ASSESSMENTS AND METHOD STATEMENTS:

10.1 Principal Contractor is to ensure that all necessary risk assessments and method statements for this project are kept up to date and signed off by those undertaking the works as proof of understanding works procedures. ALL HIGHLIGHTED ITEMS TO BE SUBMITTED WITH THE DEMOLITION PHASE PLAN PRIOR TO ANY WORK STARTING.

Risk Assessments/Method Statements for this project	Risk	Mitigation	Information Required Prior to Start on site
Security of the site	segregation of the public particularly out of hours	Fencing and locked entrance gate	YES
Site layout plan		Show access point, fence line, welfare, site office, parking locations and evacuation point and fire points.	YES
Traffic management plan	Plant strikes	Segregation of plant and workers and the public	YES
Fire/Emergency plan	Not knowing what to do or where to go	Installation of fire points and an up-to-date evacuation plan	YES
UXO	Explosion	Consult Clint's UXO reports	YES
Services Location	Service strike	CAT Scan for services prior to digging	Yes
Asbestos Removal	Health Issues	Trained operative and removal by licensed contractor	Yes
Demolitions	Collapse	Plan sequence of operation and tools/plant required	Yes
Stability of existing buildings	Collapse	Monitored by Client employed structural engineer to ensure no undermining of remaining structures	Yes
Working at height	Falls of people and tools/materials from height.	Debris protection, scaffolding/temporary works as required	Yes

Excavations	Falls/collapse	Excavated areas for tank removal are to be suitably barriered off to ensure no falls from height. Plant and equipment are to be kept away from excavation edge.	Yes
		Excavations not to be left open out of hours.	

10.2 Principal Contractor to ensure that records are kept of all necessary COSHH / product safety data sheets for materials used on site.

Description	Risk	Mitigation	Information Required within CPP
Normal construction materials: Fuels (petrol and diesel) Cement Sealants and adhesives Sewage	Mishandling of hazardous material	Make COSHH data sheets available to operatives	Yes/No/N/A

TYPICAL SYMBOLS DENOTING A COSHH SUBSTANCE

11.0 ARRANGEMENTS FOR CO-ORDINATION OF ONGOING DESIGN AND DESIGN CHANGES:

11.1 All design changes are to be notified to the Principal Designer to logged onto the Design Risk Register for review for health & safety implications.

12.0 HEALTH RISK APPLICABLE TO THE SITE/STRUCTURE:

Description	Risk/Mitigation	Risk/Mitigation	Information Required within Plan
Asbestos	Inhalation of fibres by contractors and	Use of dust suppression and use of Trained licensed asbestos	Yes
	or public	removers.	

13.0 HEALTH & SAFETY FILE:

13.1 All information on the clean completed site is to be compiled into a health & safety file, this is to include any residual risks left on the site and the location of all terminated/isolated services.

- 13.2 The Principal Contractor is to assemble all of the information required for the Health & Safety File. He is to pass this to the Principal Designer prior to practical completion of the works in an agreed format.
- 13.3 The Principal Designer will review the above information supplied by the contractor and ensure handover of the health & safety file to the client.

APPENDICES:

- Appendix A Welfare Requirements
- Appendix B Risk Register
- Appendix C Contamination Report
- Appendix D Asbestos Report within demolition specification below
- Appendix E Demolition Specification

Appendix A – Welfare Requirements

Consulting Civil & Structural Engineers

SCHEDULE 2

Minimum welfare facilities required for construction sites.

Sanitary conveniences

1.—(1) Suitable and sufficient sanitary conveniences must be provided or made available at readily accessible places.

(2) So far as is reasonably practicable, rooms containing sanitary conveniences must be adequately ventilated and lit.

(3) So far as is reasonably practicable, sanitary conveniences and the rooms containing them must be kept in a clean and orderly condition.

(4) Separate rooms containing sanitary conveniences must be provided for men and women, except where and so far as each convenience is in a separate room, the door of which is capable of being secured from the inside.

Washing facilities

2.—(1) Suitable and sufficient washing facilities, including showers if required by the nature of the work or for health reasons, must, so far as is reasonably practicable, be provided or made available at readily accessible places.

(2) Washing facilities must be provided—

(a)in the immediate vicinity of every sanitary convenience, whether or not also provided elsewhere; and

(b)in the vicinity of any changing rooms required by paragraph 4, whether or not provided elsewhere.

(3) Washing facilities must include—

(a)a supply of clean hot and cold, or warm, water (which must be running water so far as is reasonably practicable);

(b)soap or other suitable means of cleaning; and

(c)towels or other suitable means of drying.

(4) Rooms containing washing facilities must be sufficiently ventilated and lit.

(5) Washing facilities and the rooms containing them must be kept in a clean and orderly condition.

(6) Subject to sub-paragraph (7), separate washing facilities must be provided for men and women, except where they are provided in a room the door of which is capable of being secured from inside and the facilities in each room are intended to be used by only one person at a time.

(7) Sub-paragraph (6) does not apply to facilities which are provided for washing hands, forearms and the face only.

Drinking water

3.—(1) An adequate supply of wholesome drinking water must be provided or made available at readily accessible and suitable places.

(2) Where necessary for reasons of health or safety, every supply of drinking water must be conspicuously marked by an appropriate sign.

(3) Where a supply of drinking water is provided, a sufficient number of suitable cups or other drinking vessels must also be provided, unless the supply of drinking water is in a jet from which persons can drink easily.

Changing rooms and lockers

Consulting Civil & Structural Engineers

4.—(1) Suitable and sufficient changing rooms must be provided or made available at readily accessible places if a worker—

(a)has to wear special clothing for the purposes of construction work; and

(b)cannot, for reasons of health or propriety, be expected to change elsewhere.

(2) Where necessary for reasons of propriety, there must be separate changing rooms for, or separate use of rooms by, men and women.

(3) Changing rooms must—

(a)be provided with seating; and

(b)include, where necessary, facilities to enable a person to dry any special clothing and any personal clothing or effects.

(4) Suitable and sufficient facilities must, where necessary, be provided or made available at readily accessible places to enable persons to lock away—

(a)any special clothing which is not taken home;

(b)their own clothing which is not worn during working hours; and

(c)their personal effects.

Facilities for rest

5.—(1) Suitable and sufficient rest rooms or rest areas must be provided or made available at readily accessible places.

(2) Rest rooms and rest areas must-

(a)be equipped with an adequate number of tables and adequate seating with backs for the number of persons at work likely to use them at any one time;

(b)where necessary, include suitable facilities for any woman at work who is pregnant or who is a nursing mother to rest lying down;

(c)include suitable arrangements to ensure that meals can be prepared and eaten;

(d)include the means for boiling water; and

(e)be maintained at an appropriate temperature.

Appendix B - Risk Register Report

Pre-demolition Information – Produced by Chick & Partners Ltd For: Southwold Town Council Our Reference: IC21/004

Project Risk Report

Generated for Yvonne M Crowther at 10:13am 14/04/2021

IC21/004 - Demolition of Buildings on the Junction of Blyth Road and Station Road, Southwold - Southwold Town Council

	Status	Open	Open	Open	Open	Open	
	Response Plan	All boundaries to be made safe and secure during demolition - communication with occupants essential * Methodology to be discussed with principal designer	Management of security and protection, temporary diversions and closures during demolition. If required. Methodology to be discussed with principal designer. * Methodology to be discussed with principal designer	Management of security and protection of access areas to properties. Communication with occupants essential. * Methodology to be discussed with principal designer	Excavation of underground tanks * In conjunction with the Client's Enviornmental Consultant excavation is to be monitored by the Client's Structural Engineer to ensure no undermining of remaining structures occurs	A demolition survey has been undertaken and must be made available to all operatives/licenced contractor. * All asbestos to be removed and disposed of by licenced contractor.	There are overhead cables.
eas	Performance	×	×	×	×	×	
Impact Areas	Schedule	×	×	×	×	×	
	Cost	×	×	×	×	×	
	Result	81	8	63	03	56	
	High	S	a	ര	o	œ	
Impact	Medium						
	Low						
	High	ი	4	~	А	м	
Probability	Medium						
	Low						
	Risk Source	Security and injuries to occupants - Party walls forming parts of boundaries with structures to be demolished Vvonne M	Injuries to the public - Adjacent public roadways and footpaths Yvonne M	Injuries to the occupants - Adjacent occupied domestic and commercial properties Yvonne M	Collapse of remaining structures - due to undermining when excavating tanks for removal Yvonne M	Asbestos Yvonne M	6 Injury or service loss by
	Risk Source	1 Security and injuries to occupants - Party walls forming parts of boundaries with structures to be demolished Vonne M	2 Injuries to the public - Adjacent public roadways and footpaths Yvonne M	 Injuries to the occupants - Adjacent occupied domesti and commercial properties Yvonne M 	4 Collapse of remaining structures - due to undermining when excavating tanks for removal Yvonne M	5 Asbestos	2

Open	Open			Open
* Principal contractor to ensure that all services are isolated and protected from damage and contamination. * All services to be marked on drawing and issued to the Principal Designer at the end of the demolition phase.	The Control of Pollution Act 1974 and Environmental Protection Act 1990 places specific duties on building contractors to ensure that noise, smoke and dust is kept to a minimum. • All dampening down of dust will be required	during demolition. The demolition works shall not take place other than between the following times, subject to amendment by East Suffolk District Council:	 07.30 - 1800 hours (Monday to Friday) 08.00 - 13.00 hours - Saturday No Sunday or Bank Holiday working will be permitted. 	No excavations are to be left open out of hours. If excavations are required to be inspected following day then the excavation must be protected over night.
×	×			×
×	×			×
×	×			×
20	49			42
00	~			
А	4			
				σ
Striking of Services Yvonne M	Nuisance from dust & noise Vvonne M			Falls into Open Excavations Yvonne M
				Ø

Risk Item Details

	Risk	Date Created	Created By	Date Updated	Updated By	
-	Security and injuries to occupants - Party walls forming parts of boundaries with structures to be demolished	14/04/2021 10:07am	Yvonne M	14/04/2021 10:35am	Yvonne M	
7	Injuries to the public - Adjacent public roadways and footpaths	14/04/2021 10:05am	Yvonne M	14/04/2021 10:33am	Yvonne M	
m	Injuries to the occupants - Adjacent occupied domestic and commercial properties	14/04/2021 10:03am	Yvonne M	14/04/2021 10:32am	Yvonne M	
4	4 Collapse of remaining structures - due to undermining when excavating tanks for removal	14/04/2021 10:17am	Yvonne M	14/04/2021 10:39am	Yvonne M	

5Asbestos14/04/2021 10:12amYvonne M6Injury or service loss by Striking of Services14/04/2021 10:22amYvonne M7Nuisance from dust & noise14/04/2021 10:26amYvonne M8Falls into Open Excavations14/04/2021 10:42amYvonne M		Risk	Date Created	Created By	Date Updated	Updated By
Injury or service loss by Striking of Services14/04/2021 10:22amNuisance from dust & noise14/04/2021 10:26amFalls into Open Excavations14/04/2021 10:42am	,	5 Asbestos	14/04/2021 10:12am	Yvonne M	14/04/2021 10:33am	Yvonne M
Nuisance from dust & noise14/04/2021 10:26amFalls into Open Excavations14/04/2021 10:42am	Ŷ	i Injury or service loss by Striking of Services	14/04/2021 10:22am	Yvonne M	14/04/2021 10:34am	Yvonne M
Falls into Open Excavations			14/04/2021 10:26am	Yvonne M	14/04/2021 10:42am	Yvonne M
	~		14/04/2021 10:42am	Yvonne M	14/04/2021 11:01am	Yvonne M

Appendix C – Contamination Report

Pre-demolition Information – Produced by Chick & Partners Ltd For: Southwold Town Council Our Reference: IC21/004

JPC Environmental Services (A Division of JP Chick & Partners Ltd)

PHASE 2 CONTAMINATED LAND INTRUSIVE SITE INVESTIGATION

Site at Junction of Station Road & Blyth Road Southwold IP18 6AX

SUFFOLK: Registered Office: 7 Museum Street Ipswich Suffolk IP1 1HQ T 01473 280699 F 01473 280701 E ipswich@chick.co.uk (Registered No: 4806356) ESSEX: 8 Atlantic Square Station Road Witham Essex CM8 2TL T 01376 503020 E witham@chick.co.uk NORFOLK: 23 St Stephens Road Norwich NR1 3SP T 01603 619093 F 01603 619840 E norwich@chick.co.uk

DOCUMENT CONTROL

Report prepared by:	Report reviewed by:
A Solo	Sauth
A J Cartwright BSc(Hons) On behalf of JPC Environmental Services A Division of JP Chick & Partners Limited	R M Crowther PIEMA AMEI On behalf of JPC Environmental Services A Division of JP Chick & Partners Limited
JPC Issuing Office	7 Museum Street, Ipswich, IP1 1HQ

ISSUE & REVISIONS RECORD

Document No	Issue Date	Comments			Format Issued
IE20/016/CP2	Friday, 23 October 2020	Draft Report Issued to Southwol	ld Town Cour	ncil	 ✓ Email □ Disk □ Digital Upload □ Post
Document Revision No	Issue Date	Document Revision Comments	Revised by (INT)	Reviewed by (INT)	Format Issued
IE20/016/CP2/1	Friday, 23 October 2020	Initial Report	AJC	RMC	 ✓ Email Disk Digital Upload Post

Contents

DOCUMENT CONTROL EXECUTIVE SUMMARY

1.0 INTRODUCTION

- 1.01 Brief
- 1.02 Scope
- 1.03 Site Location
- 1.04 Development Proposal

2.0 PREVIOUS PHASE I ASSESSMENT

- 2.01 General
- 2.02 Site History
- 2.03 Phase I Recommendations
- 2.04 Geology, Hydrogeology and Hydrology

3.0 INTRUSIVE INVESTIGATION

- 3.01 Objectives
- 3.02 Site Works
- 3.03 Ground Conditions
- 3.04 Chemical Testing

4.0 RESULTS OF INTRUSIVE INVESTIGATION

- 4.01 General
- 4.02 Chemical Testing Soils
- 4.03 Gas Risk Assessment
- 4.04 Developed Conceptual Site Model

5.0 ENVIRONMENTAL ASSESSMENT

- 5.01 Summary of Site Conditions
- 5.02 Environmental Risk Assessment
- 5.03 Waste Classification
- 5.04 Liaison with Regulators
- 5.05 Liaison with Water Supply Company
- 5.06 Environmental Protection

6.0 **RECOMMENDATIONS**

Figures

Figure 1	Architect's Proposed Layout (extract)
Figure 2	Borehole Location Plan (extract)
Figure 3	Decision Matrix for Initial Gas Monitoring
Figure 4	BS8485:2015 - CS by Site Characterisation GSV
Figure 5a & b	HazWasteOnline Classification (extract)

Tables

Table 1	Sample Testing Schedule
Table 2	Screening Criteria
Table 3	Laboratory Test Results
Table 4	Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites (UKWIR, January 2011, Table 3.1: Pipe selection)
Table 5	Gas Monitoring Data
Table 6	Gas Screening Value
Table 7	Developed Conceptual Site Model
Table 8	Risk Classification

Appendices

Appendix A	Site Location Plan
Appendix B	Architect's Layout Plan
Appendix C	Site Investigation Report
Appendix D	Waste Classification Report
Appendix E	Gas/ Groundwater Monitoring Results
Appendix F	Laboratory Results

Site Name & Address:	Site at Junction of Station Road & Blyth Road, Southwold, IP18 6AX
Client:	Southwold Town Council
Local Planning Authority	East Suffolk Council
Historical Site Use:	Garage, Workshop and Cycle Hire
Present Site Use:	Garage inc. below-ground fuel tanks
Proposed Site Use:	Mixed use development comprising office, retail.
Date of investigation:	Wednesday, 16 September 2020, intrusive site investigation

EXECUTIVE SUMMARY

Objectives:

- To explore and evaluate the existence and potential impact of plausible pollutant linkages identified by the previous desk study.
- To obtain and analyse soil samples to further inform the human health risk assessment.
- If appropriate, make recommendations on the extent of further intrusive investigations, which may be required to fully establish the condition of the site.

Previous Assessments

- The Phase I desk study established that the site was first developed in the early 1970s, when a garage and bus station were established. The bus station was no longer labelled on the 1995 map.
- Potential on-site sources of contamination included the below-ground tanks and previous site use. Off-site sources included nearby infilled land.
- The historical review of the surrounding area (within 500m of the site) has shown nearby activities comprise the town of Southwold to the east, various infilled pits and historic industries, and agricultural fields.
- In March 2020, JPC Environmental Services undertook an inspection of the below-ground fuel storage tanks. The inspection found that 8 No. tanks had been decommissioned, while 3 No. tanks required some form of decommissioning.
- It was recommended that the liquid contents are pumped out and the tanks de-gassed. This should take place in conjunction with the tank removal so that there is no risk of any gas accumulation. The waste should be taken to a suitably permitted waste/ recovery facility

Site Investigation

- The fieldwork comprised the conduct of 5 No. window sampler boreholes extended to depths of 5m bgl, and the installation of 3 No. gas monitoring wells.
- Made ground generally comprised a layer of asphalt or concrete hardstanding, overlaying gravelly clayey SAND with brick fragments.
- The natural underlying geology was encountered within each of the boreholes and comprised gravelly clayey SAND, identified as Lowestoft Formation.
- No evidence of asbestos was detected within any of the soil samples tested.
- Chemical analysis of the on-site soil has not identified any elevated concentrations of potential contaminants above the 'Commercial' screening criteria adopted for this assessment.

Risk Assessment:

- The sensitivity of the current land use will not increase once the new mixed-use development has completed, although a larger number of people are likely to use the site. Based on the level of contaminants within the soil samples taken to date, the risk to future site users from exposure to potential contaminants is considered to be LOW.
- Recent gas monitoring has recorded a peak methane concentration of <0.1% and a carbon dioxide concentration of 0.9%. The risk of ground gas migrating to/ accumulating beneath the new buildings is, therefore, considered to be NEGLIGIBLE.
- Although concentrations of petroleum hydrocarbons detected within the soil samples taken were very low, oil was reported within 1 No. of the historical gas monitoring wells. Due to this, we consider the risk to controlled waters to be MODERATE.

Recommendations:

As a result of the Phase II Investigation, JPC Environmental Services would make the following recommendations:

- The below-ground tanks and associated infrastructure should be removed by a suitably qualified contractor and the excavations validated. The tanks previously identified as containing liquids should be pumped out and de-gassed. This should take place in conjunction with the tank removal contract so that there is no risk of any gas accumulation.
- Once the existing buildings have been demolished and the site is cleared, further investigations should be undertaken to gain a more comprehensive understanding of the whole site. Samples should be taken from within the made ground and deeper natural geology and tested for a full set of typical contaminants, as well as a more comprehensive TPH suite. If possible, groundwater samples should be taken and tested for TPHs, particularly from the vicinity of WS02A (historical).
- If evidence of hydrocarbon contamination is encountered within on-site groundwater, it may be necessary to undertake a Detailed Qualitative Risk Assessment (DQRA).
- As the risk of yet undiscovered contaminants or buried material within the made ground cannot entirely be ruled out, we would advocate the adoption of a 'Discovery Strategy' across the site. If any suspicious or malodorous soils are encountered during future ground works, then work will need to be stopped until samples of the soil tested for a typical range of environmental contaminants.
- Based on our preliminary waste classification, undertaken as part of this assessment, any surplus soils are likely to be classified as 'Non-Hazardous' waste. Where the organic matter content is less than 3%, and the soils is free from significant deleterious material, the 'Nonhazardous' soils may be classified as 'Inert', subject to the results of a WAC test. If pockets of hydrocarbon-impacted soils are discovered beneath the tank, however, they may be classified as 'Hazardous'.
- Although not related to the condition of the on-site soils, we would recommend undertaking an HSG264 Pre-demolition asbestos survey on the existing garage/ workshop buildings. All identified asbestos containing materials (ACMs) should then be removed, by a suitably experienced contractor, prior to demolition.

1.0 INTRODUCTION

- 1.01 Brief
- 1.01.1 JPC Environmental Services were appointed by Southwold Town Council to undertake a Phase II Contaminated Land Investigation for 'Site at Junction of Station Road & Blyth Road, Southwold, IP18 6AX' (hereafter referred to as 'the site').
- 1.01.2 The investigation was broadly carried out in accordance with Contaminated Land Report 11 (CLR 11) and BS5930:2015 The Code of Practice for Ground Investigations.
- 1.01.3 Authority to carry out this work was received from Southwold Town Council via email on 25 August 2020.
- 1.01.4 This report shall be for the private and confidential use of Southwold Town Council for whom it was undertaken. It should not be reproduced in whole or in part, or relied upon by a third party for any use without the express written authority of JPC Environmental Services.
- 1.01.5 In producing this report, we have exercised all the reasonable skill, care and diligence to be expected of an appropriately qualified and competent consultant, experienced in carrying out equivalent services for developments of a similar size, scope and complexity, value and purpose to the development.

1.02 Scope

- 1.02.1 The main elements of the investigation were as follows: -
 - To establish the depth & composition of any made ground present on site.
 - To collect samples of the underlying soils for chemical testing.
 - To obtain gas readings, to better understand the potential risk of ground gas or hydrocarbon vapours.
 - To utilise the resulting information to undertake a human and environmental risk assessment.
 - If appropriate, make recommendations on the extent of further intrusive investigations, which may be required to fully establish the condition of the site.
- 1.02.2 The on-site investigations comprised the following: -
 - The conduct of 5 No. window sampler boreholes.
 - The installation of 3 No. gas monitoring wells.
 - The collection of near surface and sub-surface soil samples for off-site chemical testing.
 - The recording of on-site geology.

1.03 Site Location

1.03.1 Full postal address: Site at junction of Station Road & Biyth Road, Southwold, IP18 6	1.03.1	Full postal address:	Site at Junction of Station Road & Blyth Road, Southwold, IP18 6A>
--	--------	----------------------	--

1.03.2	Map coordinates:	Easting:	650477
		Northing:	276599

- 1.03.3 The site is located in Southwold and is accessed from either Station Road or Blyth Road.
- 1.03.4 A detailed map of the location is presented within the appendices.

1.04 Development Proposal

- 1.04.1 We understand that the intention is to demolish the existing buildings and re-develop the site to create a mixture of flexible office space and retail units.
- 1.04.2 An extract of the proposed site plan is shown below. A full-scale copy is presented within the appendices.

Figure 1 – Architect's Proposed Layout (extract)

2.0 PREVIOUS ASSESSMENTS

2.01 General

- 2.01.1 The site has been the subject of a Phase I and II Geo-Environmental Assessment, undertaken by EPS Strategies Ltd to "determine ground conditions, establish if there are any environmental risks associated with the site and its development, and provide a geotechnical appraisal".
- 2.01.2 The desk study identified a series of below-ground fuel tanks as the main driver of environmental risk on the site. Following chemical analysis of 5 No. soil samples, the report concluded that no risks to future site users or controlled waters had been identified but recommended some precautionary measures.

2.02 Site History

- 2.02.1 As part of the Phase I report, a historical review of the site was undertaken, which showed that the site was unoccupied on the earliest historic maps (1880s). Later mapping (1970s) showed that the site was used as a garage and bus station, with the bus station no longer shown by 1995.
- 2.02.2 The historical review of the surrounding area (within 500m of the site) has shown nearby activities comprise the town of Southwold to the east, various infilled pits and historic industries, and agricultural fields.

2.03 Phase I and II Recommendations

- 2.03.1 Although not a result of contamination, it was recommended that a minimum of 300mm of clean topsoil was placed in all landscaped areas. Gas protection measures were not considered necessary based on the low levels of gas detected.
- 2.03.2 The primary focus of this investigation is to get achieve a better understanding of the site conditions and provide updated recommendations.

2.04 Geology, Hydrogeology and Hydrology

- 2.04.1 The 1:50,000 scale British Geological Survey (BGS) online referencing advises that the site is likely to be underlain directly by bedrock geology comprising Crag Group Sand.
- 2.04.2 In relation to the overall hydrology, the site is almost entirely laid to concrete hardstanding and buildings, with only a few very small areas of soft landscaping. There is, therefore, only limited opportunity for vertical migration. Historical activities on the site have likely resulted in deposits of made ground, which could affect the overall hydrology at the site.
- 2.04.3 With reference to the groundwater mapping presented on DEFRA's MAGIC map, the bedrock geology, which directly underlies the site, is described as Principal Aquifer.

2.05 Tank Inspection Report

2.05.1 In March 2020 JPC Environmental Services undertook an inspection of the below-ground fuel storage tanks. A total of 10 No. tanks were located, which represented an increase over the number previously believed to be on-site. The report identified the condition of the tanks as follows: 4 No. decommissioned (foam filled), 4 No. decommissioned (water filled), 1 No. was found to contain waste engine oil, 1 No. was blocked at a depth of 1m bgl, and 1 No. could not be located.

2.05.2 It was recommended that the liquid contents are pumped out and the tanks de-gassed. This should take place in conjunction with the tank removal contract so that there could be no risk of any gas accumulation. The waste should be taken to a suitably permitted waste facility.

3.0 INTRUSIVE INVESTIGATION

3.01 Objectives

- 3.01.1 The objectives of the intrusive investigation were as follows:
 - To prove the extent of any Made Ground and the nature of the underlying geology.
 - To obtain samples of the underlying soil for chemical testing.
 - To install 3 No. gas monitoring wells, with 6 No. subsequent site visits to obtain gas readings.
 - To determine the need for mitigation measures to make the site safe for its proposed use.
- 3.01.2 However, the key objective was to retrieve soil data from depths greater than the previous investigation, which may or may not have been extended below the level of the historic tanks.

3.02 Site Works

- 3.02.1 The intrusive investigation was supervised by Andrew Cartwright of JPC Environmental Services on Wednesday, 16 September 2020.
- 3.02.2 The fieldwork comprised the conduct of 5 No. window sampler boreholes extended to depths of 5m bgl, and the installation of 3 No. gas monitoring wells.
- 3.02.3 Boreholes were targeted around the identified below-ground tanks, with the gas monitoring wells installed within 3 No. of the boreholes. The locations of the boreholes and gas monitoring wells are shown in Figure 2 below and within the appendices, together with the associated logs.
- 3.02.4 It should be noted that the positioning of the exploratory holes was constrained by a dense and complicated network of buried utilities and other historic services, such as gas, water, electricity, drainage, and fuel distribution.

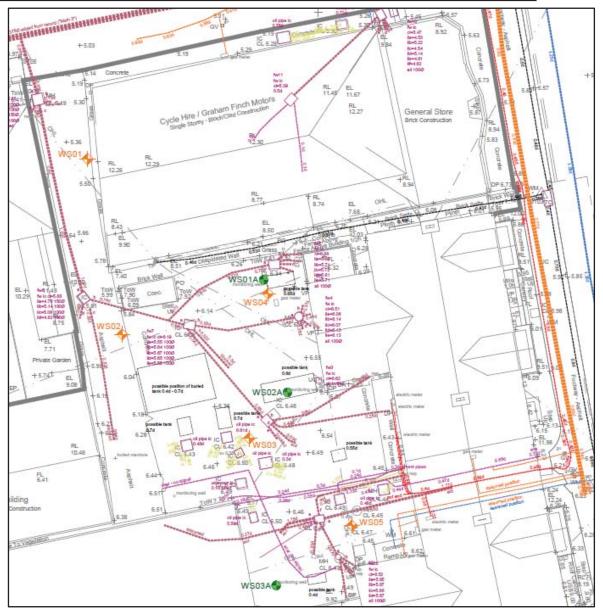


Figure 2 - Borehole Location Plan (extract)

3.02.5 Disturbed samples of surface and sub-surface soils were collected from selected depths, based on the visible presence of made ground, and evidence of potential contamination (odours/ staining).
 Samples were then scheduled for a range of chemical analyses based on a broad suite of environmental determinands and the findings of the Phase I desk study.

3.03 Ground Conditions

- 3.03.1 Made ground was encountered within all boreholes (WS01-WS05) to a depth of between 0.45m bgl and 1.0m bgl.
- 3.03.2 Made ground generally comprised a layer of asphalt or concrete hardstanding, overlaying gravelly clayey SAND with brick fragments.
- 3.03.3 The natural underlying geology was encountered within each of the boreholes and comprised gravelly clayey SAND, identified as Lowestoft Formation.

3.04 Chemical Testing

- 3.04.1 A total of 19 No. soil samples were collected from the 5 No. boreholes, all of which were submitted for chemical testing.
- 3.04.2 Samples were submitted to i2 Analytical, an MCerts & UKAS accredited contaminated land laboratory.

Table 1 - Sample Testing Schedule						
Samples	Test	Trial Pit Location	Depths (m)			
5 No.	CLEA Metals	WS01-WS05	0.1 - 0.3			
	TPH 3-Band		0.2 - 0.4			
	Speciated PAHs		0.3 - 0.5			
	Asbestos ID		0.4 - 0.6			
8 No.	TPH Total	WS01-WS05	0.8 - 1.0			
			1.4 - 1.6			
			3.5 - 3.5			
			3.7 - 4.0			
			4.0 - 4.2			
			4.5 - 4.8			
			4.7 - 5.0			
4 No.	TPH 3-Band	WS01-WS04	1.8 - 2.0			
2 No.	TPH CWG	WS04-WS05	0.9 - 1.1			
			2.4 - 2.6			
1 No.	VOCs and SVOCs	WS04	0.9 - 1.1			
	Fuel Typing					

3.04.3 A full copy of the laboratory test results is presented within the appendices.

4.0 RESULTS OF INTRUSIVE INVESTIGATION

4.01 General

4.01.1 The 19 No. soil samples collected as part of the intrusive investigation were retrieved from depths ranging between 0.1 - 5.0m bgl, based on the likelihood of exposure and evidence of previously disturbed soils. Deeper samples were retrieved and tested to explore the possibility of a tank failure and hydrocarbon plume.

4.02 Chemical Testing – Soil

- 4.02.1 To determine the condition or severity of any contamination, environmental consultants and regulators, such as the Environment Agency and local authorities use a range of screening criteria developed by Defra & the Environment Agency in 2009 ('Soil Guidance Values' SGV2), and Generic Assessment Criteria produced by the Chartered Institute of Environmental Health (CIEH) / Land Quality Management (LQM).
- 4.02.2 A series of Category 4 Screening Levels (C4SLs) were published by Defra (March 2014) for use in determining when land is not considered to be contaminated. These values have also been approved by many planning authorities, as a means for deciding when land is 'suitable for use'. The C4SLs were proposed to be more pragmatic, whilst still strongly precautionary, compared to existing generic screening levels. Where a C4SL exists, this has been utilised instead of the previous screening value.

- 4.02.3 In addition to the above the Chartered Institute of Environmental Health (CIEH) and Land Quality Management Ltd (LQM) have together published S4UL's were published in 2015. S4ULs are based on the principles of 'minimal' or 'tolerable' risk and are therefore sufficiently conservative for this type of generic quantitative risk assessment under the planning regime, which need only demonstrate that new development is 'safe' and 'suitable for use'.
- 4.02.4 While not published by the Environment Agency, the C4SL's and S4UL's are largely accepted by the various regulators as a suitable means of determining the risk to human health. This screening assessment will therefore utilise the most recent Defra C4SL's and LQM/CIEH S4UL's to evaluate the potential risk to human health.
- 4.02.5 The potential 'availability' of contaminants can be affected by the proportion of organic matter in the soil (SOM). The C4SLs are calculated based on a SOM of 6%, whereas S4UL's are calculated on a SOM of 1%, 2.5% and 6%. For the purposes of this initial 'screen' the S4ULs will use the 1% values. Where on-site contaminant concentrations are close to or exceed these values, they will be interrogated further.
- 4.02.6 The soil-based screening criteria (SC) utilised for this assessment, have been selected based on a 'Commercial' land use. The adopted values are detailed in Table 2 below and overleaf:

Screening Category: Commercial								
Contaminant of Concern	Risk Assessment Screening Value (mg/kg)	Source of Screening Value						
Toxic & Phytotoxic Metals	Toxic & Phytotoxic Metals							
Arsenic	640	C4SL (March 2014)						
Cadmium	190	LQM/CIEH S4UL's (Nov 2014)						
Chromium Hexavalent	33	LQM/CIEH S4UL's (Nov 2014)						
Chromium (III)	8600	LQM/CIEH S4UL's (Nov 2014)						
Copper	68000	LQM/CIEH S4UL's (Nov 2014)						
Lead	2330	C4SL (March 2014)						
Mercury	58	LQM/CIEH S4UL's (Nov 2014)						
Nickel	980	LQM/CIEH S4UL's (Nov 2014)						
Selenium	12000	LQM/CIEH S4UL's (Nov 2014)						
Zinc	730000	LQM/CIEH S4UL's (Nov 2014)						
Polycyclic Aromatic Hydroca	rbons (PAHs)							
Naphthalene	190	LQM/CIEH S4UL's (Nov 2014)						
Acenaphthylene	83000	LQM/CIEH S4UL's (Nov 2014)						
Acenaphthene	84000	LQM/CIEH S4UL's (Nov 2014)						
Flourene	63000	LQM/CIEH S4UL's (Nov 2014)						
Phenanthrene	22000	LQM/CIEH S4UL's (Nov 2014)						
Anthracene	520000	LQM/CIEH S4UL's (Nov 2014)						
Fluoranthene	23000	LQM/CIEH S4UL's (Nov 2014)						
Pyrene	54000	LQM/CIEH S4UL's (Nov 2014)						
Benz(a)anthracene	170	LQM/CIEH S4UL's (Nov 2014)						

Table 2 - Screening Criteria

Chrysene	350	LQM/CIEH S4UL's (Nov 2014)
Benzo(b)fluoranthene	44	LQM/CIEH S4UL's (Nov 2014)
Benzo(k)fluoranthene	1200	LQM/CIEH S4UL's (Nov 2014)
Benzo(a)pyrene	35	LQM/CIEH S4UL's (Nov 2014)
Indeno(123-cd)pyrene	500	LQM/CIEH S4UL's (Nov 2014)
Dibenz(ah)anthracene	3.5	LQM/CIEH S4UL's (Nov 2014)
Benzo(ghi)perylene	3900	LQM/CIEH S4UL's (Nov 2014)
Total Petroleum Hydrocarbo	ns (TPHs)	
EC8-10 Combined (Gasoline)	2000	LQM/CIEH S4UL's (Nov 2014)
EC10-21 Combined (Diesel)	9700	LQM/CIEH S4UL's (Nov 2014)
EC21-40 Combined (Mineral)	28000	LQM/CIEH S4UL's (Nov 2014)
Aliphatic, EC5 - EC6	3200	LQM/CIEH S4UL's (Nov 2014)
Aliphatic, EC6 - EC8	7800	LQM/CIEH S4UL's (Nov 2014)
Aliphatic, EC8 - EC10	2000	LQM/CIEH S4UL's (Nov 2014)
Aliphatic, EC10 - EC12	9700	LQM/CIEH S4UL's (Nov 2014)
Aliphatic, EC12 - EC16	59000	LQM/CIEH S4UL's (Nov 2014)
Aliphatic, EC16 - EC21	1600000	LQM/CIEH S4UL's (Nov 2014)
Aromatic, EC5 - EC7	26000	LQM/CIEH S4UL's (Nov 2014)
Aromatic, EC7 - EC8	56000	LQM/CIEH S4UL's (Nov 2014)
Aromatic, EC8 - EC10	3500	LQM/CIEH S4UL's (Nov 2014)
Aromatic, EC10 - EC12	16000	LQM/CIEH S4UL's (Nov 2014)
Aromatic, EC12 - EC16	36000	LQM/CIEH S4UL's (Nov 2014)
Aromatic, EC16 - EC21	28000	LQM/CIEH S4UL's (Nov 2014)
Aromatic, EC21 - EC35	28000	LQM/CIEH S4UL's (Nov 2014)
BTEX and MTBE		
Benzene	27	LQM/CIEH S4UL's (Nov 2014)
Toluene	56000	LQM/CIEH S4UL's (Nov 2014)
Ethylbenzene	5700	LQM/CIEH S4UL's (Nov 2014)
Xylene	5900	LQM/CIEH S4UL's (Nov 2014)
Asbestos		
Asbestos	Positive ID	CIRIA C733

4.02.8 Table 3 below provides a summary of the laboratory test results, associated with the on-site soils:

Table 3 - Laboratory Test Results							
Screening Category: Commercial							
Contaminant of	No. of samples	Range of concentrations	No. of samples				
Concern	exceeding criteria						
Toxic & Phytotoxic Metals							
Arsenic	5	9.1 - 23	0				
Cadmium	5	<0.2 - 1.1	0				
Chromium Hexavalent	5	<4.0	0				
Chromium (III)	5	11 - 14	0				

Copper	5	10 - 71	0				
Lead	5	39 - 370	0				
Mercury	5	<0.3 - 0.5	0				
Nickel	5	5.8 - 22	0				
Selenium	5	<1.0	0				
Zinc	5	56 - 180	0				
Polycyclic Aromatic Hydrocarbons (PAHs)							
Naphthalene	5	<0.05	0				
Acenaphthylene	5	<0.05	0				
Acenaphthene	5	<0.05	0				
Flourene	5	<0.05	0				
Phenanthrene	5	<0.05 - 1.3	0				
Anthracene	5	<0.05 - 0.33	0				
Fluoranthene	5	<0.05 - 3.5	0				
Pyrene	5	<0.05 - 3.2	0				
Benz(a)anthracene	5	<0.05 - 3.0	0				
Chrysene	5	<0.05 - 2.3	0				
Benzo(b)fluoranthene	5	<0.05 - 3.4	0				
Benzo(k)fluoranthene	5	<0.05 - 2.1	0				
Benzo(a)pyrene	5	<0.05 - 3.4	0				
Indeno(123-cd)pyrene	5	<0.05 - 2.2	0				
Dibenz(ah)anthracene	5	<0.05 - 0.54	0				
Benzo(ghi)perylene	5	<0.05 - 2.1	0				
Total Petroleum Hydro	ocarbons (TPHs)						
EC8-10 (Gasoline)	9	<0.1	0				
EC10-21 (Diesel)	9	<10 - 27	0				
EC21-40 (Mineral)	9	<10 - 130	0				
EC10-40 (Total)	8	<10	0				
Aliphatic, EC5 - EC6	2	<0.001	0				
Aliphatic, EC6 - EC8	2	<0.001	0				
Aliphatic, EC8 - EC10	2	<0.001	0				
Aliphatic, EC10 - EC12	2	<1.0	0				
Aliphatic, EC12 - EC16	2	<2.0	0				
Aliphatic, EC16 - EC21	2	<8.0 - 20	0				
Aliphatic, EC21 - EC35	2	<8.0 - 260	0				
Aliphatic (EC5 - EC35)	2	<10 - 280	0				
Aromatic, EC5 - EC7	2	<0.001	0				
Aromatic, EC7 - EC8	2	<0.001	0				
Aromatic, EC8 - EC10	2	<0.001	0				
Aromatic, EC10 - EC12	2	<1.0	0				
Aromatic, EC12 - EC16	2	<2.0	0				
Aromatic, EC16 - EC21	2	<10	0				

Aromatic, EC21 - EC35	2	<10 - 74	0				
Aromatic (EC5 - EC35)	Aromatic (EC5 - EC35) 2		0				
BTEX and MTBE							
Benzene	2	<1.0	0				
Toluene	2	<1.0	0				
Ethylbenzene	2	<1.0	0				
p & m-xylene	2	<1.0	0				
o-xylene	2	<1.0	0				
MTBE	2	<1.0	N/A				
Asbestos							
Asbestos	5	Not-detected	0				
VOCs and SVOCs							
VOCs and SVOCs 1		< LoD* N/A					
*Less than the laboratory's limits of detection							

Metals / Metalloids

4.02.9 The concentrations of all metals were found to be below the 'Commercial' screening criteria adopted for this assessment (as well as the more conservative 'Public Open Space - Residential' screening criteria).

Polycyclic Aromatic Hydrocarbons (PAHs)

- 4.02.10 The background concentration of total PAH's within surface soils were recorded at levels of between <0.8 and 27.4 mg/kg.
- 4.02.11 While no screening criteria exists for total PAH's, LQM / CIEH have derived generic assessment criteria for the top 16 PAH compounds, recognised by the Environment Agency as potential human carcinogens.
- 4.02.12 The concentrations of all PAH compounds were found to be below the selected screening criteria.

Total Petroleum Hydrocarbons (TPHs)

- 4.02.13 9 No. samples were submitted for a '3-band' TPH suite, which divides TPH concentrations into the gasoline range (C8 C10), diesel range (C10 C21) and the mineral range (C21 C40). A further 2 No. samples were submitted for the full TPHCWG suite, while 8 No. samples were submitted for TPH totals.
- 4.02.14 The TPH concentrations from all of the samples tested were below their respective screening criteria.
- 4.02.15 With reference to UKWIR's Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites, 3 No. all samples tested fell above the limits for PE pipes in the EC11-EC20 range. As such, standard PE pipe is not likely to be suitable for any new potable water connections to the development. See pipe selection table overleaf.

		Pipe Material				
		All threshold concentrations are in mg/kg				
Test Group		PE	PVC	Barrier Pipe	Metal Pipes	
Total VOCs		0.5	0.125	Pass	Pass	
+ BTEX & M	TBE	0.1	0.03	Pass	Pass	
Total SVOCs (EC5-EC10 a hydrocarbor	liphatic and aromatic	2	1.4	Pass	Pass	
+ Phenols		2	0.4	Pass	Pass	
+ Cresols an	d chlorinated phenols	2	0.04	Pass	Pass	
EC11-EC20 aliphatic and aromatic hydrocarbons		10	Pass	Pass	Pass	
EC21-EC40 aliphatic and aromatic hydrocarbons		500	Pass	Pass	Pass	
Ethers*		0.5	1	Pass	Pass	
Nitrobenzen	e*	0.5	0.4	Pass	Pass	
Ketones*		0.5	0.02	Pass	Pass	
Aldehydes*		0.5	0.02	Pass	Pass	
Amines*		Fail	Pass	Pass	Pass	
	PE/ PVC/ Barrier Pipe:	Pass	Pass			
	Wrapped Steel:	Corrosive if: pH is <7 and Conductivity is		onductivity is >40	0μS/cm	
Corrosive	Wrapped Ductile Iron:	Corrosive if:	pH is <5, Redox is not neutral and Condu >400µS/cm		nd Conductivity is	
	Copper:	Corrosive if:	pH is <5 or >8 and Redox is positive			

Table 4 – Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites (UKWIR, January 2011, Table 3.1: Pipe selection)

*Specific suite identified as relevant following Site Investigation

BTEX, MTBE, VOCs and SVOCs

4.02.16 The concentrations of BTEX were found to be below the selected screening criteria adopted for this assessment within all soil samples tested. The concentrations of MTBE, VOCs and SVOCs were reported to be below the laboratory's limits of detection and are, therefore, considered to be within acceptable limits for the development.

Asbestos Screen

- 4.02.17 5 No. soil samples were screened for the presence of asbestos, to explore the potential presence of asbestos containing material or dispersed fibres in the on-site soil.
- 4.02.18 No asbestos was detected in any of the soil samples tested.

4.03 Gas Risk Assessment

- 4.03.1 The Phase I report identified several nearby infilled pits as potential sources of ground gas. The presence of below ground fuel tanks on-site also represents a source of hydrocarbon vapour and methane/ CO₂ arising from the breakdown of spilled fuels.
- 4.03.2 To obtain additional information for the risk assessment, 3 No. gas monitoring wells were installed on Wednesday, 16 September 2020.
- 4.03.3 The ground gas risk assessment has been carried out in accordance with the following:
 - BS 8485:2015 Code of Practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings.
 - CIRIA C665- Assessing risks posed by hazardous ground gases to buildings.
 - NHBC- Guidance on Evaluation of Development Proposals on Sites where Methane and Carbon Dioxide are present (Report Edition 4, March, 2007).
 - BS 8576:2013- Guidance on investigations for ground gas- Permanent gases and Volatile Organic Compounds (VOCs).
- 4.03.4 To assess the potential risks associated with gas at the site, a number of factors have been considered. These are:

i.Potential Gas Sources

4.03.5 Methane (which is flammable and an asphyxiant) and carbon dioxide (which is toxic and an asphyxiant) can originate from potentially spilled or leaked petroleum hydrocarbons.

ii. Potential Pathways

4.03.6 The conceptual site model outlined in the Phase I Report indicated that ground gas had the potential to migrate through the underlying made ground, to accumulate beneath/ within the new buildings.

iii. Potential Receptors

4.03.7 The new buildings and future site users could be affected by potential gases entering the structures.

iv. Monitoring Requirements

4.03.8 To establish the number/ duration of the gas monitoring visits, we referred to the Decision Matrix set out in BS 8576:2013 (Figure 4 below). Based on the age and proximity of the identified sources, it was considered that the potential for gas generation from the nearby infilled land presented a LOW/ MODERATE Risk to the site.

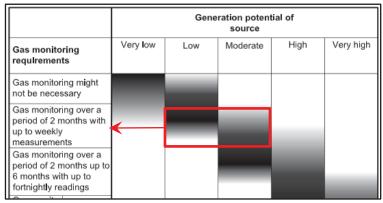


Figure 3 - Decision Matrix for Initial Monitoring (extract)

- 4.03.9 The monitoring requirements for a LOW/ MODERATE risk site are 'Gas monitoring over a period of 2 No. months, with up to weekly measurements'.
- 4.03.10 In accordance with the guidance, a programme of weekly monitoring was instigated. This began on the 16 September 2020 and ended on the 20 October 2020. A copy of the full results is enclosed in Appendix E.
- 4.03.11 A summary of the monitoring results are shown in Table 4 below.

Location	Date of	Barometric	Methane	Carbon	Flow	Depth to
	Monitoring	Pressure	(%)	Dioxide	(l/hr)	Groundwater
	Visit	(mb)		(%)		(m bgl)
WS01	16/09/2020	1022	<0.1	0.2	0.0	DRY
	23/09/2020	1000	<0.1	0.4	0.0	DRY
	30/09/2020	1009	<0.1	0.6	0.0	DRY
	07/10/2020	1011	<0.1	0.7	0.0	DRY
	14/10/2020	1021	<0.1	0.0	0.0	3.88
	20/10/2020	1002	<0.1	0.9	0.0	3.88
WS03	16/09/2020	1021	<0.1	0.4	0.0	DRY
	23/09/2020	1000	<0.1	0.2	0.0	DRY
	30/09/2020	1009	<0.1	0.4	0.0	DRY
	07/10/2020	1010	<0.1	0.0	0.0	DRY
	14/10/2020	1021	<0.1	0.5	0.0	DRY
	20/10/2020	1000	<0.1	0.2	0.0	DRY
WS04	16/09/2020	1019	<0.1	0.0	0.0	DRY
	23/09/2020	1000	<0.1	0.3	0.0	DRY
	30/09/2020	1009	<0.1	0.3	0.0	4.87
	07/10/2020	1011	<0.1	0.1	0.0	4.81
	14/10/2020	1020	<0.1	0.5	0.0	4.81
	20/10/2020	1000	<0.1	0.3	0.0	4.80
WS01A	16/09/2020	NM	NM	NM	NM	NM
(Historical)	23/09/2020	1000	<0.1	0.3	0.0	DRY
	30/09/2020	1009	<0.1	0.4	0.0	DRY
	07/10/2020	1010	<0.1	0.3	0.0	DRY
	14/10/2020	1021	<0.1	0.4	0.0	DRY

Table 5 - Gas Monitoring Results

	20/10/2020	1001	<0.1	0.5	0.0	DRY
			-			
WS02A*	16/09/2020	NM	NM	NM	NM	NM
(Historical)	23/09/2020	1000	<0.1	0.2	0.0	1.97
	30/09/2020	1009	<0.1	0.2	0.0	1.97
	07/10/2020	1011	<0.1	0.0	0.0	1.97
	14/10/2020	1020	<0.1	0.0	0.0	1.96
	20/10/2020	1000	<0.1	0.0	0.0	1.97
WS03A	16/09/2020	NM	NM	NM	NM	NM
(Historical)	23/09/2020	NM	NM	NM	NM	NM
	30/09/2020	1009	<0.1	0.1	0.0	DRY
	07/10/2020	1010	<0.1	0.5	0.0	DRY
	14/10/2020	1021	<0.1	0.8	0.0	DRY
	20/10/2020	1000	<0.1	0.4	0.0	DRY

NM - Not Measured

*No pipework or gas valve. Oil on end of dip tape during final reading.

4.03.12 Gas screening values for methane and carbon dioxide have been calculated based on the maximum (peak) readings obtained from the boreholes and maximum (peak) flow rates. The gas screening values are shown in the table below, together with the maximum gas concentration.

Maximum Carbon	Maximum Carbon	Maximum Methane	Maximum Methane
Dioxide Flow (l/hr)	Dioxide (%)	Flow (I/hr)	(%)
<0.0009	0.9	<0.0001	<0.1

4.03.14 According to figure 5 below from BS8485:2015, the gas screening values shown in the table above would place the site in Characteristic Situation 1 (CS1).

Table	2 CS by site chara	cteristic GSV	
CS	Hazard potential	Site characteristic GSV ^{A)}	Additional factors
		L/h	
CS1	Very low	<0.07	Typically <1% methane concentration and <5% carbon dioxide concentration (otherwise consider an increase to CS2)
CS2	Low	0.07 to <0.7	Typical measured flow rate <70 L/h (otherwise consider an increase to CS3)
CS3	Moderate	0.7 to <3.5	
CS4	Moderate to high	3.5 to <15	-
CS5	High	15 to <70	-
CS6	Very high	>70	-

Figure 4 - BS8485:2015 – CS by Site Characteristic GSV

4.03.15 This level of classification indicates a 'Very Low' hazard potential and leads us to consider the risk of ground gas to the proposed development to be NEGLIGIBLE.

4.03.16 Groundwater was recorded within 3 No. of the boreholes (WS01, WS04, and WS02A), at depths of between 1.96m bgl and 4.87m bgl.

4.04 Developed Conceptual Site Model

4.04.1 Based on the information obtained and reviewed as part of this assessment, we have been able to refine the conceptual site model set out in the Phase I report. This is shown in Table 6 below.

Table 7 - Possible Pollutant Link	ages		
Possible Pollutant Linkag	e		RISK
Potential Sources	Pathways	Receptors	CHARACTERISATION
Below-ground fuel tanks	Inhalation,	Future site users,	
(on-site)	Ingestion,	Construction workers,	LOW
	Dermal absorption,	On-site soil,	LOVV
	Buried Services,	Buried Services.	
	Migration/ Leaching.	Groundwater.	
			MODERATE
Contaminated Soil	Inhalation,	Future site users,	
(on-site)	Ingestion,	Construction workers,	
	Dermal absorption,	On-site soil,	LOW
	Buried Services,	Buried Services,	
	Migration/ Leaching.	Groundwater.	
Contaminated Soil/	Inhalation,	Future site users,	
Groundwater	Ingestion,	Construction workers,	LOW
(on-site)	Dermal absorption,	On-site soil,	LOW
	Buried Services,	Buried Services.	
	Migration/ Leaching.	Groundwater.	
			MODERATE
Infilled Land	Migration of Gas.	Future site users,	
(off-site)		Building and	NEGLIGBLE
		Infrastructure.	

4.04.2 The level of potential risk ascribed to each linkage is based on the following criteria:

Table 8 - Risk Classification

Risk Classification	Description
Very high risk	There is a high probability that severe harm could arise to a designated receptor
	from an identified hazard at the site without appropriate remedial action.
High risk	Harm is likely to arise to a designated receptor from an identified hazard at the site
	without appropriate remedial action.
Moderate risk	It is possible that without appropriate remedial action harm could arise to a
	designated receptor, but it is relatively unlikely that any such harm would be severe,
	and if any harm were to occur it is more likely that such harm would be relatively
	mild.
Low risk	It is possible that harm could arise to a designated receptor from an identified
	hazard but is likely that, at worst, this harm if realised would normally be mild.

Negligible risk

The presence of an identified hazard does not give rise to the potential to cause significant harm to a designated receptor.

5.0 ENVIRONMENTAL ASSESSMENT

5.01 Summary of Site Conditions

- 5.01.1 The site is almost entirely covered by concrete hardstanding and buildings, with only small areas of soft landscaping to the north of the site. The soils excavated during our investigation showed that the depth of made ground ranged between 0.45m and 1.0m bgl and comprised a layer of asphalt or concrete hardstanding, overlaying gravelly clayey SAND with brick fragments.
- 5.01.2 The concentrations of all potential contaminants were below their respective screening criteria within all of the soil samples tested.
- 5.01.3 The gas monitoring has identified the site as 'Characteristic Situation 1 (CS1)'.

5.02 Risk Assessment

Human Health

- 5.02.1 Under the client's proposal, the existing garage/ workshop structures will be demolished, and new buildings will be constructed comprising office and retail units. The proposals do not include any private gardens but may include new raised planters in a communal courtyard.
- 5.02.2 Based on the results from chemical testing undertaken to date, we consider the risk to future site users from potential soil contamination to be LOW.

Controlled Waters

5.02.3 Although concentrations of petroleum hydrocarbons detected within the soil samples taken were found to be very low, oil was reported within 1 No. of the historical gas monitoring wells when it was checked for groundwater during the final round of monitoring. Due to this, we consider the risk to controlled waters to be MODERATE and should be investigated further once the tanks have been removed.

Buildings

5.02.4 Recent gas monitoring has recorded a peak methane concentration of <0.1% and a carbon dioxide concentration of 0.9%. The risk of ground gas migrating to/ accumulating beneath the converted structure is, therefore, considered to be NEGLIGIBLE.

5.03 Waste Classification

- 5.03.1 As part of our evaluation process we have undertaken an assessment of the laboratory results to determine a likely waste classification for any soils requiring excavation and disposal from the site. The assessment has been undertaken in line with the Environment Agency's Guidance on the 'Classification and Assessment of Waste (Version 1.1) Technical Guidance WM3' (EA, 2018).
- 5.03.2 The waste classification has been undertaken by running the laboratory test results through 'HazWasteOnline' to produce a waste classification report.

- 5.03.3 The assessment was undertaken on 19 No. laboratory results, tested for a range of contaminants, including 5 No. samples tested for a full set of typical contaminants, and 14 No. for a combination of TPHs, VOCs and SVOCs. The depths of the samples varied from 0.1m bgl to 4.8m bgl.
- 5.03.4 Based on the soil laboratory results, any surplus soil from most of the site would be classified as 'Non-Hazardous', requiring a list of waste code of 17.05.04 (soil and stones other than those mentioned in 17.05.03*). Any soils with an organic matter content below 3%, and without any anthropogenic inclusions, will be able to be classified as inert. If pockets of hydrocarbon-impacted soils are discovered beneath the tank, however, they may be classified as 'Hazardous'.
- 5.03.5 The above waste classification is only indicative of the soil samples taken to date and it is possible that haulage contractors or landfill facilities may request a Waste Acceptance Criteria (WAC) test before removing any waste soil from the site. The soil test results attached to this report should be provided to the waste disposal contractor to ensure the waste is disposed of at a permitted site, which is licensed to accept the waste.
- 5.03.6 Extracts from the 'HazWasteOnline' software showing the waste classification of each soil sample are presented below and overleaf. Full copies of the waste classification reports are presented in the appendices.

lob	summary		
#	Sample Name	Depth [m]	Classification Result
1	WS1-A[2]	0.10-0.30	Non Hazardous
2	WS1-B[2]	0.80-1.00	Non Hazardous
3	WS1-C[2]	1.80-2.00	Non Hazardous
4	WS1-D[2]	3.70-4.00	Non Hazardous
5	WS2-A[2]	0.20-0.40	Non Hazardous
6	WS2-B[2]	0.80-1.00	Non Hazardous
7	WS2-C[2]	1.80-2.00	Non Hazardous
8	WS2-D[2]	4.70-4.00	Non Hazardous
9	WS3-A[2]	0.20-0.40	Non Hazardous
10	WS3-B[2]	1.80-2.00	Non Hazardous
11	WS3-C[2]	3.20-3.50	Non Hazardous
12	WS3-D[2]	4.50-4.80	Non Hazardous

Figure 5b - HazWasteOnline Classification (extract)

#	Sample Name	Depth [m]	Classification Result
13	WS4-A[2]	0.30-0.50	Non Hazardous
14	WS4-B[2]	0.90-1.10	Non Hazardous
15	WS4-C[2]	1.80-2.00	Non Hazardous
16	WS4-D[2]	4.00-4.20	Non Hazardous
17	WS5-A[2]	0.40-0.60	Non Hazardous
18	WS5-B[2]	1.40-1.60	Non Hazardous
19	WS5-C[2]	2.40-2.60	Non Hazardous

Figure 5a - HazWasteOnline Classification (extract)

5.04 Liaison with Regulators

5.04.1 A copy of this Phase II report should be submitted to the Council for their consideration, comments and the discharge of any related planning applications. However, it is unlikely that this report on its own will be sufficient to discharge such conditions and further investigation will be required once the buildings are removed. Based on our findings and the nature of the proposed end-use, we consider it unlikely that the planners will require a Remediation Strategy for the site, subject to further investigations.

5.05 Liaison with Water Supply Company

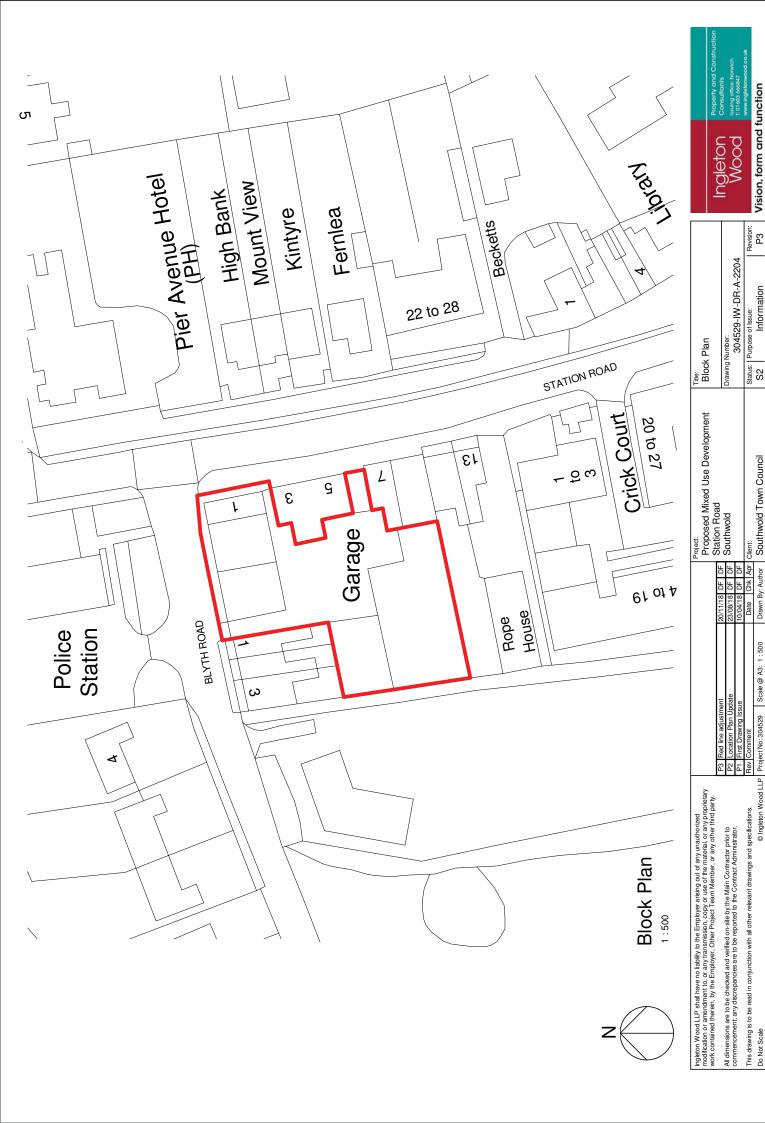
- 5.05.1 When making arrangements for a new mains water connection for the site, Anglian Water may require a copy of this report, to assure themselves that there is no risk to their infrastructure. Standard PE water supply pipe can become compromised by certain contaminants, most notably petroleum hydrocarbons, and therefore the extent of any contamination must be identified by the developer.
- 5.05.2 Based on the laboratory results, it is our opinion that standard PE pipe is not likely to be suitable for any new connections on-site, and that PVC or Barrier pipe should be considered. Further liaison with Anglian Water.

5.06 Environmental Protection

- 5.06.1 In addition to the further investigations detailed below, there are a number of practices that should be considered as part of general good working procedures, to minimise any future potential impact on the environment.
 - Dust suppression during dry periods,
 - Clean any construction related vehicles prior to them leaving site e.g. rumble/ vibration grid, physical scrape of material and/ or wheel wash, to prevent the spread of mud,
 - Recycle surplus/ waste construction materials where practicable,
 - All imported topsoil should be sourced from a reputable supplier and be accompanied by laboratory test results to confirm its condition and suitability for use on site,
 - Careful segregation of soils based on inclusions of construction materials and any visible/ olfactory presence of contaminants.

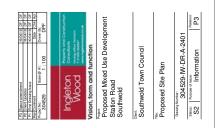
6.0 **RECOMMENDATIONS**

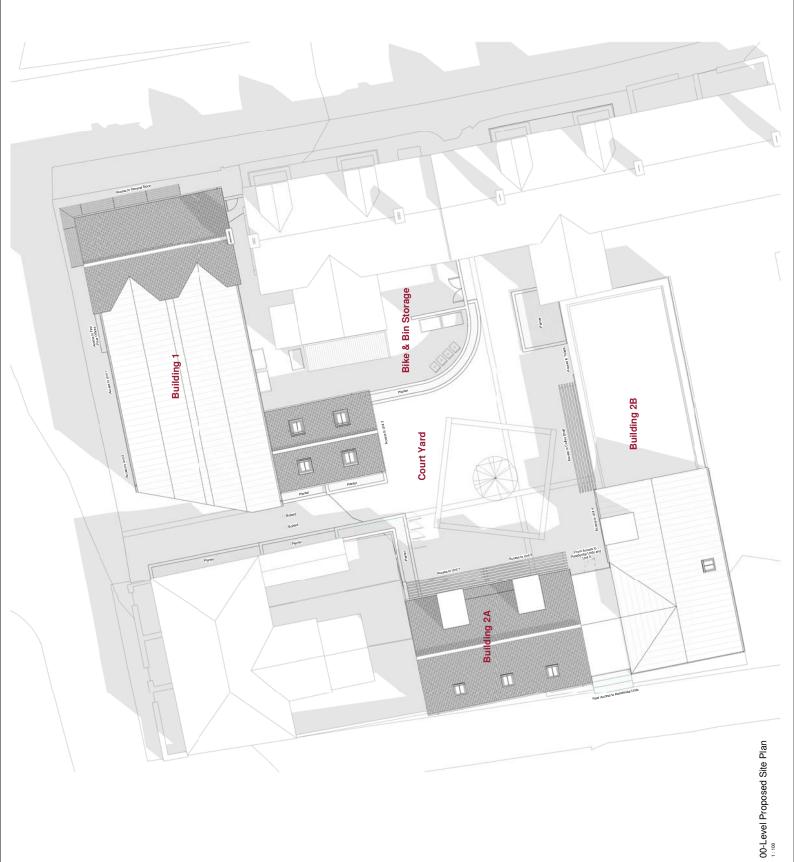
- 6.01.1 As a result of the Phase II Investigation, JPC Environmental Services would make the following recommendations:
 - The below-ground tanks and associated infrastructure should be removed by a suitably qualified contractor and the excavations validated. The tanks previously identified as containing liquids should be pumped out and de-gassed. This should take place in conjunction with the tank removal contract so that there is no risk of any gas accumulation.
 - Once the existing buildings have been demolished and the site is cleared, further investigations should be undertaken to gain a more comprehensive understanding of the whole site. Samples should be taken from within the made ground and deeper natural geology and tested for a full set of typical contaminants, as well as a more comprehensive TPH suite. If possible, groundwater samples should be taken and tested for TPHs, particularly from the vicinity of WS02A (historical).
 - If evidence of hydrocarbon contamination is encountered within on-site groundwater, it may be necessary to undertake a Detailed Qualitative Risk Assessment (DQRA).
 - As the risk of yet undiscovered contaminants or buried material within the made ground cannot entirely be ruled out, we would advocate the adoption of a 'Discovery Strategy' across the site. If any suspicious or malodorous soils are encountered during future ground works, then work will need to be stopped until samples of the soil tested for a typical range of environmental contaminants.
 - Based on our preliminary waste classification, undertaken as part of this assessment, any surplus soils are likely to be classified as 'Non-Hazardous' waste. Where the organic matter content is less than 3%, and the soils is free from significant deleterious material, the 'Non-hazardous' soils may be classified as 'Inert', subject to the results of a WAC test. If pockets of hydrocarbon-impacted soils are discovered beneath the tank, however, they may be classified as 'Hazardous'.
 - Although not related to the condition of the on-site soils, we would recommend undertaking an HSG264 Pre-demolition asbestos survey on the existing garage/ workshop buildings. All identified asbestos containing materials (ACMs) should then be removed, by a suitably experienced contractor, prior to demolition.
- 6.01.2 The opinions and recommendations expressed in this report are based on the ground conditions encountered on site, the results of field and laboratory testing and the interpretation between exploratory holes.
- 6.01.3 It should also be noted that the material encountered, and the samples obtained, represent only a small proportion of the soils present on site, and it is therefore possible that other conditions may prevail on the site, which have not been revealed by this investigation.


6.01.4 This report has been prepared in accordance with our understanding of current best practice. However, changes to best practice, guidance or legislation may necessitate revision of this report after the date of issue.

APPENDIX A

Site Location Plan


JPC Environmental Services (A division of JP Chick & Partners Ltd)



APPENDIX B

Architect's Proposed Site Layout

JPC Environmental Services (A division of JP Chick & Partners Ltd)

APPENDIX C

Site Investigation Report

9 The Courtyards Phoenix Square, Wyncolls Road Colchester, CO4 9PE Telephone: +44 (0)1206 585600 Email: mailbox@terraconsult.co.uk Website: www.terraconsult.co.uk

Your Ref Our Ref 10513/L02-1/AS

18th September 2020

JPC Environmental Services

7 Museum Street Ipswich Suffolk IP1 1HQ

By e-mail only: robin.crowther@chick.co.uk

For the attention of Robin Crowther

Dear Robin,

Phase 2 Ground Investigation – Station Road, Southwold

1. Introduction

Further to our quotation letter dated 16th December 2019, reference 10513/L01-1/JT, we visited site on the 16th September 2020 to undertake the works.

2. Site Works

The site works comprised the drilling of five dynamic window sampler boreholes, referenced WS01 to WS05, to depths ranging between 3.00mbgl to 5.00mbgl with associated in-situ testing and sampling. Sampling was undertaken by a JPC Environmental Services engineer. The aim was to provide information on the ground conditions across the site prior to redevelopment into a mixed-use development.

The site investigation was undertaken in accordance with the scope of works agreed with yourself and generally in accordance with industry guidance including BS10175: 2011 Investigations into Potentially Contaminated Sites – Code of Practice and BS5930: 2015 Code of Practice for Site Investigations – Amendment 2.

The exploratory hole location plan and fieldwork records are presented in **Appendix A**. The investigative positions were selected based on the available access and to provide coverage of the proposed development plot. Prior to boring a cable avoidance tool was used to confirm each location was clear of detectable services.

Single standpipe installations were placed in boreholes WS01, WS03 and WS04. Each standpipe comprised 63mm diameter HDPE piping, slotted below 1.00mbgl; installed to depths between 4.00mbgl (WS01) to 5.00mbgl (WS03 and WS04). Once installed, the slotted section was surrounded by suitable gravel pack, above which a sealing material (bentonite) was used. A rubber bung and gas tap were placed at the top of the pipework and a flush cover concreted at surface to protect the installation from damage. Flow was monitored for a period of up to two minutes, and the concentrations of ground gases including methane, carbon dioxide, oxygen, hydrogen sulphide and carbon monoxide were monitored for up to five minutes. The depth to groundwater was measured using a dip-meter. The monitoring results are presented in **Appendix A**.

3. Ground Conditions

The ground conditions encountered are summarised in **Table 1** and discussed below.

Stratum	Location	Surface Depth (mbgl)	Proven Base Depth (mbgl)	Proven thickness (m)
Made Ground	All locations	0.00	0.45 to 1.00	0.45 to 1.00
Lowestoft Formation	All locations	0.45 to 1.00	Base not proved	Thickness not proved

 Table 1
 Summary of Encountered Ground Conditions

Made Ground

Surface coverings of asphalt or concrete were encountered in boreholes WS01, WS03, WS04 and WS05 to depths between 0.05mbgl to 0.15mbgl. Brick was initially encountered in WS02 to a depth of 0.15mbgl.

The Made Ground generally comprised either a gravelly sand or sand. The gravel fraction comprised flint, brick, and concrete, with rare asphalt gravels noted in WS01 between depths of 0.05mbgl to 0.20mbgl, and in WS03 between depths of 0.20mbgl and 0.99mbgl. A very slight hydrocarbon odour was noted in WS04 at a depth between 0.50mbgl to 0.60mbgl.

In borehole WS03 the Made Ground underlying concrete became brick to a depth of 0.20mbgl and then a slightly clayey, gravelly sand to a depth of 0.99mbgl. A 0.01m band of concrete was detected beneath this which led to a void to a depth of 1.80mbgl.

The Made Ground was proved to depths between 0.45mbgl in WS01 to 1.00mbgl in WS03.

Lowestoft Formation

The Lowestoft Formation was encountered in all boreholes underlying Made Ground from depths ranging from 0.45mbgl to 1.00mbgl. The stratum comprised layers of sand and gravelly sand to the base of each borehole. Iron staining was noted towards the base of WS01 and WS03 from depths of 2.90mbgl and 2.50mbgl respectively. All boreholes were completed within this stratum at 3.00mbgl (WS05), 4.00mbgl (WS01) and 5.00mbgl (WS02, WS03 and WS04).

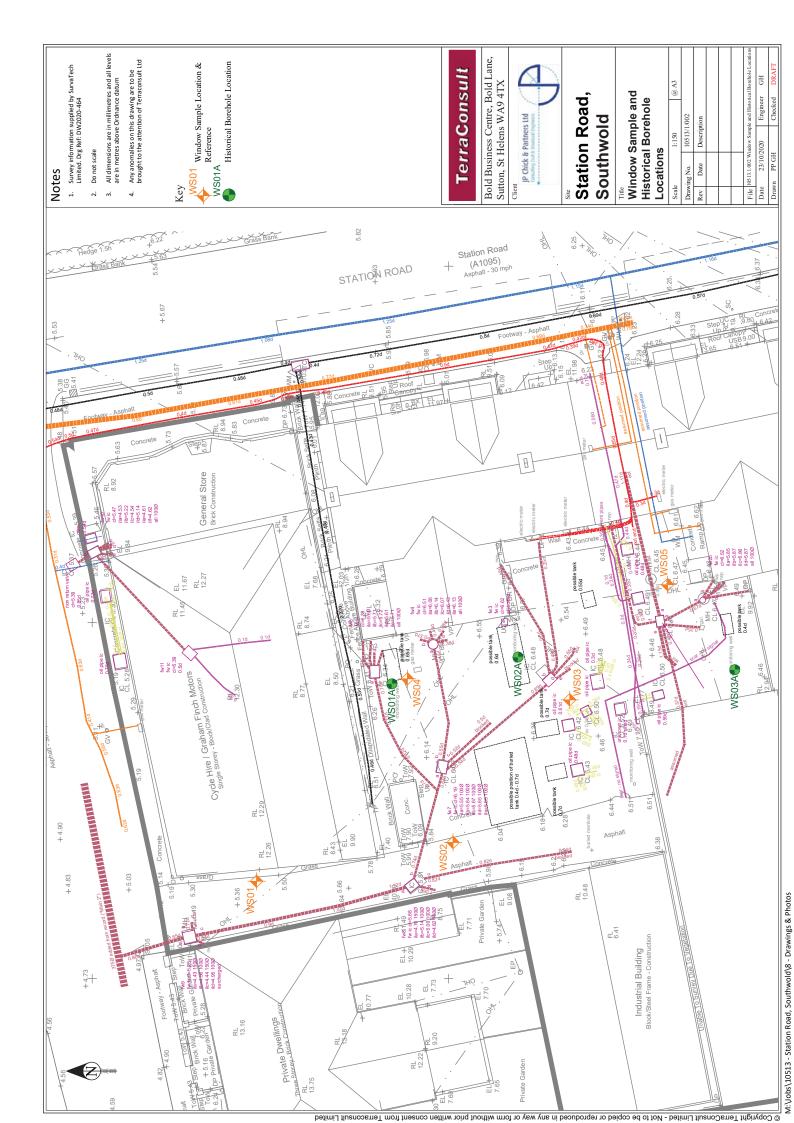
4. Ground Gas and Groundwater Monitoring Results

A single round of monitoring was undertaken during the site investigation. Carbon dioxide readings ranged from below detection levels to 0.4. The recorded methane, carbon monoxide and hydrogen sulphide (H₂S) concentrations were below detection levels.

No flow was detected at any of the monitoring points.

All the associated information is appended to the back of this letter report. We trust that this provides the information you require to further and complete the foundation design for the project. However, if you have any queries please do not hesitate to contact the undersigned.

Yours sincerely for and on behalf of TerraConsult Ltd


A Steele

A Steele Senior Geoenvironmental Consultant

10513/L02-1/AS Station Road, Southwold 3

APPENDIX A FIELDWORK RECORDS AND MONITORING RESULTS

Scale:

1:50

TerraConsult

Sheet 1 of 1

Boreh	ole fo	ormat	ion de	tails:											Location details:
Type:	From 0.0		To: 4.00	Start date 16-09-20		Crew:	Plant: Premier 110	Logger: AS	Logged: 16-09-20	Remarks:					
							Compact								
															Grid:
dill/ al'n	er-	pue		Depth					1	1			Samples	& In Situ Te	esting
Backfill/ Instal'n	Water- strike	Legend	Level	(thick- ness)			Stratum	Descripti	on		Water	Casing	Depth	Type & No	Results
					ASPHALT. (MADE GRO	יחאחכ				,	4				
8 (g) - 5 (8)				0.25	Multicoloure	d of ye	llow brown and	blackish	brown grav	velly SAND.	ł				
					asphalt.		-	bunded III	nt brick and	d rare subangular	1				
	(51)				(<u>MADE GR(</u> BRICK.	DUND)					Dry	1.00	1.00 - 1.45	с	N=23 (5,6/6,5,6,6)
	(51)				MADE GRO	OUND)	brown slightly	aravelly s	lightly clave	ey SAND. Gravel	- Diy	1.00	1.00 - 1.45		11-23 (3,0/0,3,0,0)
					is fine to me	dium s	ubangular brick	K.		ey er ind: clarer					
				(1.70)	(MADE GRO Orange and	yellow	fine SAND.				-				
						se ora	ngish yellow gr	avelly SA	ND. Gravel	l is medium –	Dry	1.00	2.00 - 2.45	с	N=32 (6,6/8,8,8,8)
					angular to s (LOWESTO	ubangu FT FOI	ılar flint. RMATION)								
				2.40	Dense oran	ge sligt	ntly clayey SAN	D.		•	-				
				(0.50)	(LOWESTO	FTFO	RMATION)								
							nge and yellow				Dry	1.00	3.00 - 3.45	с	N=18 (4,4/4,4,5,5)
					(LOWESTO	e to me FT FOI	edium of angula RMATION)	ir to subai	ngular flint.						
				(1.10)											
											-				
	SP (51)			4.00		Dynami	ic sample ends a	at 4.00 m (Overhead o	ables)	Dry	1.00	4.00 - 4.45	с	N=18 (3,4/4,4,5,5)
	()														
										-	-				
											-				
											-				
											-				
										-	-				
											-				
											-				
										_	-				
											-				
										-					
											-				
										-					
											-				
										-					
											-				
										-	-				
Ground	Inst (Ø)		trice		Casing		1	Donth	atod rom-	rke	Water	Casing	Depth un details:	Type & No	Results
Groun Struck				g: Sealed			meter (mm):	From	to: Rei	n rks: marks			From: to:	Ø	Duration: Recovery:
					1.00	100)								
AGS	abbrevia	itions see k	ition of symb Key Sheet. Iced levels ar		Project:		on Road, South	wold				E	xploratory pos		
Log iss			RAFT		Project No Client:		3 Environmental	Services						WS	01

L y		A 11		Uai	lihie	LU	'9						IGI		unsun	
Boreh	ole fo	ormat	ion de	tails:											Location details:	
Гуре:	Froi 0.0		To: 5.00	Start date: 16-09-20		Crew:	Plant: Premier 110 Compact	Logger: AS	Logged: 16-09-20	Remarks:						
															Grid:	
Backfill/ Instal'n	Water- strike	Legend	Level	Depth (thick-			Stratum	n Descripti	on				Samples	& In Situ Te	esting	
lns.	Wa str	Leg	Lovoi	ness)			Otratun	r Descripti	on		Water	Casing	Depth	Type & No	Results	
X				0.15	BRICK. (MADE GRO											
X				(0.55)	Black SAND	OUND)					A					
					Multicoloure clayey SAN	ed of bro D. Grav	own light browr el is fine subai	n and yello ngular brio	wish brown k and flint.	n slightly grave	lly _					
X				0.00	MADE GRO	OUND)	ngish yellow gr				Dry	1.00	1.00 - 1.45	С	N=24 (4,4/6,5,6,7)	
				I	medium of (LOWESTO	angular	to subangular	flint.								
					(20112010						-					
X																
X											– Dry	1.00	2.00 - 2.45	С	N=24 (3,3/5,5,7,7)	
				(3.25)							-					
				(/							-					
											Dry	1.00	3.00 - 3.45	с	N=13 (3,4/3,3,4,3)	
X											-					
X											-					
				4.10		no and i	reddish orange	oliabtly a			– Dry	1.00	4.00 - 4.45	С	N=5 (1,2/2,1,1,1)	
				I	medium sub	angula	r to rounded fli	nt.	ravelly SAP	ND. Graver is	-					
				(0.90)	(LOWESTO	FIFOF	RMATION)				-					
				5.00							-	1.00	500 545	с		
				5.00		Dynai	mic sample end	ls at 5.00 n	n (Target de	pth)	Dry	1.00	5.00 - 5.45		N=17 (4,4/4,4,4,5)	
											-					
											-					
											-					
											-					
											-					
											-					
											-					
											-					
											_					
											-	1				
											-	1				
											-	1				
											-	1				
											-	1				
											-	1				
											-					
	Inst (Ø)										- Water	Casing	Depth	Type & No	Results	
	dwat	er en			Casing:			-	ated rema			R	un details:		1	
u uCk	KO	se 10:	Casin	g: Sealed	Cased to: 1.00	Diai 100	meter (mm):	From	to: Rer	narks			From: to:	Ø	Duration: Recover	
GS	Notes: F abbrevia All depth	For explanations see It and reduced to the second s	ation of symb Key Sheet. uced levels a	iols and re in metres.	Project:		on Road, South	hwold			Exploratory position reference:					
g iss	issue: DRAFT Project No: 1 Client: J						3 Environmental	Services						WS02		
ale:		1	:50												Sheet 1 of	

Bor	eho	ole fo	orma	tion de	etails:											Location details:
Тур	e:	Fror 0.0		To: 5.00	Start date 16-09-20		Crew:	Plant: Premier 110	Logger: AS	Logged: 16-09-20	Remarks:					
								Compact								
																Grid:
kfill/	al'n	ter- ike	Legend	Level	Depth (thick-			Strotum	Docorinti	00				Samples	& In Situ Te	esting
Backfill/	Inst	Water- strike	Leg	Level	ness)			Stratum	Descripti	on		Water	Casing	Depth	Type & No	Results
			***		0.15 0.20	CONCRETE MADE GRO					/					
						BRICK.						4				
					(0.79)	Brown greyi	sh brov	wn and blackisł angular to suba	n brown sl	ightly claye	ey gravelly SAND.	-				
• •	•	(51)			0.99	(MADE GRO	OUND)					Dry	1.00	1.00 - 1.45	с	N=0 (0,1/0,0,0,0)
						(MADE GRO										
					(0.80)	VOID.					-	-				
			°	-	1.80	Loose vellov	v and c	orangish vellow	slightly g	ravelly SAN	ND. Gravel is fine					
···-					(0.30) 2.10	to medium o	of suba	ngular to subro	unded flin	t.	-	Dry	2.00	2.00 - 2.45	С	N=4 (1,1/1,1,1,1)
						Loose yellow	wish gr	ey cobbly GRA	VEL of su	brounded t	o rounded flint.	-				
	•				2.50	(LOWESTO Medium der	nse ora	nge and yellow	ish orang	e gravelly S	SAND. Gravel is	-				
						fine to coars (LOWESTO	se of ar FT FO	ngular to suban RMATION)	gular flint.			-	2.00	2 00 2 45	с	N=07 (10 10/9 7 6 6)
											-	Dry	3.00	3.00 - 3.45		N=27 (12,13/8,7,6,6)
				•							-	-				
	•••				(2.50)							-				
											-	Dry	3.00	4.00 - 4.45	с	N=18 (4,4/5,5,4,4)
												-				
											-	-				
• • • •				•								-				
<u>· .</u> -		SP (51)			5.00		Dyna	mic sample end	s at 5.00 n	n (Target de	pth)	Dry	3.00	5.00 - 5.45	С	N=20 (4,5/4,5,5,6)
												-				
											-	-				
												-				
											-	-				
											-	-				
												-				
											-	-				
												-				
											-	-				
												-				
											-	-				
												-				
											-	-				
												-				
											-	-				
											-					
												-				
1											-	-				
		Inst (Ø)										Water	Casing	Depth	Type & No	Results
-				tries:	a Sealer	Casing:	Dia			ated rema	rks: marks			Run details:	a	
	uGK.	KU:	3 € เ0:	Casin	g: Seale	d: Cased to: 3.00	Dia 100	imeter (mm):)	From	to: Rei	Indiks			From: to:	Ø	Duration: Recovery:
1																
		Notes: F	or explar	nation of sym Key Sheet.	bols and	Project:	Stati	on Road, South	nwold				E	Exploratory pos	sition refere	ence:
Log	Ы	All depth	s and red	DRAFT	are in metres.	Project No	o: 1051	3						. , , , , ,	WS	
Sca				:50		Client:	JPC	Environmental	Services			VV				Sheet 1 of 1

Bor	eho	ole fo	ormat	tion de	tails:											Location details:	
Тур	e:	Fror 0.0		To: 5.00	Start date 16-09-20		Crew:	Plant: Premier 110	Logger: AS	Logged: 16-09-20	Remarks:						
								Compact									
																Grid:	
Backfill/	ai n	Water- strike	Legend	Level	Depth (thick-			Stratum	Descripti	on				Samples	& In Situ Te	sting	
Bac	S I	Wa str	Lec		ness)			otratum	Descripti	on		Water	Casing	Depth	Type & No	Results	
					0.09 (0.41)	CONCRETE						A					
					0.50	BRICK. (MADE GRO) UND)					- 7					
					0.60 0.80	Yellow and y medium sub	ellowis	sh grey gravelly	[,] clayey S	AND. Grav	el is fine to						
	•	(51)				MADE GRO	UND)		SAND			Dry	1.00	1.00 - 1.45	С	N=3 (1,1/0,1,1,1)	
	•			-	1.20	MADE GRO	UND)	nd dark brown s				l <u>j</u>					
	•					Dense locall	y medi	ium dense oran iedium subangu	ige and ye	ellowish ora	ange gravelly	/					
	••••					(LOWESTO			ilai iliitt.								
	•				(1.70)							Dry	1.00	2.00 - 2.45	С	N=25 (5,5/6,7,6,6)	
												-					
	•											-					
	•				2.90					avelly SANI	D. Gravel is fine	Dry	1.00	3.00 - 3.45	с	N=38 (8,8/9,9,10,10)	
	••••					to coarse of (LOWESTO	angula FT FOI	ar to subangula RMATION)	r flint.			-					
	•											-					
	•				<i>(</i> - , -)												
					(2.10)							Dry	1.00	4.00 - 4.45	С	N=20 (4,4/4,5,5,6)	
	•											-					
	•			•								-					
		SP			5.00							Dry	1.00	5.00 - 5.45	с	N=24 (5,6/6,6,6,6)	
		(51)					Dyna	mic sample end	s at 5.00 r	n (Target de	epth)						
												-					
												-					
												-					
												-					
												-					
												-					
												-					
												-					
												-					
												-					
												-					
												-					
												-					
												-					
												_					
												-					
												-					
		nst (Ø)										Water	Casing	Depth	Type & No	Results	
				tries: Casino	: Sealer	Casing: d: Cased to:	Dia	meter (mm):	Depth rel From	to: Rer	rks: marks			tun details: From: to:	Ø	Duration: Recovery:	
		0:		Jaoni	y. Coalet	1.00	100							o.n. 10.	<i>v</i>	Saradon. Neouvery.	
AG		abbreviat	tions see	ation of symb Key Sheet. uced levels a		Project:		on Road, South	nwold				E	xploratory pos			
Log				uced levels a	no ni inetres.	Project No		l3 Environmental	Services						WS	04	
Sca	le:		1	:50		Client:	170		OCI VICES						Sheet 1 of 1		

reh	ole fr	ormat	ion de	tails											Location details:
/pe:	Fror	m:	To:	Start date		Crew:	Plant:	Logger:		Remarks:					
	0.0	0	3.00	16-09-20	16-09-20		Premier 110 Compact	AS	16-09-20						
_															Grid:
Instal'n	Water- strike	Legend	Level	Depth (thick-			Stratum	n Descripti	ion				Samples &	& In Situ Te	esting
ے _ا	> 0	Ľ		ness)		=					Water	Casing	Depth	Type & No	Results
•				0.10	CONCRETI	OUND)					A				
							ackish brown v Ilar of subangu			AND. Gravel is	_				
, •			4	0.60	(MADE GR	OUND)									
				(0.70)	Gravel is fin	e to coa	arse of subang	jular to su	brounded f	ravelly SAND. int.	Dry	1.00	1.00 - 1.45	с	N=2 (0,1/1,0,1,0)
X			•	4 20	(LOWESTC						-			_	
X				1.30	Medium der SAND Grav	nse bec vel is m	oming dense o edium angular	orange and	d yellowish Jular flint	orange gravelly	-				
X			4		(LOWESTC	FT FOR	RMATION)	to ouburi	guiar mire.		-				
											- - Dry	1.00	2.00 - 2.45	с	N=18 (3,3/4,4,5,5)
				(1.70)							-				
											-				
				2 00							- - -	1.00	3.00 - 3.45	с	
				3.00		Dynami	c sample ends	at 3.00 m (Overhead o	ables)	- Dry	1.00	3.00 - 3.45		N=41 (8,9/11,10,11,
											-				
											-				
											-				
											-				
											-				
											_				
											-				
											-				
											-				
											-				
											-				
											-				
											-				
											-				
											-				
											_				
											-				
											-				
											-				
											-				
											-				
											-				
											-				
											-				
	Inst (Ø)							D			Water	Casing	Depth	Type & No	Results
			tries: Casin	g: Sealed	Casing: Cased to:	Dia	meter (mm):	Depth re From	to: Rei	rks: narks			un details: From: to:	Ø	Duration: Recove
					1.00	100								~	
IJ	Notes: F	or explan	ation of sym	bols and	Project:	Statio	on Road, Sout	hwold				E	xploratory pos	ition refere	ence:
				are in metres.	Project No							-	,	WS	
j iss	ue:		RAFT :50		Client:		Environmental	I Services							CJ Sheet 1 of

APPENDIX D

Waste Classification Report

Waste Classification Report

Job name Blyth Road / Station Rd, Southwold Description/Comments Commercial redevelopment of a former garage / workshop site Project Commercial development Site Land off Blyth Rd / Station Rd, Southwold Related Documents # Name Description None

Waste Stream Template

JPC model waste stream for potentially contaminated sites

Classified by

Name:CompanyRobin CrowtherJP ChiclDate:7 Museu23 Oct 2020 14:29 GMTIpswichTelephone:IP1 1HQ01473 280699IP1 1HQ

Company: JP Chick & Partners Ltd 7 Museum Street Ipswich IP1 1HQ HazWasteOnline™ Training Record:

Course	Date
Hazardous Waste Classification	06 Dec 2017
Advanced Hazardous Waste Classification	07 Dec 2017

Report

Created by: Robin Crowther Created date: 23 Oct 2020 14:29 GMT

Job summary

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	WS1-A[2]	0.10-0.30	Non Hazardous		3
2	WS1-B[2]	0.80-1.00	Non Hazardous		5
3	WS1-C[2]	1.80-2.00	Non Hazardous		6
4	WS1-D[2]	3.70-4.00	Non Hazardous		7
5	WS2-A[2]	0.20-0.40	Non Hazardous		8
6	WS2-B[2]	0.80-1.00	Non Hazardous		10
7	WS2-C[2]	1.80-2.00	Non Hazardous		11
8	WS2-D[2]	4.70-4.00	Non Hazardous		12
9	WS3-A[2]	0.20-0.40	Non Hazardous		13
10	WS3-B[2]	1.80-2.00	Non Hazardous		15
11	WS3-C[2]	3.20-3.50	Non Hazardous		16
12	WS3-D[2]	4.50-4.80	Non Hazardous		17

JP Chick & Partners Ltd Consulting Civil & Structural Engineers

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
13	WS4-A[2]	0.30-0.50	Non Hazardous		18
14	WS4-B[2]	0.90-1.10	Non Hazardous		20
15	WS4-C[2]	1.80-2.00	Non Hazardous		22
16	WS4-D[2]	4.00-4.20	Non Hazardous		23
17	WS5-A[2]	0.40-0.60	Non Hazardous		24
18	WS5-B[2]	1.40-1.60	Non Hazardous		26
19	WS5-C[2]	2.40-2.60	Non Hazardous		27

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	28
Appendix B: Rationale for selection of metal species	29
Appendix C: Version	30

Classification of sample: WS1-A[2]

Sample details

LoW Code:	
Chapter:	17: Construction and Demolition Wastes (including excavated so
	from contaminated sites)
Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
	03)
	Chapter:

Hazard properties

None identified

Determinands

Moisture content: 8.5% No Moisture Correction applied (MC)

#		CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	~	arsenic { arsenic acid and its salts with the exception of those specified elsewhere in this Annex }		12 mg/kg	1.895	22.734 mg/kg	0.00227 %		
2		boron { boron tribromide } 005-003-00-0 233-657-9 10294-33-4		<0.2 mg/kg	23.173	<4.635 mg/kg	<0.000463 %		<lod< th=""></lod<>
3	~	cadmium { cadmium iodide } 048-007-00-8 232-223-6 7790-80-9		0.5 mg/kg	3.258	1.629 mg/kg	0.000163 %		
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		11 mg/kg	1.462	16.077 mg/kg	0.00161 %		
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
6	~	copper { copper sulphate pentahydrate } 029-023-00-4 231-847-6 7758-99-8	_	23 mg/kg	3.929	90.368 mg/kg	0.00904 %		
7		lead { [●] lead di(acetate) } 082-005-00-8 206-104-4 301-04-2	1	230 mg/kg	1.57	361.076 mg/kg	0.023 %		
8	4	mercury { mercury(II) sulfide }	_	<0.3 mg/kg	1.16	<0.348 mg/kg	<0.0000348 %		<lod< th=""></lod<>
9		nickel { nickel diiodide } 028-029-00-4 236-666-6 13462-90-3	_	10 mg/kg	5.324	53.243 mg/kg	0.00532 %		
10	~	selenium {		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
11	~	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		180 mg/kg	2.774	499.346 mg/kg	0.0499 %		
12		naphthalene 601-052-00-2 202-049-5 91-20-3		<0.05 mg/kg	9	<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
13	0	acenaphthylene 205-917-1 208-96-8		<0.05 mg/kg	9	<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
14	0	acenaphthene 201-469-6 83-32-9		<0.05 mg/kg	1	<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>

JP Chick & Partners Ltd

Consulting Civil & Structural Engineers

HazWasteOnline[™] Report created by Robin Crowther on 23 Oct 2020

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
15	0	fluorene 201	1-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
16	0	phenanthrene	1-581-5	85-01-8		0.75	mg/kg		0.75	mg/kg	0.000075 %		
17	0	anthracene		120-12-7		0.15	mg/kg		0.15	mg/kg	0.000015 %		
18	0	fluoranthene		206-44-0		2.2	mg/kg		2.2	mg/kg	0.00022 %		
19	۲	pyrene		129-00-0		2.2	mg/kg		2.2	mg/kg	0.00022 %		
20		benzo[a]anthracene		56-55-3		1.8	mg/kg		1.8	mg/kg	0.00018 %		
21		chrysene		218-01-9		1.1	mg/kg		1.1	mg/kg	0.00011 %		
22		benzo[k]fluoranthene		207-08-9		0.89	mg/kg		0.89	mg/kg	0.000089 %		
23		benzo[a]pyrene; benzo	o[def]chrysene	50-32-8		1.6	mg/kg		1.6	mg/kg	0.00016 %		
24		dibenz[a,h]anthracene	e	53-70-3		0.28	mg/kg		0.28	mg/kg	0.000028 %		
25	0	benzo[ghi]perylene		191-24-2		1.1	mg/kg		1.1	mg/kg	0.00011 %		
26	0	indeno[123-cd]pyrene		193-39-5		0.91	mg/kg		0.91	mg/kg	0.000091 %		
27	0	TPH (C6 to C40) petro	oleum group	ТРН		154	mg/kg		154	mg/kg	0.0154 %		
28	0	pH		PH		8.3	pН		8.3	pН	8.3 pH		
29		phenol 604-001-00-2 203		108-95-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
	L	203	5-032-1	100-90-2						Total:	0.11 %	\square	

Kev

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CL P: Note 1	

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Hydrocarbons in soil. No visible free product or odour.

Negligible risk of flammability.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0154%)

HazWasteOnline[™]

Report created by Robin Crowther on 23 Oct 2020

Classification of sample: WS1-B[2]

Sample details

Sample Name:	LoW Code:	
WS1-B[2]	Chapter:	17: Construction and Demolition Wastes (including excavated soi
Sample Depth:		from contaminated sites)
0.80-1.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
5.6%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 5.6% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User er	ntered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) pe	etroleum group	TPH		<10	mg/kg		<10 mg/kg	g <0.001 %		<lod< th=""></lod<>
	Total:						: 0.001 %					

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected

Classification of sample: WS1-C[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name:	LoW Code:	
WS1-C[2]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.80-2.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
6%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 6% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered d	ata	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) pe	etroleum group	ТРН		<10 m	ng/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
	_									Total:	0.001 %		

Key

HazWasteOnline[™]

Report created by Robin Crowther on 23 Oct 2020

Classification of sample: WS1-D[2]

Sample details

LoW Code:	
	17: Construction and Demolition Wastes (including excavated soi
Chapter.	from contaminated sites)
Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
	03)
	LoW Code: Chapter: Entry:

Hazard properties

None identified

Determinands

Moisture content: 2.5% No Moisture Correction applied (MC)

#		CLP index number EC Number CA	S Number	User e	entered data	Conv. Factor	Compound conc.		MC Applied	Conc. Not Used
1	٥	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
		1111					Total:	0.001 %		

Key

Classification of sample: WS2-A[2]

npie: wS2-A[2]	
Non Hazardous W	laata
Classified as 17 05	
in the List of Waste	e

Sample details

Sample Name:	LoW Code:	
WS2-A[2]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.20-0.40 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
8.5%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 8.5% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
1	~	arsenic { arsenic aci those specified else 033-005-00-1		the exception of		23	mg/kg	1.895	43.574	mg/kg	0.00436 %		
2	4	boron { boron tribror 005-003-00-0 2	<mark>mide</mark> } 233-657-9	10294-33-4		0.8	mg/kg	23.173	18.538	mg/kg	0.00185 %		
3	4	cadmium {	1 iodide }	7790-80-9		1.1	mg/kg	3.258	3.584	mg/kg	0.000358 %		
4	4	chromium in chromi oxide (worst case) b		• { • chromium(III)		13	mg/kg	1.462	19	mg/kg	0.0019 %		
5	~	chromium in chromi <mark>oxide</mark> }				<4	mg/kg	1.923	<7.692	mg/kg	<0.000769 %		<lod< th=""></lod<>
6	4	copper {				71	mg/kg	3.929	278.963	mg/kg	0.0279 %		
7		lead { [●] <mark>lead di(ace</mark> 082-005-00-8 2	e <mark>tate)</mark>	301-04-2	1	290	mg/kg	1.57	455.27	mg/kg	0.029 %		
8	-	mercury { ^e mercur		1344-48-5		0.3	mg/kg	1.16	0.348	mg/kg	0.0000348 %		
9		nickel { nickel diiodic 028-029-00-4 2	<mark>de</mark> } 236-666-6	13462-90-3		22	mg/kg	5.324	117.135	mg/kg	0.0117 %		
10	~	selenium {	<mark>lenate</mark> } 239-125-2	15060-62-5		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< th=""></lod<>
11	~	zinc { zinc chromate 024-007-00-3 2	} 236-878-9	13530-65-9		320	mg/kg	2.774	887.727	mg/kg	0.0888 %		
12		naphthalene 601-052-00-2 2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
13	۲	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
14	0	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>

Page 8 of 30

JP Chick & Partners Ltd

Consulting Civil & Structural Engineers

HazWasteOnline[™]

Report created by Robin Crowther on 23 Oct 2020

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
15	0	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
16	۲	phenanthrene	201-581-5	85-01-8		1.3	mg/kg		1.3	mg/kg	0.00013 %		
17	0	anthracene	204-371-1	120-12-7		0.33	mg/kg		0.33	mg/kg	0.000033 %		
18	۲	fluoranthene	205-912-4	206-44-0		3.5	mg/kg		3.5	mg/kg	0.00035 %		
19	۲	pyrene	204-927-3	129-00-0		3.2	mg/kg		3.2	mg/kg	0.00032 %		
20		benzo[a]anthracene		56-55-3		3	mg/kg		3	mg/kg	0.0003 %		
21		chrysene	205-923-4	218-01-9		2.3	mg/kg		2.3	mg/kg	0.00023 %		
22		benzo[k]fluoranthen		207-08-9		2.1	mg/kg		2.1	mg/kg	0.00021 %		
23		benzo[a]pyrene; be		50-32-8		3.4	mg/kg		3.4	mg/kg	0.00034 %		
24		dibenz[a,h]anthrace		53-70-3		0.54	mg/kg		0.54	mg/kg	0.000054 %		
25	0	benzo[ghi]perylene	205-883-8	191-24-2		2.1	mg/kg		2.1	mg/kg	0.00021 %		
26	۲	indeno[123-cd]pyre		191-24-2		2.2	mg/kg		2.2	mg/kg	0.00022 %		
27	0	TPH (C6 to C40) pe				81	mg/kg		81	mg/kg	0.0081 %		
28	0	pH		TPH		8.3	pН		8.3	pН	8.3 pH		
29		phenol 604-001-00-2	203-632-7	PH 108-95-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		004-001-00-2	203-032-1	100-93-2						Total:	0.178 %		

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Hydrocarbons in soil. No visible free product or odour. Negligible risk of flammability.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0081%)

Classification of sample: WS2-B[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:	LoW Code:	
WS2-B[2]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.80-1.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
7.5%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 7.5% No Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	٥	TPH (C6 to C40) petroleum group	_	<10 mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
		· · · · · ·		A		Total:	0.001 %		

Key

HazWasteOnline[™]

Report created by Robin Crowther on 23 Oct 2020

Classification of sample: WS2-C[2]

Sample details

LoW Code	
Chapter:	17: Construction and Demolition Wastes (including excavated sol
	from contaminated sites)
Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
	03)

Hazard properties

None identified

Determinands

Moisture content: 6.3% No Moisture Correction applied (MC)

#		CLP index number EC Number CA	S Number	User e	entered data	Conv. Factor	Compound conc.		MC Applied	Conc. Not Used
1	٥	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
		1111					Total:	0.001 %		

Key

Classification of sample: WS2-D[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:	LoW Code:	
WS2-D[2]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
4.70-4.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
5.1%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 5.1% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered da	ata	Conv. Factor	Compou	nd conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) pe	etroleum group	ТРН		<10 m	ig/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
				1						Total:	0.001 %		

Key

Classification of sample: WS3-A[2]

Sample details

LoW Code:	
Chapter:	17: Construction and Demolition Wastes (including excavated so
	from contaminated sites)
Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
	03)
	Chapter:

Hazard properties

None identified

Determinands

Moisture content: 14% No Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number		User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	~	arsenic { arsenic acid and its salts with the exception of those specified elsewhere in this Annex }	CLP Note	21 mg/kg	1.895	39.785 mg/kg	0.00398 %		
2		boron { boron tribromide } 005-003-00-0 233-657-9 10294-33-4	_	1 mg/kg	23.173	23.173 mg/kg	0.00232 %		
3		cadmium { cadmium iodide } 048-007-00-8 232-223-6 7790-80-9	_	<0.2 mg/kg	3.258	<0.652 mg/kg	<0.0000652 %		<lod< th=""></lod<>
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		14 mg/kg	1.462	20.462 mg/kg	0.00205 %		
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<4 mg/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< th=""></lod<>
6	~	copper { copper sulphate pentahydrate } 029-023-00-4 231-847-6 7758-99-8		44 mg/kg	3.929	172.878 mg/kg	0.0173 %		
7		lead { [●] lead di(acetate) } 082-005-00-8 206-104-4 301-04-2	1	370 mg/kg	1.57	580.861 mg/kg	0.037 %		
8	*	mercury { mercury(II) sulfide } 215-696-3 1344-48-5	_	0.5 mg/kg	1.16	0.58 mg/kg	0.000058 %		
9	-	nickel { nickel diiodide } 028-029-00-4 236-666-6 13462-90-3	-	15 mg/kg	5.324	79.865 mg/kg	0.00799 %		
10	~	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< th=""></lod<>
11	~	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		170 mg/kg	2.774	471.605 mg/kg	0.0472 %		
12		naphthalene 601-052-00-2 202-049-5 91-20-3		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
13	۲	acenaphthylene 205-917-1 208-96-8		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>
14	۲	acenaphthene 201-469-6 83-32-9		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< th=""></lod<>

www.hazwasteonline.com

JP Chick & Partners Ltd Consulting Civil & Structural Engineers

HazWasteOnline[™] Report created by Robin Crowther on 23 Oct 2020

#		Determinand CLP index number EC Number CAS N	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
15	۲	fluorene 201-695-5 86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
16	۲	phenanthrene 201-581-5 85-01-8		0.54	mg/kg		0.54	mg/kg	0.000054 %		
17	۲	anthracene 204-371-1 120-12-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
18	۲	fluoranthene 205-912-4 206-44-0		1.8	mg/kg		1.8	mg/kg	0.00018 %		
19	۲	pyrene 204-927-3 129-00-0		1.6	mg/kg		1.6	mg/kg	0.00016 %		
20		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3		1.1	mg/kg		1.1	mg/kg	0.00011 %		
21		chrysene 205-923-4 218-01-9		1	mg/kg		1	mg/kg	0.0001 %		
22		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9		0.54	mg/kg		0.54	mg/kg	0.000054 %		
23		benzo[a]pyrene; benzo[def]chrysene		1.1	mg/kg		1.1	mg/kg	0.00011 %		
24		601-032-00-3 200-028-5 50-32-8 dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	F	<lod< th=""></lod<>
25	۲	benzo[ghi]perylene 205-883-8 191-24-2		0.6	mg/kg		0.6	mg/kg	0.00006 %		
26	0	indeno[123-cd]pyrene 205-893-2 193-39-5		0.56	mg/kg		0.56	mg/kg	0.000056 %		
27	0	TPH (C6 to C40) petroleum group		<10	mg/kg		<10	mg/kg	<0.001 %	r	<lod< th=""></lod<>
28	۲	pH PH		8.5	pН		8.5	pН	8.5 pH		
29		phenol 604-001-00-2 203-632-7 108-95-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		p04-001-00-2 203-032-1 [106-95-2						Total:	0.121 %		

Kev

rtey								
	User supplied data							
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason							
0	Determinand defined or amended by HazWasteOnline (see Appendix A)							
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration							
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection							
ND	Not detected							

CLP: Note 1 Only the metal concentration has been used for classification

HazWasteOnline[™]

Report created by Robin Crowther on 23 Oct 2020

Classification of sample: WS3-B[2]

Sample details

LoW/Codo	
	17. Our traction and Dans little Master (in duding successful as
Chapter:	17: Construction and Demolition Wastes (including excavated so
	from contaminated sites)
Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
	03)
	LoW Code: Chapter: Entry:

Hazard properties

None identified

Determinands

Moisture content: 4.7% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User er	ntered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) pe	etroleum group	TPH		<10	mg/kg		<10 mg/kg	g <0.001 %		<lod< th=""></lod<>
	Total: 0.001 %											

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
• <lod< th=""><th>Determinand defined or amended by HazWasteOnline (see Appendix A) Below limit of detection</th></lod<>	Determinand defined or amended by HazWasteOnline (see Appendix A) Below limit of detection
ND	Not detected

Classification of sample: WS3-C[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:	LoW Code:	
WS3-C[2]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
3.20-3.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
3.9%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 3.9% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered d	ata	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) pe	etroleum group	ТРН		<10 m	ng/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
	_									Total:	0.001 %		

Key

HazWasteOnline[™]

Report created by Robin Crowther on 23 Oct 2020

Classification of sample: WS3-D[2]

Sample details

LoW/Codo:	
Chapter:	17: Construction and Demolition Wastes (including excavated soil
	from contaminated sites)
Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
	03)
	LoW Code: Chapter: Entry:

Hazard properties

None identified

Determinands

Moisture content: 5.2% No Moisture Correction applied (MC)

#		CLP index number EC Number CA	S Number	User e	entered data	Conv. Factor	Compound conc.		MC Applied	Conc. Not Used
1	1 TPH (C6 to C40) petroleum group			<10	mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
	TPH Total: 0.001 %									

Key

Classification of sample: WS4-A[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name:	LoW Code:	
WS4-A[2]	•	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.30-0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
15%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 15% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	~	arsenic { arsenic ac those specified else 033-005-00-1				9.1	mg/kg	1.895	17.24	mg/kg	0.00172 %		
2	~	boron { boron tribro	<mark>mide</mark> } 233-657-9	10294-33-4		0.8	mg/kg	23.173	18.538	mg/kg	0.00185 %		
3		cadmium { cadmium		7790-80-9		0.2	mg/kg	3.258	0.652	mg/kg	0.0000652 %		
4	4	chromium in chromi oxide (worst case) b		{ • chromium(III)		11	mg/kg	1.462	16.077	mg/kg	0.00161 %		
5	4	chromium in chromi <mark>oxide</mark> }				<4	mg/kg	1.923	<7.692	mg/kg	<0.000769 %		<lod< th=""></lod<>
6	4	copper { copper sul				10	mg/kg	3.929	39.291	mg/kg	0.00393 %		
7		lead {	<mark>etate)</mark>	301-04-2	1	39	mg/kg	1.57	61.226	mg/kg	0.0039 %		
8	4	mercury { [●] mercur	r <mark>y(II) sulfide</mark>	1344-48-5		<0.3	mg/kg	1.16	<0.348	mg/kg	<0.0000348 %		<lod< th=""></lod<>
9		nickel { nickel diiodio	<mark>de</mark> } 236-666-6	13462-90-3		5.8	mg/kg	5.324	30.881	mg/kg	0.00309 %		
10	~	selenium { nickel se 028-031-00-5 2	<mark>lenate</mark>	15060-62-5		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< th=""></lod<>
11	~	zinc { <mark>zinc chromate</mark> 024-007-00-3 2	} 236-878-9	13530-65-9		100	mg/kg	2.774	277.415	mg/kg	0.0277 %		
12		naphthalene 601-052-00-2 2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
13	0	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
14	9	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>

Page 18 of 30

JP Chick & Partners Ltd Consulting Civil & Structural Engineers

HazWasteOnline[™] Report created by Robin Crowther on 23 Oct 2020

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound conc	Classification value	MC Applied	Conc. Not Used
15	0	fluorene	01-695-5	86-73-7		<0.05	mg/kg		<0.05 mg	/kg <0.000005 %		<lod< th=""></lod<>
16	0	phenanthrene	01-581-5	85-01-8		<0.05	mg/kg		<0.05 mg	/kg <0.000005 %		<lod< th=""></lod<>
17	0	anthracene	04-371-1	120-12-7		<0.05	mg/kg		<0.05 mg	/kg <0.000005 %		<lod< th=""></lod<>
18	0	fluoranthene	05-912-4	206-44-0		<0.05	mg/kg		<0.05 mg	/kg <0.000005 %		<lod< th=""></lod<>
19	0	pyrene	04-927-3	129-00-0		<0.05	mg/kg		<0.05 mg	/kg <0.000005 %		<lod< th=""></lod<>
20		benzo[a]anthracene	· · ·			<0.05	mg/kg		<0.05 mg	/kg <0.000005 %		<lod< th=""></lod<>
21		chrysene	00-280-6	56-55-3		<0.05	mg/kg		<0.05 mg	/kg <0.000005 %		<lod< th=""></lod<>
22		601-048-00-0 2 benzo[k]fluoranthene	05-923-4 e	218-01-9	-	<0.05	mg/kg		<0.05 ma	/kg <0.000005 %		<lod< th=""></lod<>
~~		601-036-00-5 2 benzo[a]pyrene; ben	05-916-6	207-08-9	1	-0.00					_	LOD
23			00-028-5	50-32-8		<0.05	mg/kg		<0.05 mg	/kg <0.000005 %		<lod< th=""></lod<>
24		dibenz[a,h]anthracer 601-041-00-2 2	ne 00-181-8	53-70-3		<0.05	mg/kg		<0.05 mg	/kg <0.000005 %		<lod< th=""></lod<>
25	٥	benzo[ghi]perylene	05-883-8	191-24-2		<0.05	mg/kg		<0.05 mg	/kg <0.000005 %		<lod< th=""></lod<>
26	0	indeno[123-cd]pyren	ie			<0.05	mg/kg		<0.05 mg	/kg <0.000005 %		<lod< th=""></lod<>
27	0	∠ TPH (C6 to C40) pet	05-893-2 troleum group	193-39-5		<10	mg/kg		<10 mg	/kg <0.001 %		<lod< th=""></lod<>
28	0	pН		TPH	-	0.1						
28				PH		9.1	pН		9.1 pH	9.1 pH		
29		phenol 604-001-00-2 2	03-632-7	108-95-2		<1	mg/kg		<1 mg	/kg <0.0001 %		<lod< th=""></lod<>
		· · · · ·							Тс	tal: 0.0461 %		·

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

HazWasteOnline[™]

Report created by Robin Crowther on 23 Oct 2020

Classification of sample: WS4-B[2]

Non Hazardous Waste Classified as 17 05 04	
in the List of Waste	

Sample details

Sample Name:	LoW Code:	
WS4-B[2]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.90-1.10 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
13%		
(no correction)		

Hazard properties

None identified

Determinands

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compour	nd conc.	Classification value	MC Applied	Conc. Not Used
1	٥	TPH (C6 to C40) pe	etroleum group	TPH		358	mg/kg		358	mg/kg	0.0358 %		
2		benzene 601-020-00-8	200-753-7	71-43-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
3	٥	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<1	mg/kg		<1	mg/kg	<0.0001 %	Γ	<lod< td=""></lod<>
4			ne; [2] m-xylene; [3 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	B] xylene [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
5		toluene 601-021-00-3	203-625-9	108-88-3		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
				8		•				Total:	0.0362 %		

Moisture content: 13% No Moisture Correction applied (MC)

Kov

rtey	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
<lc< th=""><th>D Below limit of detection</th></lc<>	D Below limit of detection
ND	Not detected

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Hydrocarbons in soil. No visible free product or odour. Negligible risk of flammability.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0358%)

Classification of sample: WS4-C[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:	LoW Code:	
WS4-C[2]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.80-2.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
3.9%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 3.9% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered da	ata	Conv. Factor	Compou	nd conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) pe	etroleum group	ТРН		<10 m	ig/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
				1						Total:	0.001 %		

Key

HazWasteOnline[™]

Report created by Robin Crowther on 23 Oct 2020

Classification of sample: WS4-D[2]

Sample details

Sample Name:	LoW Code:	
WS4-D[2]	Chapter:	17: Construction and Demolition Wastes (including excavated soi
Sample Depth:	onaptor	from contaminated sites)
4.00-4.20 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
4.1%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 4.1% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User er	ntered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) pe	etroleum group	TPH		<10	mg/kg		<10 mg/kg	g <0.001 %		<lod< th=""></lod<>
	1								Total	: 0.001 %		

Key

Classification of sample: WS5-A[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name:	LoW Code:	
WS5-A[2]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.40-0.60 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
15%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 15% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound o	onc.	Classification value	MC Applied	Conc. Not Used
1	~	arsenic { arsenic ac those specified else 033-005-00-1				19	mg/kg	1.895	35.996	mg/kg	0.0036 %		
2	*	boron { boron tribro	<mark>mide</mark>	10294-33-4		1.1	mg/kg	23.173	25.49	mg/kg	0.00255 %		
3	~	cadmium { cadmiun 048-007-00-8	n iodide } 232-223-6	7790-80-9		<0.2	mg/kg	3.258	<0.652	mg/kg	<0.0000652 %		<lod< td=""></lod<>
4	4	chromium in chromi oxide (worst case) }		• { • chromium(III)		13	mg/kg	1.462	19	mg/kg	0.0019 %		
5	4	chromium in chromi <mark>oxide</mark> }				<4	mg/kg	1.923	<7.692	mg/kg	<0.000769 %		<lod< th=""></lod<>
6	4	copper {				36	mg/kg	3.929	141.446	mg/kg	0.0141 %		
7		lead {	<mark>etate)</mark>	301-04-2	1	130	mg/kg	1.57	204.086	mg/kg	0.013 %		
8	4	mercury { [●] mercu	<mark>ry(II) sulfide</mark> } 215-696-3	1344-48-5		<0.3	mg/kg	1.16	<0.348	mg/kg	<0.0000348 %		<lod< td=""></lod<>
9		nickel { nickel diiodi 028-029-00-4	<mark>de</mark> } 236-666-6	13462-90-3	_	16	mg/kg	5.324	85.189	mg/kg	0.00852 %		
10	~	selenium { nickel se 028-031-00-5	e <mark>lenate</mark> } 239-125-2	15060-62-5		<1	mg/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
11	~	zinc { <mark>zinc chromate</mark> 024-007-00-3	≥} 236-878-9	13530-65-9		56	mg/kg	2.774	155.352	mg/kg	0.0155 %		
12		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
13	۲	acenaphthylene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
14	٥	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>

Page 24 of 30

JP Chick & Partners Ltd Consulting Civil & Structural Engineers

HazWasteOnline[™] Report created by Robin Crowther on 23 Oct 2020

#		CLP index number EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound cond	c.	Classification value	MC Applied	Conc. Not Used
15	۲	fluorene 201-695-5	86-73-7	-	<0.05	mg/kg		<0.05 m	g/kg	<0.000005 %		<lod< th=""></lod<>
16	۲	phenanthrene			<0.05	mg/kg		<0.05 m	q/kq	<0.000005 %		<lod< th=""></lod<>
10		201-581-5	85-01-8		-0.00	шу/ку		-0.00 m	y/ry	<0.000000 70		LOD
17	٥	anthracene			<0.05	mg/kg		<0.05 m	a/ka	<0.000005 %		<lod< th=""></lod<>
.,		204-371-1	120-12-7	1	-0.00	ing/itg		-0.00 m	9/19	-0.000000 /0		LOD
18	٥	fluoranthene			<0.05	mg/kg		<0.05 m	a/ka	<0.000005 %		<lod< th=""></lod<>
10		205-912-4	206-44-0		-0.00	iiig/itg		40.00 m	9/19	-0.000000 /0		LOD
19	0	pyrene			<0.05	mg/kg		<0.05 m	q/kq	<0.000005 %		<lod< th=""></lod<>
10		204-927-3	129-00-0	1		iiig/itg		-0.00 m	9/119			205
20		benzo[a]anthracene			<0.05	mg/kg		<0.05 m	a/ka	<0.000005 %		<lod< th=""></lod<>
20		601-033-00-9 200-280-6	56-55-3			iiig/itg			9/119			-205
21		chrysene			<0.05	mg/kg		<0.05 m	g/kg	<0.000005 %		<lod< th=""></lod<>
		601-048-00-0 205-923-4	218-01-9	1					9,9			
22		benzo[k]fluoranthene			<0.05	mg/kg		<0.05 m	a/ka	<0.000005 %		<lod< th=""></lod<>
		601-036-00-5 205-916-6	207-08-9			iiig/itg			9/119			-205
23		benzo[a]pyrene; benzo[def]chrysene			<0.05	mg/kg		<0.05 m	g/kg	<0.000005 %		<lod< th=""></lod<>
20		601-032-00-3 200-028-5	50-32-8			iiig/itg		-0.00 m	9/119			-205
24		dibenz[a,h]anthracene			<0.05	mg/kg		<0.05 m	a/ka	<0.000005 %		<lod< th=""></lod<>
27		601-041-00-2 200-181-8	53-70-3		-0.00	ing/itg		-0.00 m	9/19	-0.000000 /0		LOD
25	۲	benzo[ghi]perylene			<0.05	mg/kg		<0.05 m	a/ka	<0.000005 %		<lod< th=""></lod<>
20		205-883-8	191-24-2	1		iiig/itg		-0.00 m	9/119			200
26	۲	indeno[123-cd]pyrene			<0.05	mg/kg		<0.05 m	a/ka	<0.000005 %		<lod< th=""></lod<>
20		205-893-2	193-39-5	1		ing/itg			9/119			
27	0	TPH (C6 to C40) petroleum group			<10	mg/kg		<10 m	q/kq	<0.001 %		<lod< th=""></lod<>
			TPH	1					3,9			
28	۲			8	pН		8 pH	, Т	8pH			
			PH	1		P''						
29		phenol			<1	mg/kg		<1 m	q/kq	<0.0001 %		<lod< th=""></lod<>
		604-001-00-2 203-632-7	108-95-2	1	•				3,9			
								T	otal:	0.0615 %		

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS5-B[2]

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample Name:	LoW Code:	
WS5-B[2]	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.40-1.60 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
6.5%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 6.5% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered d	ata	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) pe	etroleum group	ТРН		<10 m	ng/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
	_									Total:	0.001 %		

Key

Classification of sample: WS5-C[2]

Sample details

Sample Name:	LoW Code:	
WS5-C[2]	Chapter:	17: Construction and Demolition Wastes (including excavated soi
Sample Depth:		from contaminated sites)
2.40-2.60 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
3.5%		
(no correction)		
. ,		

Hazard properties

None identified

Determinands

Moisture content: 3.5% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User ente	ered data	Conv. Factor	Compou	nd conc.	Classification value	MC Applied	Conc. Not Used
1	0	TPH (C6 to C40) pe	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
2		benzene 601-020-00-8	200-753-7	71-43-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
3	۵	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
4			ne; [2] m-xylene; [3 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	B] xylene [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
5		toluene 601-021-00-3	203-625-9	108-88-3	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
										Total:	0.0014 %		

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected

Report created by Robin Crowther on 23 Oct 2020

Appendix A: Classifier defined and non CLP determinands

• chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4 H332 , Acute Tox. 4 H302 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315 , Resp. Sens. 1 H334 , Skin Sens. 1 H317 , Repr. 1B H360FD , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

Iead di(acetate) (EC Number: 206-104-4, CAS Number: 301-04-2)

CLP index number: 082-005-00-8

Description/Comments: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following CLP protocols, considers many simple lead compounds to be Carcinogenic category 2. Data source: Regulation 1272/2008/EC - Classification, labelling and packaging of substances and mixtures. (CLP) Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s): 05 Jun 2020 - Carc. 2 H351 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html. Review date 29/09/2015

mercury(II) sulfide (EC Number: 215-696-3, CAS Number: 1344-48-5)

Conversion factor: 1.16

Description/Comments: Data from ECHA's C&L and SDS Sigma Aldrich V6 dated 17/9/2019 Threshold for EUH031 based on calculation method in WM3 Box C12.1 Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/8530 Data source date: 14 May 2020

Hazard Statements: EUH031 >= 1 %, EUH031 , Skin Sens. 1 H317 , STOT RE 2 H373

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4 H302 , Acute Tox. 1 H330 , Acute Tox. 1 H310 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410 , Aquatic Chronic 2 H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4 H302 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Carc. 2 H351 , Skin Sens. 1 H317 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410 , Skin Irrit. 2 H315

[®] anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Skin Sens. 1 H317, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4 H302 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

Report created by Robin Crowther on 23 Oct 2020

[•] pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2 H315, Eye Irrit. 2 H319, STOT SE 3 H335, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Liq. 3 H226, Asp. Tox. 1 H304, STOT RE 2 H373, Muta. 1B H340, Carc. 1B H350, Repr. 2 H361d, Aquatic Chronic 2 H411

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4 Description/Comments: Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6) Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s): 03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

Appendix B: Rationale for selection of metal species

arsenic {arsenic acid and its salts with the exception of those specified elsewhere in this Annex}

Former site use is as a petrol filling station, workshop and other assort commercial uses a long period. Worst case compound selected based on a conservative approach.

boron {boron tribromide}

Former site use is as a petrol filling station, workshop and other assort commercial uses a long period. Worst case compound selected based on a conservative approach.

cadmium {cadmium iodide}

Former site use is as a petrol filling station, workshop and other assort commercial uses a long period. Worst case compound selected based on a conservative approach.

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Former site use is as a petrol filling station, workshop and other assort commercial uses a long period. Worst case compound selected based on a conservative approach.

chromium in chromium(VI) compounds {chromium(VI) oxide}

(enter justification for selecting this species)

copper {copper sulphate pentahydrate}

Former site use is as a petrol filling station, workshop and other assort commercial uses a long period. Worst case compound selected based on a conservative approach.

Report created by Robin Crowther on 23 Oct 2020

lead {lead di(acetate)}

Former site use is as a petrol filling station, workshop and other assort commercial uses a long period. Worst case compound selected based on a conservative approach.

mercury {mercury(II) sulfide}

In the petroleum industry mercury is typically found in its elemental form, but can react to form mercuric sulphide. we have adopted the worst case in this instance.

nickel {nickel diiodide}

Former site use is as a petrol filling station, workshop and other assort commercial uses a long period. Worst case compound selected based on a conservative approach.

selenium {nickel selenate}

Former site use is as a petrol filling station, workshop and other assort commercial uses a long period. Worst case compound selected based on a conservative approach.

zinc {zinc chromate}

Former site use is as a petrol filling station, workshop and other assort commercial uses a long period. Worst case compound selected based on a conservative approach.

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018 HazWasteOnline Classification Engine Version: 2020.289.4500.8764 (15 Oct 2020) HazWasteOnline Database: 2020.290.4501.8765 (16 Oct 2020)

This classification utilises the following guidance and legislation: WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020 POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004 1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010 2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010

APPENDIX E

Gas/ Groundwater Monitoring Results

TerraConsult										Remarks			
aCol									0.1 ppm	Nitrogen (% PID reading vol) (ppm)	MN	MN	MN
err		Dry	None	N/A	30%	None	Steady		NA	Nitrogen (% vol)	MN	MN	MN
F			2			2	Ś		1.0 ppm	H2S (ppm)	0	0	0
									0.1 ppm	CO (ppm)	0	0	0
									0.1% vol	CO2 (% vol)	0.2	0.4	0.0
									0.1% vol	O2 (% vol)	20.2	19.9	20.4
									0.1%	CH4 (% LEL)	0	0	0
σ		;; ;;	-	<u>.</u>	<u>.</u>	<u>.</u>		-	0.1% vol	CH4 (% vol)	0	0	0
ecor		State of Ground:	Wind :	Wind direction:	Cloud cover:	Precipitation:	Pressure trend:		Detection limits:	Differential Pressure (Pa)	0	0	0
ng R									ŏ	Differential Pressure (Pa)	0	0	0
Gas & Groundwater Monitoring Record	q									Depth to Groundwater (m BGL)	DRY	DRY	DRY
r Mo	d, Southwold									Time of Reading hh:mm	14:00	14:20	14:30
vatei	Project: Station Road, Southwold					/n 11378				Depth of Installation (m BGL)	4.00	5.00	5.00
ndv	Project:					3FM435 s				Air temp (oC)	18	18	18
Grou	10513	16/09/2020	AS			Dipmeter & GFM435 s/n 11378				Barometric Pressure (mbars)	1022	1021	1019
õ										OI 1201	-	-	Ţ
Gas	Project No:	Date:	Operator:			Equipment				Borehole ID	WS01	WS03	WS04

TerraConsult										Remarks						No pipework, see photos.	Unable to access.
aCo									0.1 ppm	Nitrogen (% PID reading	(ppm)	NM	MN	MM	MN	NM	MN
erra		Damp	None	N/A	100%	None	Steady		NA	Nitrogen (%	vol)	NM	MN	MN	MN	NM	MN
F		Δ	Z	-	-	Z	St		1.0 ppm	H2S	(mdd)	0	0	0	0	0	-
									0.1 ppm	СО	(mdd)	0	0	0	0	0	I
									0.1% vol	C02	()% vol)	0.4	0.2	0.3	0.3	0.2	
									0.1% vol	02	()% vol	20.2	20.3	20.4	20.5	20.6	I
									0.1%	CH4 (%	(TEL)	0	0	0	0	0	·
q		:pi					nd:		0.1% vol	CH4	(lov %)	0	0	0	0	0	
Record		State of Ground:	Wind :	Wind direction:	Cloud cover:	Precipitation:	Pressure trend:		Detection limits:	FlowRate (I/hr)	(0	0	0	0	0	I
									Õ	Differential	^o ressure (Pa)	0	0	0	0	0	
Gas & Groundwater Monitoring	a									Depth to Differential Groundwater (m	BGL)	DRY	DRY	DRY	DRY	1.97	·
- Mo	d, Southwold									Time of Reading	hh:mm	10:15	10:40	10:30	10:25	10:35	I
vatei	Station Road, Southwold					n 11378				Depth of Installation	(m BGL)	4.02	4.76	4.91	2.98	2.49	I
vbn	Project: S					3FM435 s/				Air temp	(°C)	18	18	18	18	18	18
Grou	10513	23/09/2020	DF			Dipmeter & GFM435 s/n 11378				Barometric Pressure	(mbars)	1000	1000	1000	1 000	1000	
8				-					•	di †	sul	1	1	1	-	1	-
Gas	Project No:	Date:	Operator:			Equipment				Borehole ID		WS01	WS03	WS04	WS01A (Historical)	WS02A (Historical)	WS03A (Historical)

TerraConsult										Remarks						No pipework, see photos.		
aCo										0.1 ppm	Nitrogen (% PID reading	(mdd)	NM	MN	MN	MN	NM	MN
erra		Damp	None	N/A	50%	None	Steady		NA	Nitrogen (%	vol)	NM	MN	MN	MN	NM	MN	
			2		4,	2	St		1.0 ppm	H2S	(mdd)	0	0	0	0	0	0	
									0.1 ppm	co	(mdd)	0	0	0	0	0	0	
									0.1% vol	CO2	(IOV %)	0.6	0.4	0.3	0.4	0.2	0.1	
									0.1% vol	02	(10V %)	20.0	20.1	20.2	20.1	20.5	20.1	
									0.1%	CH4 (%	LEL)	0	0	0	0	0	0	
p		:pu		2					0.1% vol	CH4	(Iov %)	0	0	0	0	0	0	
Record		State of Ground:	Wind :	Wind direction:	Cloud cover:	Precipitation:	Pressure trend:		Detection limits:	FlowRate (I/hr)		0	0	0	0	0	0	
									Õ	Differential	ressure (Pa)	0	0	0	0	0	0	
Gas & Groundwater Monitoring	σ									Depth to Differential Groundwater (m	BGL)	DRY	DRY	4.87	DRY	1.97	DRY	
- Mo	d, Southwold									Time of Reading	hh:mm	09:55	10:15	10:05	10:00	10:10	10:20	
vatei	Station Road, Southwold					'n 11378				Depth of Installation	(m BGL)	4.00	4.95	4.92	2.99	2.47	3.03	
vpu	Project:					3FM435 s/				Air temp	(c)o)	16	16	16	16	16	16	
Grou	10513									Barometric Pressure	(mbars)	1009	1009	1009	1009	1009	1009	
8		•		•		_			•	di te	sul	1	1	1	-	-	٢	
Gas	Project No:	Date:	Operator:			Equipment				Borehole ID		WS01	WS03	WS04	WS01A (Historical)	WS02A (Historical)	WS03A (Historical)	

										Remarks						gas valve.	
TerraConsult																No pipework or	
aCo									0.1 ppm	Nitrogen (% PID reading	(mqq)	MN	MN	MN	MN	MN	MN
err		Dry	Light breeze	N/A	50%	None	Falling		NA	Nitrogen (%	(IOV	NM	MN	MN	MN	MN	MN
P			Ligh		ì	2	Щ		1.0 ppm	H2S	(ppm)	0	0	0	0	0	0
									0.1 ppm	ОĈ	(mdd)	0	0	0	0	0	0
									0.1% vol	CO2	(IOV %)	0.7	0.0	0.1	0.3	0.0	0.5
									0.1% vol	02	(IOV %)	19.9	20.5	20.5	20.4	20.5	20.1
									0.1%	CH4 (%	LEL)	0	0	0	0	0	0
q		:pu					snd:		0.1% vol	CH4	(Iov %)	0	0	0	0	0	0
Record		State of Ground:	: Mind	Wind direction:	Cloud cover:	Precipitation:	Pressure trend:		Detection limits:	FlowRate (I/hr)		0	0	0	0	0	0
									D	Differential	ressure (Pa)		0	0			
Gas & Groundwater Monitoring	q									Depth to Differential	BGL)	DRY	DRY	4.81	DRY	1.97	DRY
Mo	d, Southwold									Time of Reading	hh:mm	11:45	12:23	12:01	12:15	12:10	12:29
vatei	Station Road, Southwold					/n 11378				Depth of Installation	(m BGL)	4.00	4.95	4.92	2.99	2.47	3.03
ndv	Project:					3FM435 s,				Air temp	(၁°)	14	14	14	14	14	14
Grou	10513	07/10/2020	TM		Dipmeter & GFM435 s/n 11378					Barometric Pressure	(mbars)	1011	1010	1011	1010	1011	1010
8		-	-	-					•	at ID	sul	1	1	٢	-	1	~
Gas	Project No:	Date:	Operator:			Equipment				Borehole ID		WS01	WS03	WS04	WS01A (Historical)	WS02A (Historical)	WS03A (Historical)

TerraConsult										Remarks						No pipework or gas valve.			
aCo											0.1 ppm	Nitrogen (% PID reading	(mdd)	ΜN	ΜN	ΜN	MN	MN	WN
erra		Damp	None	N/A	100%	None	Steady		NA	Nitrogen (%	vol)	MM	MM	MM	MN	NM	NM		
F		Ω	2		-	2	St		1.0 ppm	H2S	(mdd)	0	0	0	0	0	0		
									0.1 ppm	co	(mdd)	0	0	0	0	0	0		
									0.1% vol	C02	(Iov %)	0.0	0.5	0.5	0.4	0.0	0.8		
									0.1% vol	02	(lov %)	20.3	19.8	19.9	20.0	20.3	19.6		
									0.1%	CH4 (%	(TEL)	0	0	0	0	0	0		
q		d:							0.1% vol	CH4	(% vol)	0	0	0	0	0	0		
Record		State of Ground:	Wind :	Wind direction:	Cloud cover:	Precipitation:	Pressure trend:		Detection limits:	FlowRate (I/hr)		0	0	0	0	0	0		
									Õ	Differential	^o ressure (Pa)	0	0	0	0	0	0		
Gas & Groundwater Monitoring	a									Depth to Differential Croundwater (m	BGL)	3.88	DRY	4.81	DRY	1.96	DRY		
- Mo	d, Southwold									Time of Reading	hh:mm	11:03	11:21	11:13	11:07	11:18	11:30		
vatei	Station Road, Southwold					n 11378				Depth of Installation	(m BGL)	4.00	4.95	4.92	2.99	2.47	3.03		
vpu	Project:					3FM435 s/				Air temp	(0C)	11	11	11	11	11	11		
Grou	10513	14/10/2020	TM			Dipmeter & GFM435 s/n 11378				Barometric Pressure	(mbars)	1021	1021	1020	1021	1020	1021		
8			-	-					•	di t	sul	١	١	١	-	-	1		
Gas	Project No:	Date:	Operator:			Equipment				Borehole ID		WS01	WS03	WS04	WS01A (Historical)	WS02A (Historical)	WS03A (Historical)		

															Oil	
TerraConsult										Remarks					No pipework or gas valve. Oil on end of dip tape.	
aCo									0.1 ppm	PID reading (ppm)	NM	NM	MN	MN	MN	MN
erra		Dry	None	N/A	100%	None	Falling		NA	Nitrogen (% PID reading vol) (ppm)	MN	MN	MN	MN	MN	MN
F			Z	-	7	Z	Ë		1.0 ppm	H2S (ppm)	0	0	0	0	0	0
									0.1 ppm	CO (ppm)	0	0	0	0	0	0
									0.1% vol	CO2 (% vol)	0.9	0.2	0.3	0.5	0.0	0.4
									0.1% vol	02 (% vol)	19.6	20.4	20.3	20.0	20.5	20.2
									0.1%	CH4 (% LEL)	0	0	0	0	0	0
q		d:						-	0.1% vol	CH4 (% vol)	0	0	0	0	0	0
Record		State of Ground:	Wind :	Wind direction:	Cloud cover:	Precipitation:	Pressure trend:		Detection limits:	FlowRate (l/hr)	0	0	0	0	0	0
ng R									De	Differential ^D ressure (Pa)	0	0	0	0	0	0
Gas & Groundwater Monitoring	q									Depth to Groundwater (m Pressure (Pa)	3.88	DRY	4.8	DRY	1.97	DRY
Mo	d, Southwold									Time of Reading	12:35	13:02	12:49	12:44	12:55	13:08
vatel	Station Road, Southwold					'n 11378				Depth of Installation	4.00	4.95	4.92	2.99	2.47	3.03
vbn	Project:					3FM435 s/				Air temp (oC)	16	16	16	16	16	16
Grou	10513	20/10/2020	TM			Dipmeter & GFM435 s/n 11378				Barometric Pressure (mhare)	1002	1000	1000	1001	1000	1000
8			•			-			•	OI tenl	-	-	-	-	-	-
Gas	Project No:	Date:	Operator:			Equipment				Borehole ID	WS01	WS03	WS04	WS01A (Historical)	WS02A (Historical)	WS03A (Historical)

NA - Not Applicable NM - Not Measured

APPENDIX F

Laboratory Results

Andrew Cartwright JP Chick & Partners Ltd

7 Museum Street

Suffolk

Ipswich

IP1 1HQ

Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: andrew.cartwright@chick.co.uk

Analytical Report Number : 20-31121

Project / Site name:	Station Road, Southwold	Samples received on:	21/09/2020
Your job number:	IE20-016	Samples instructed on/ Analysis started on:	21/09/2020
Your order number:		Analysis completed by:	25/09/2020
Report Issue Number:	1	Report issued on:	25/09/2020
Samples Analysed:	19 soil samples		

Signed: R. Cherwinski

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Sample Reference WS1	Lab Sample Number							
Sample Number A B C D Darb Sample A 0.40.30 0.60.10 1.609/2000 1.6								
Depth (m)								
Date Sampled 1609/2020 1509/2020							1	
Time TakenUnit of Analysis)Open of a set							1	
Starte Content 9 10								
Sine Content % 0.1 NORE < 0.1 < 0.1 < 0.1 < 0.1 Mondur Content % % MA NORE 8.5 5.6 6 2.5 Tord mass of sample received % 0.001 NORE 1.3 0.4 0.4 0.4 Meatrix is Soft Yamp WA ISO 2005 Nor4-elected - - - General Inorganics H Matrix is Soft S.3 - - - - Bit Controls mg/gg 1 M2315 S.1 - - - - Tries Controls mg/gg 1 M2315 S.1 -					0900	0920	0940	1000
Module Content % N/L N/L N/L Sol 5.6 6 2.5 Total mass of sample received %9 0.01 N/R E01 0.4 0.4 0.4 Absets in Sol Type N/L E017025 Note detected . . . Besters in Sol mg/lig 1 MCRRS 8.3 Catal Canade mg/lig 1 MCRRS 8.3 .	Analytical Parameter (Soil Analysis)	Units	limit of detecti on	Accredi tation Status				
Module Content % N/L N/L N/L Sol 5.6 6 2.5 Total mass of sample received %9 0.01 N/R E01 0.4 0.4 0.4 Absets in Sol Type N/L E017025 Note detected . . . Besters in Sol mg/lig 1 MCRRS 8.3 Catal Canade mg/lig 1 MCRRS 8.3 .								
Total mass of sample received 10 0.001 NARE 1.3 0.4 0.4 0.4 Abaestos in Soll Type N/A ESO 17025 Net-detected - - - 41 - Adorstadi prt Units N/A MCRTS 8.3.3 - - - - Gale Grande mg/Aq 1 MCRTS 6.1.3 - - - - Gale Grande mg/Aq 1 MCRTS <.1								
Advertse in Sol Type NA EVEN Note-detected - - General Langganics prt (Linits NA MA MCR215 8.3 - - - Columbic mg/ling 1 MCR215 8.3 - - - - Columbic mg/ling 1 MCR215 8.3 - - - - Columbic Supprise as SON mg/ling 5 NORE <		1						
Cancer Linorganics Pri Links PVA MERRITS B.3 ·	Total mass of sample received	kg	0.001	NONE	1.3	0.4	0.4	0.4
Cancer Linorganics Pri Links PVA MERRITS B.3 ·	Ashestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	-	-
of h April Links N/A MC2RTS B.3.3 - - - Ticel Q-ganide mg/hg 1 MC2RTS 6.1 - - - Trees C-panide mg/hg 5 MC2RTS 2.5 - - - Trees C-panide mg/hg 56 MC2RTS 2.75 - - - Grad Suphtma as SCA mg/hg 50 MC2RTS 1.05 - - - Water Soluble SOF Hore entraction (2:1) mg/hg 1.00.128 MC2RTS 1.06 - - - Water Soluble SOF Hore entraction (2:1 Leachabe Equivalent) mg/l 1.00.128 MC2RTS 7.9 -		турс	N/A	150 17025	Not detected	<u> </u>	<u> </u>	
Total Cyanife mg/hg 1 MCR2NTS < 1 - . . The cyanate as SCM mg/hg 1 MCR3TS < 1	General Inorganics			· · · · · ·	0.7			
Tree Gynade mg/kg 1 MCR3TS < 1 · · · · Total Sulphate as SCH mg/kg 5 MCR3TS 2270 - - - Total Sulphate as SCH mg/kg 25 MCR3TS 16 - - - Water Subble SCH fore extraction (2:1 Lanchatte Equivalent) mg/l 0.00128 MCR3TS 7.9 - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Thoogenete as SX1 mg/hg 5 MORE < 5.5.0 - . . Table Jupitae as SO4 mg/hg 50 MCRTS 270 . . . Water Soluble Sulphote as SO4 16/Hr extraction (2:1) mg/hg 12.5 MCRTS 16.5 . . . Water Soluble SO4 for extraction (2:1) Leachete Equivalent) g/l 10.0017 MCRTS 2.2 Sighibide Signific Matter % 0.1 MCRTS 2.2 Signific Matter % 0.1 MCRTS 2.0 . . . Signific Matter % 0.1 MCRTS < 0.05		1						
Total Suphate as SO4 mg/tg 50 MCRTS 270 - - Water Subble Sulphate as SO4 16hr extraction (2:1) mg/tg 2.5 MCRTS 0.0079 - - - Water Subble SO4 16hr extraction (2:1 Leachate Equivalent) g/t 0.00125 MCRTS 0.0079 - - - - Water Subble SO4 16hr extraction (2:1 Leachate Equivalent) mg/t 1.1 MCRTS 2 - - - - Subphdie mg/tg 1.1 MCRTS 2.1 - </td <td>•</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>	•	1					1	
Water Soluble Sulphate as SO4 160° extraction (2:1) mg/ng 2.5 MCRTS 1.6 - - Water Soluble SO4 160° extraction (2:1 Leachate Equivalent) mg/n 1.25 MCRTS 0.0079 - - - Sulphide mg/n 1.25 MCRTS 7.9 - - - Sulphide mg/ng 1 MCRTS 2 - - - Signalic Matter % 0.1 MCRTS 2 - - - Total Phenols (monohydnic) mg/ng 1 MCRTS < 0.05		1						
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) grin 10.0123 MCERTS 7.9 . . . Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) mg/q 1.1 MCERTS 7.9 Draganic Matter % 0.1 MCERTS 1.9 . . . Total Phenols .		1						
Water Souble SO4 16hr extraction (2:1 Leachate Equivalent) mg/l 1.25 MCERTS 7.9 - - - Sulphide mg/lng 1 MCERTS 2 - - - - Sulphide % 0.1 MCERTS 2 - - - - Total Phenols 0.1 MCERTS <1.0		1						
Supplie mg/kg 1 MCRNTS 2 - - - Organic Matter % 0.1 MCRNTS 1.9 - - - Organic Matter % 0.1 MCRNTS 1.9 - - - Stall Phenols MCRNTS <1.0								
Organic Matter % 0.1 MCERTS 1.9 - - Total Phenols Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0	· · · ·					-	-	-
Total Phenols Total Phenols mg/kg 1 MCERTS < 1.0 - - - Speciated PAHS Naphthalene mg/kg 0.05 MCERTS < 0.05 - - - - Acenaphthalene mg/kg 0.05 MCERTS < 0.05 - - - - Rechaphthalene mg/kg 0.05 MCERTS < 0.05 -	•					-	-	-
Naphthalene mg/kg 0.05 MCERTS < 0.05	Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	-	-
Accenaphthylene mg/kg 0.05 MCERTS < 0.05 - - - Accenaphthylene mg/kg 0.05 MCERTS < 0.05	Speciated PAHs					1	1	1
Accenaphthene mg/kg 0.05 MCERTS < 0.05 Fluorene mg/kg 0.05 MCERTS < 0.05		1						
Filozene mg/kg 0.05 MCERTS < Phenanthrene mg/kg 0.05 MCERTS 0.75 - - - Authracene mg/kg 0.05 MCERTS 0.15 - - - Filozanthrene mg/kg 0.05 MCERTS 2.2 - - - Pyrene mg/kg 0.05 MCERTS 2.2 - - - Benzo(a)anthracene mg/kg 0.05 MCERTS 1.8 - - - Benzo(b)fluoranthene mg/kg 0.05 MCERTS 1.5 - - - Benzo(b)fluoranthene mg/kg 0.05 MCERTS 1.6 - - - Benzo(b)fluoranthene mg/kg 0.05 MCERTS 1.6 - - - Benzo(b)fuoranthene mg/kg 0.05 MCERTS 1.6 - - - Benzo(b)fuoranthene mg/kg <t< td=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td>1</td><td></td></t<>		1					1	
Phenanthrene mg/kg 0.05 MCERTS 0.75 - - - Anthracene mg/kg 0.05 MCERTS 0.15 - - - Evaranthene mg/kg 0.05 MCERTS 2.2 - - - Pyrene mg/kg 0.05 MCERTS 2.2 - - - Benzo(a)anthracene mg/kg 0.05 MCERTS 1.8 - - - Benzo(b)fluoranthene mg/kg 0.05 MCERTS 1.5 - - - Benzo(b)fluoranthene mg/kg 0.05 MCERTS 0.89 - - - Benzo(b)fluoranthene mg/kg 0.05 MCERTS 0.91 - - - Benzo(b)fluoranthene mg/kg 0.05 MCERTS 0.28 - - - Benzo(b)fluoranthene mg/kg 0.05 MCERTS 1.1 - - - Dibenz(a).pyrene	•	1	0.05	MCERIS	< 0.05			
Anthracene mg/kg 0.05 MCERTS 0.15 - - Fluoranthene mg/kg 0.05 MCERTS 2.2 - - - Pyrene mg/kg 0.05 MCERTS 2.2 - - - - Berzo(a)anthracene mg/kg 0.05 MCERTS 1.1 - - - Chrysene mg/kg 0.05 MCERTS 1.1 - - - Berzo(b)fluoranthene mg/kg 0.05 MCERTS 0.89 - - - Berzo(h)fluoranthene mg/kg 0.05 MCERTS 0.91 - - - Berzo(h)pyrene mg/kg 0.05 MCERTS 0.91 - - - Diberz(a,h)anthracene mg/kg 0.05 MCERTS 0.28 - - - Berzo(b)iperylene mg/kg 0.05 MCERTS 1.1 - - - Speciated Total EPA-16 PAHs	Fluorene		0.05	MOEDTO				
Fluoranthene mg/kg 0.05 MCERTS 2.2 - - - Pyrene mg/kg 0.05 MCERTS 2.2 - - - - Benzo(a)anthracene mg/kg 0.05 MCERTS 1.8 - - - - Chrysene mg/kg 0.05 MCERTS 1.1 -		1			< 0.05		-	-
Pyrene mg/kg 0.05 MCERTS 2.2 - - - Benzo(s)anthracene mg/kg 0.05 MCERTS 1.8 -	Phenanthrene	mg/kg	0.05	MCERTS	< 0.05 0.75	-	-	-
Benzo(a)anthracene mg/kg 0.05 MCERTS 1.8 - - - Chrysene mg/kg 0.05 MCERTS 1.1 - - - Benzo(h)fluoranthene mg/kg 0.05 MCERTS 1.5 - - - Benzo(k)fluoranthene mg/kg 0.05 MCERTS 1.6 - - - Benzo(k)fluoranthene mg/kg 0.05 MCERTS 0.89 - - - Benzo(k)fluoranthene mg/kg 0.05 MCERTS 0.91 - - - Benzo(k)fluoranthene mg/kg 0.05 MCERTS 0.91 - - - Benzo(k)fluoranthene mg/kg 0.05 MCERTS 0.28 - - - - Benzo(k)fluoranthene mg/kg 0.05 MCERTS 1.1 - - - - Benzo(k)fluoranthene mg/kg 0.8 MCERTS 1.1 - -	Phenanthrene Anthracene	mg/kg mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05 0.75 0.15	-		
mg/kg 0.05 MCERTS 1.1 - - - Benzo(b)fluoranthene mg/kg 0.05 MCERTS 1.5 -	Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg	0.05 0.05 0.05	MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2			- - - -
Benzo(b)fluoranthene mg/kg 0.05 MCERTS 1.5 - - - Benzo(k)fluoranthene mg/kg 0.05 MCERTS 0.89 - - - Benzo(k)fluoranthene mg/kg 0.05 MCERTS 0.89 - - - Benzo(a)pyrene mg/kg 0.05 MCERTS 0.91 - - - Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.91 - - - Benzo(gh)perylene mg/kg 0.05 MCERTS 1.1 - - - Total PAH mg/kg 0.8 MCERTS 14.5 - - - Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 14.5 - - - Cadau tegia extractable) mg/kg 0.8 MCERTS 14.5 - - - Boron (water soluble) mg/kg 1 MCERTS 0.5 - - - <td>Phenanthrene Anthracene Fluoranthene Pyrene</td> <td>mg/kg mg/kg mg/kg mg/kg</td> <td>0.05 0.05 0.05 0.05</td> <td>MCERTS MCERTS MCERTS MCERTS</td> <td>< 0.05 0.75 0.15 2.2 2.2</td> <td>- - - -</td> <td>- - - - -</td> <td>- - - - -</td>	Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2 2.2	- - - -	- - - - -	- - - - -
Benzo(k)fluoranthene mg/kg 0.05 MCERTS 0.89 - - - Benzo(a)pyrene mg/kg 0.05 MCERTS 1.6 - - - Dibenz(a,h)anthracene mg/kg 0.05 MCERTS 0.91 - - - Benzo(ghi)perylene mg/kg 0.05 MCERTS 0.28 - - - Benzo(ghi)perylene mg/kg 0.05 MCERTS 0.28 - - - Total PAH mg/kg 0.05 MCERTS 1.1 - - - Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 14.5 - - - Arsenic (aqua regia extractable) mg/kg 0.2 MCERTS <.0.2	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2 2.2 1.8	- - - - -	- - - - - -	- - - - - - -
Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.91 - - - Dibenz(a,h)anthracene mg/kg 0.05 MCERTS 0.28 - - - - Benzo(ghi)perylene mg/kg 0.05 MCERTS 1.1 - - - - Total PAH Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 14.5 - - - - Heavy Metals / Metalloids Arsenic (aqua regia extractable) mg/kg 1 MCERTS 12 - - - - Boron (water soluble) mg/kg 0.2 MCERTS 0.5 - <td>Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene</td> <td>mg/kg mg/kg mg/kg mg/kg mg/kg</td> <td>0.05 0.05 0.05 0.05 0.05 0.05</td> <td>MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS</td> <td>< 0.05 0.75 0.15 2.2 2.2 1.8 1.1</td> <td>- - - - - -</td> <td>- - - - - - -</td> <td>- - - - - - -</td>	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2 2.2 1.8 1.1	- - - - - -	- - - - - - -	- - - - - - -
Dibenz(a,h)anthracenemg/kg0.05MCERTS0.28Benzo(ghi)perylenemg/kg0.05MCERTS1.1Total PAHSpeciated Total EPA-16 PAHsmg/kg0.8MCERTS14.5Heavy Metals / MetalloidsArsenic (aqua regia extractable)mg/kg1MCERTS12Boron (water soluble)mg/kg0.2MCERTS<	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2 2.2 1.8 1.1 1.5	- - - - - - -	- - - - - - - - - -	- - - - - - - - -
Benzo(ghi)perylene mg/kg 0.05 MCERTS 1.1 - - - Total PAH	Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2 2.2 1.8 1.1 1.5 0.89	- - - - - - - - - -	- - - - - - - - - - - -	- - - - - - - - - - - -
Total PAHSpeciated Total EPA-16 PAHsmg/kg0.8MCERTS14.5Heavy Metals / MetalloidsArsenic (aqua regia extractable)mg/kg1MCERTS12Boron (water soluble)mg/kg0.2MCERTS< 0.2	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2 2.2 1.8 1.1 1.5 0.89 1.6	- - - - - - - - - - - -	- - - - - - - - - - - -	- - - - - - - - - - - - -
Speciated Total EPA-16 PAHsmg/kg0.8MCERTS14.5Heavy Metals / MetalloidsArsenic (aqua regia extractable)mg/kg1MCERTS12Boron (water soluble)mg/kg0.2MCERTS<0.2	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2 2.2 1.8 1.1 1.5 0.89 1.6 0.91	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - -
Heavy Metals / MetalloidsArsenic (aqua regia extractable)mg/kg1MCERTS12Boron (water soluble)mg/kg0.2MCERTS< 0.2	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2 1.8 1.1 1.5 0.89 1.6 0.91 0.28	- - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
Arsenic (aqua regia extractable)mg/kg1MCERTS12Boron (water soluble)mg/kg0.2MCERTS< 0.2	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2 1.8 1.1 1.5 0.89 1.6 0.91 0.28 1.1	- - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
Boron (water soluble)mg/kg0.2MCERTS< 0.2Cadmium (aqua regia extractable)mg/kg0.2MCERTS0.5Chromium (hexavalent)mg/kg4MCERTS< 4.0	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2 1.8 1.1 1.5 0.89 1.6 0.91 0.28 1.1	- - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - -
Cadmium (aqua regia extractable)mg/kg0.2MCERTS0.5Chromium (hexavalent)mg/kg4MCERTS<4.0	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2 1.8 1.1 1.5 0.89 1.6 0.91 0.28 1.1 14.5	- - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
Chromium (hexavalent)mg/kg4MCERTS< 4.0Chromium (aqua regia extractable)mg/kg1MCERTS11Copper (aqua regia extractable)mg/kg1MCERTS23Lead (aqua regia extractable)mg/kg1MCERTS230Mercury (aqua regia extractable)mg/kg0.3MCERTS<0.3	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2 1.8 1.1 1.5 0.89 1.6 0.91 0.28 1.1 14.5 12	- - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
Chromium (aqua regia extractable)mg/kg1MCERTS11Copper (aqua regia extractable)mg/kg1MCERTS23Lead (aqua regia extractable)mg/kg1MCERTS230Mercury (aqua regia extractable)mg/kg0.3MCERTS230Mercury (aqua regia extractable)mg/kg0.3MCERTS<0.3	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2 2.2 1.8 1.1 1.5 0.89 1.6 0.91 0.28 1.1 14.5 12 < 0.2	- - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
Copper (aqua regia extractable)mg/kg1MCERTS23Lead (aqua regia extractable)mg/kg1MCERTS230Mercury (aqua regia extractable)mg/kg0.3MCERTS<0.3	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2 1.8 1.1 1.5 0.89 1.6 0.91 0.28 1.1 14.5 12 < 0.2 0.5	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
Lead (aqua regia extractable)mg/kg1MCERTS230Mercury (aqua regia extractable)mg/kg0.3MCERTS<0.3	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2 2.2 1.8 1.1 1.5 0.89 1.6 0.91 0.28 1.1 14.5 12 < 0.2 0.5 < 4.0	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
Mercury (aqua regia extractable) mg/kg 0.3 MCERTS < 0.3	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Diberz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
Nickel (aqua regia extractable) mg/kg 1 MCERTS 10 - - Selenium (aqua regia extractable) mg/kg 1 MCERTS <1.0	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Diberz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Copper (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05	- - - - - - - - - - - - - - - - - - -		
Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0 -	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2 2.2 1.8 1.1 1.5 0.89 1.6 0.91 0.28 1.1 14.5 12 < 0.2 0.5 < 4.0 11 23 230	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	
	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 0.75 0.15 2.2 2.2 1.8 1.1 1.5 0.89 1.6 0.91 0.28 1.1 14.5 12 < 0.2 0.5 < 4.0 11 23 230 < 0.3			
	Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene Total PAH Speciated Total EPA-16 PAHs Heavy Metals / Metalloids Arsenic (aqua regia extractable) Boron (water soluble) Cadmium (aqua regia extractable) Chromium (hexavalent) Chromium (aqua regia extractable) Lead (aqua regia extractable) Mercury (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable) Nickel (aqua regia extractable)	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS	< 0.05 0.75 0.15 2.2 2.2 1.8 1.1 1.5 0.89 1.6 0.91 0.28 1.1 14.5 12 < 0.2 0.5 < 4.0 11 23 230 < 0.3 10			

Lab Sample Number				1625814	1625815	1625816	1625817
Sample Reference				WS1	WS1	WS1	WS1
Sample Number				A	В	С	D
Depth (m)				0.10-0.30	0.80-1.00	1.80-2.00	3.70-4.00
Date Sampled				16/09/2020	16/09/2020	16/09/2020	16/09/2020
Time Taken				0900	0920	0940	1000
Analytical Parameter		de Lir	State				
(Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
			•** =•				
Monoaromatics & Oxygenates							
Benzene	µg/kg	1	MCERTS	-	-	-	-
Toluene	µg/kg	1	MCERTS	-	-	-	-
Ethylbenzene	µg/kg	1	MCERTS	-	-	-	-
p & m-xylene	µg/kg	1	MCERTS	-	-	-	-
o-xylene	µg/kg	1	MCERTS	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	-	-
Petroleum Hydrocarbons							
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	-
	5, 5			-			
TPH C10 - C40	mg/kg	10	MCERTS	-	< 10	-	< 10
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-
							
TPH (C10 - C25)	mg/kg	10	MCERTS	24	-	< 10	-
TPH (C25 - C40)	mg/kg	10	MCERTS	130	-	< 10	-
VOCs Chloromethane	µg/kg	1	ISO 17025	-	-	-	-
Chloroethane	μg/kg	1	NONE	-	-	-	-
Bromomethane	μg/kg	1	ISO 17025	-	-	-	-
Vinyl Chloride	μg/kg	1	NONE	-	-	-	-
Trichlorofluoromethane	μg/kg	1	NONE	-	-	-	-
1.1-Dichloroethene	μg/kg	1	NONE	-	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	-	-
Cis-1,2-dichloroethene	µg/kg	1	MCERTS	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	_	-	-	-
1,1-Dichloroethane	μg/kg μg/kg	1	MCERTS	-	-	-	-
2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	-	-	-	-
Trichloromethane	μg/kg	1	MCERTS	-	-	-	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-
1,2-Dichloroethane	µg/kg µg/kg	1	MCERTS	-	-	-	-
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-	-	-
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	-	-
Benzene	μg/kg	1	MCERTS	-	-	-	-
	פייופיי	1 1			1		
Tetrachloromethane	µg/kg	1	MCERTS	-	-	-	-

Lab Sample Number				1625814	1625815	1625816	1625817
Sample Reference				WS1	WS1	WS1	WS1
Sample Number				A	В	C	D
Depth (m)				0.10-0.30	0.80-1.00	1.80-2.00	3.70-4.00
Date Sampled				16/09/2020	16/09/2020	16/09/2020	16/09/2020
Time Taken				0900	0920	0940	10/05/2020
		9 E	(0 + 2	0500	0320	0510	1000
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
Trichloroethene	µg/kg	1	MCERTS	-	-	-	-
Dibromomethane	µg/kg	1	MCERTS	-	-	-	-
Bromodichloromethane	µg/kg	1	MCERTS	-	-	-	-
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	-	-	-	-
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	-	-	-	-
Toluene	µg/kg	1	MCERTS	-	-	-	-
1,1,2-Trichloroethane	µg/kg	1	MCERTS	-	-	-	-
1,3-Dichloropropane	µg/kg	1	ISO 17025	-	-	-	-
Dibromochloromethane	µg/kg	1	ISO 17025	-	-	-	-
Tetrachloroethene	µg/kg	1	NONE	-	-	-	-
1,2-Dibromoethane	µg/kg	1	ISO 17025	-	-	-	-
Chlorobenzene	µg/kg	1	MCERTS	-	-	-	-
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	-	-	-	-
Ethylbenzene	µg/kg	1	MCERTS	-	-	-	-
p & m-Xylene	µg/kg	1	MCERTS	-	-	-	-
Styrene	µg/kg	1	MCERTS	-	-	-	-
Tribromomethane	µg/kg	1	NONE	-	-	-	-
o-Xylene	µg/kg	1	MCERTS	-	-	-	-
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	-	-	-	-
Isopropylbenzene	µg/kg	1	MCERTS	-	-	-	-
Bromobenzene	µg/kg	1	MCERTS	-	-	-	-
n-Propylbenzene	µg/kg	1	ISO 17025	-	-	-	-
2-Chlorotoluene	µg/kg	1	MCERTS	-	-	-	-
4-Chlorotoluene	µg/kg	1	MCERTS	-	-	-	-
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	-	-	-	-
tert-Butylbenzene	µg/kg	1	MCERTS	-	-	-	-
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	-	-	-	-
sec-Butylbenzene	µg/kg	1	MCERTS	-	-	-	-
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	-	-	-	-
p-Isopropyltoluene	µg/kg	1	ISO 17025	-	-	-	-
1,2-Dichlorobenzene	µg/kg	1	MCERTS	-	-	-	-
1,4-Dichlorobenzene	µg/kg	1	MCERTS	-	-	-	-
Butylbenzene	µg/kg	1	MCERTS	-	-	-	-
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	-	-	-	-
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	-	-	-	-
Hexachlorobutadiene	µg/kg	1	MCERTS	-	-	-	-
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	-	-	-	-

SVOCs

57663							
Aniline	mg/kg	0.1	NONE	-	-	-	-
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-

Lab Sample Number				1625814	1625815	1625816	1625817
Sample Reference				WS1	WS1	WS1	WS1
Sample Number				A	В	C	D
Depth (m)				0.10-0.30	0.80-1.00	1.80-2.00	3.70-4.00
Date Sampled				16/09/2020	16/09/2020	16/09/2020	16/09/2020
Time Taken				0900	0920	0940	1000
		e E.	Ω + ≥	0,000	0020	0510	1000
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-	-
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Carbazole	mg/kg	0.3	MCERTS	-	-	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-

Miscellaneous Organics

Product ID N/A NONE	· · · · · · · · · · · · · · · · · · ·						
	Product ID	N/A	NONE	-	-	-	-

 ${\sf U}/{\sf S} = {\sf Unsuitable \ Sample} \qquad {\sf I}/{\sf S} = {\sf \ Insufficient \ Sample}$

Lab Sample Number				1625818	1625819	1625820	1625821
Sample Reference				WS2	WS2	WS2	WS2
Sample Number				A	В	С	D
Depth (m)				0.20-0.40	0.80-1.00	1.80-2.00	4.70-4.00
Date Sampled				16/09/2020	16/09/2020	16/09/2020	16/09/2020
Time Taken	-			1020	1040	1100	1120
Analytical Parameter	Units	Limit of detecti on	Accredi tation Status				
(Soil Analysis)	its	n ecti	tus				
							8
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	8.5	7.5	6.3	5.1
Total mass of sample received	kg	0.001	NONE	1.3	0.4	0.4	0.4
-						8	1
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	-	-
		,					
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	8.3	-	-	-
Total Cyanide	mg/kg	1	MCERTS	< 1	-	-	-
Free Cyanide	mg/kg	1	MCERTS	< 1	-	-	-
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	-	-	-
Total Sulphate as SO4	mg/kg	50	MCERTS	680	-	-	-
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	49	-	-	-
Water Soluble Soluble as 504 10m extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.025	-	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	24.6	-	-	-
Sulphide	mg/kg	1	MCERTS	4.8	-	-	-
Organic Matter	%	0.1	MCERTS	3.6	-	-	-
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	-	-
	iiig/kg	1	PICERTS	< 1.0			
Speciated PAHs							
Naphthalene	malka	0.05	MCEDITC	< 0.05	-	-	-
	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Acenaphthylene	mg/kg		MCERTS		-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Fluorene	mg/kg	0.05	MCERTS		-	-	-
Phenanthrene Anthracene	mg/kg	0.05	MCERTS	1.3 0.33	-	-	-
Fluoranthene	mg/kg mg/kg	0.05	MCERTS MCERTS	3.5	-	-	-
Pyrene	mg/kg	0.05	MCERTS	3.2	-	-	-
Benzo(a)anthracene		0.05	MCERTS	3.2		-	-
Chrysene	mg/kg mg/kg	0.05	MCERTS	2.3		-	
Benzo(b)fluoranthene		0.05	MCERTS	3.4	-	-	
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	2.1	-	-	-
Benzo(k)huoranthene Benzo(a)pyrene	mg/kg		MCERTS				-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	3.4 2.2		-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.54	-	-	-
Benzo(ghi)perylene	mg/kg mg/kg	0.05	MCERTS	2.1	-	-	-
ארוידאל אוווארו אובווב	iiig/Kg	0.05	PICERIS	2.1	-		-
Total PAH							
Speciated Total EPA-16 PAHs	m = //	0.0	MCEDIC	27 4	-	-	1
Specialeu Tuldi EPA-10 PARS	mg/kg	0.8	MCERTS	27.4	-	-	-
Hanny Matala / Matallaida							
Heavy Metals / Metalloids			14055550	22			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	23	-	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	-	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	1.1	-	-	-
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	13	-	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	71	-	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	290	-	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.3	-	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	22	-	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	320	-	-	-

Lab Sample Number				1625818	1625819	1625820	1625821
Sample Reference				WS2	WS2	WS2	WS2
Sample Number				А	В	С	D
Depth (m)				0.20-0.40	0.80-1.00	1.80-2.00	4.70-4.00
Date Sampled				16/09/2020	16/09/2020	16/09/2020	16/09/2020
Time Taken				1020	1040	1100	1120
Analytical Devenuetor	6	승 드	Str				
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
	S	분입	is n di				
Monoaromatics & Oxygenates							
Benzene	µg/kg	1	MCERTS	-	-	-	-
Toluene	µg/kg	1	MCERTS	-	-	-	-
Ethylbenzene	µg/kg	1	MCERTS	-	-	-	-
p & m-xylene	µg/kg	1	MCERTS	-	-	-	-
o-xylene	µg/kg	1	MCERTS	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	-	-
Petroleum Hydrocarbons							
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	-
ТРН С10 - С40	mg/kg	10	MCERTS	-	< 10	-	< 10
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35		8	MCERTS	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg			-	-	-	-
TPH-CWG - Aliphauc (ECS - ECSS)	mg/kg	10	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-
	-						
ТРН (С10 - С25)	mg/kg	10	MCERTS	27	-	~ 10	
ТРН (С25 - С40)	mg/kg	10				< 10	-
		10	MCERTS	54	-	< 10	-
		10	MCERTS	54	-		
VOCs					-		
Chloromethane	µg/kg		ISO 17025		-		
Chloromethane Chloroethane	μg/kg μg/kg	1	ISO 17025 NONE				
Chloromethane Chloroethane Bromomethane	μg/kg μg/kg μg/kg	1 1 1	ISO 17025 NONE ISO 17025	-	-	< 10	-
Chloromethane Chloroethane Bromomethane Vinyl Chloride	μg/kg μg/kg	1	ISO 17025 NONE	-	-	< 10 - -	-
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane	μg/kg μg/kg μg/kg	1 1 1	ISO 17025 NONE ISO 17025			< 10 - - -	-
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene	µg/kg µg/kg µg/kg µg/kg	1 1 1 1	ISO 17025 NONE ISO 17025 NONE NONE NONE			< 10 - - - - -	- - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane	µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1	ISO 17025 NONE ISO 17025 NONE NONE	- - - - -	- - - - -	< 10 - - - - - - -	
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1	ISO 17025 NONE ISO 17025 NONE NONE ISO 17025 MCERTS	- - - - - -	- - - - - -	< 10 - - - - - - - -	
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1 1 1	ISO 17025 NONE ISO 17025 NONE NONE ISO 17025	- - - - - - - -	- - - - - - -	< 10 - - - - - - - - - -	- - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1 1 1 1	ISO 17025 NONE ISO 17025 NONE NONE ISO 17025 MCERTS	- - - - - - - - - - -	- - - - - - - - - -	< 10 - - - - - - - - - - - -	- - - - - - - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether)	рд/кд рд/кд рд/кд рд/кд рд/кд рд/кд рд/кд рд/кд	1 1 1 1 1 1 1 1 1	ISO 17025 NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS	- - - - - - - - - - - -	- - - - - - - - - - -	< 10	- - - - - - - - - - - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane	раука µд/ка µд/ка µд/ка µд/ка µд/ка µд/ка µд/ка µд/ка µд/ка	1 1 1 1 1 1 1 1 1 1 1	ISO 17025 NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS MCERTS	- - - - - - - - - - - - - - -	- - - - - - - - - - - -	< 10	- - - - - - - - - - - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane 2,2-Dichloropropane	раука µ	1 1 1 1 1 1 1 1 1 1 1 1 1	ISO 17025 NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS MCERTS	- - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -	< 10	- - - - - - - - - - - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane	раука раука раука раука раука раука раука раука раука раука раука раука раука раука раука	1 1 1 1 1 1 1 1 1 1 1 1 1 1	ISO 17025 NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS MCERTS MCERTS	- - - - - - - - - - - - - - - - - - -		< 10	- - - - - - - - - - - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane	hð/kg hð/kg hð/kg hð/kg hð/kg hð/kg hð/kg hð/kg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ISO 17025 NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS	- - - - - - - - - - - - - - - - - - -		< 10	- - - - - - - - - - - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane 1,2-Dichloroethane		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ISO 17025 NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS			< 10	- - - - - - - - - - - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane 1,2-Dichloroethane 1,2-Dichloropethane 1,2-Dichloropethane	hð\ka hð\ka hð\ka hð\ka hð\ka hð\ka hð\ka hð\ka hð\ka hð\ka hð\ka hð\ka hð\ka hð\ka hð\ka hð\ka hð\ka	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ISO 17025 NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS			< 10	- - - - - - - - - - - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropene Trans-1,2-dichloroethene		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ISO 17025 NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE			< 10	- - - - - - - - - - - - - - - - - - -

Lab Sample Number				1625818	1625819	1625820	1625821
Sample Reference				WS2	WS2	WS2	WS2
Sample Number				A	В	C	D
Depth (m)				0.20-0.40	0.80-1.00	1.80-2.00	4.70-4.00
Date Sampled				16/09/2020	16/09/2020	16/09/2020	16/09/2020
Time Taken				10/05/2020	10/05/2020	1100	1120
		9 E	(0 + 2	1020	1010	1100	1120
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
Trichloroethene	µg/kg	1	MCERTS	-	-	-	-
Dibromomethane	µg/kg	1	MCERTS	-	-	-	-
Bromodichloromethane	µg/kg	1	MCERTS	-	-	-	-
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	-	-	-	-
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	-	-	-	-
Toluene	µg/kg	1	MCERTS	-	-	-	-
1,1,2-Trichloroethane	µg/kg	1	MCERTS	-	-	-	-
1,3-Dichloropropane	µg/kg	1	ISO 17025	-	-	-	-
Dibromochloromethane	µg/kg	1	ISO 17025	-	-	-	-
Tetrachloroethene	µg/kg	1	NONE	-	-	-	-
1,2-Dibromoethane	µg/kg	1	ISO 17025	-	-	-	-
Chlorobenzene	µg/kg	1	MCERTS	-	-	-	-
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	-	-	-	-
Ethylbenzene	µg/kg	1	MCERTS	-	-	-	-
p & m-Xylene	µg/kg	1	MCERTS	-	-	-	-
Styrene	µg/kg	1	MCERTS	-	-	-	-
Tribromomethane	µg/kg	1	NONE	-	-	-	-
o-Xylene	µg/kg	1	MCERTS	-	-	-	-
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	-	-	-	-
Isopropylbenzene	µg/kg	1	MCERTS	-	-	-	-
Bromobenzene	µg/kg	1	MCERTS	-	-	-	-
n-Propylbenzene	µg/kg	1	ISO 17025	-	-	-	-
2-Chlorotoluene	µg/kg	1	MCERTS	-	-	-	-
4-Chlorotoluene	µg/kg	1	MCERTS	-	-	-	-
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	-	-	-	-
tert-Butylbenzene	µg/kg	1	MCERTS	-	-	-	-
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	-	-	-	-
sec-Butylbenzene	µg/kg	1	MCERTS	-	-	-	-
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	-	-	-	-
p-Isopropyltoluene	µg/kg	1	ISO 17025	-	-	-	-
1,2-Dichlorobenzene	µg/kg	1	MCERTS	-	-	-	-
1,4-Dichlorobenzene	µg/kg	1	MCERTS	-	-	-	-
Butylbenzene	µg/kg	1	MCERTS	-	-	-	-
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	-	-	-	-
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	-	-	-	-
Hexachlorobutadiene	µg/kg	1	MCERTS	-	-	-	-
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	-	-	-	-

SVOCs

57663							
Aniline	mg/kg	0.1	NONE	-	-	-	-
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-

Lab Sample Number			1	1625818	1625819	1625820	1625821
Sample Reference				WS2	WS2	WS2	WS2
Sample Number				А	В	С	D
Depth (m)				0.20-0.40	0.80-1.00	1.80-2.00	4.70-4.00
Date Sampled				16/09/2020	16/09/2020	16/09/2020	16/09/2020
Time Taken				1020	1040	1100	1120
Analytical Demonster	6	요드	S at A				
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-	-
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Carbazole	mg/kg	0.3	MCERTS	-	-	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-

Miscellaneous Organics

Product ID N/A NONE	· · · · · · · · · · · · · · · · · · ·						
	Product ID	N/A	NONE	-	-	-	-

 ${\sf U}/{\sf S} = {\sf Unsuitable \ Sample} \qquad {\sf I}/{\sf S} = {\sf \ Insufficient \ Sample}$

Sample Reference WG3 WG3 WG3 WG3 WG3 PG3 WG3 PG3 PG3 WG3 PG3 PG3 WG3 WG3 PG3								
sample Number A B C D Date Sampled	Lab Sample Number				1625822	1625823	1625824	1625825
Damb Display Display <thdisplay< th=""> <thdisplay< th=""> <thdisp< td=""><td>Sample Reference</td><td></td><td></td><td></td><td>WS3</td><td>WS3</td><td>WS3</td><td>WS3</td></thdisp<></thdisplay<></thdisplay<>	Sample Reference				WS3	WS3	WS3	WS3
Same Sampled Josof V2020	Sample Number				А	В	С	D
Time Taken Image Control Image Contro Image Contro	Depth (m)				0.20-0.40	1.80-2.00	3.20-3.50	4.50-4.80
State Application Employee B & B & B & B & B & B & B & B & B & B &	Date Sampled				16/09/2020	16/09/2020	16/09/2020	16/09/2020
Bare Content % 0.1 NOTE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.0 < 0.0 < 0.0	Time Taken				1140	1200	1220	1240
Bare Content % 0.1 NOTE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.0 < 0.0 < 0.0	Analytical Parameter	c	Lir de	State				
Bare Content % 0.1 NOTE < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.0 < 0.0 < 0.0	-	nits	on tec	atu				
No.u. NA NA <td></td> <td></td> <td>Ei Of</td> <td>s - H</td> <td></td> <td></td> <td></td> <td></td>			Ei Of	s - H				
No.u. NA NA <td>Change Combook</td> <td><u>°</u>′</td> <td>0.4</td> <td>NONE</td> <td>- 0.1</td> <td>. 0.1</td> <td>. 0.1</td> <td>. 0.1</td>	Change Combook	<u>°</u> ′	0.4	NONE	- 0.1	. 0.1	. 0.1	. 0.1
Total mass of sample received Ng 0.001 NONE 1.3 0.9 0.4 0.9 babestos in Soll Type NA ISO 17002 Nock-detected - - - Seneral Inorganics		-						
No. Type NA ISO 1702 Not-detected · · basets in Soll Type NA MCRTS 8.5 - - - Cold Cynolo mg/ng 1 MCRTS 8.5 - - - Cold Cynolo mg/ng 1 MCRTS 8.5 - - - - Cold Cynolo mg/ng 1 MCRTS 6.50 -		-						
Barent Longanks MA MCERTS 8.5 · · · · M - Automated mg/bg 1 MCERTS 8.5 ·<	Total mass of sample received	kg	0.001	NONE	1.3	0.9	0.4	0.9
Barent Longanks MA MCERTS 8.5 · · · · M - Automated mg/bg 1 MCERTS 8.5 ·<			1					
M1 - Anomaled pt Loss NA MCRETS 6.5 - - - Idal Gyande mpkg 1 MCRETS <1	Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	-	-
M1 - Anomaled pt Loss NA MCRETS 6.5 - - - Idal Gyande mpkg 1 MCRETS <1								
Tind Opende mg/kg 1 MCRPTS <.1 - - - - Time Cynnide mg/kg 1 MCRPTS <.1	-							
mg/ng 1 MCRRTS <.1 - - - - fords Suphate as SOH mg/ng 5 MCRTS 630 - - - fords Suphate as SOH mg/ng 50 MCRTS 630 - - - fords Suphate as SOH (fibre extraction (2:1) mg/ng 0.0025 MCRTS 0.19 - - - Water Subble SOH fibre extraction (2:1) Leachate Equivalent) mg/ng 1.0 MCRTS 2.2 - <td< td=""><td>pH - Automated</td><td>pH Units</td><td>N/A</td><td></td><td></td><td>-</td><td>-</td><td>-</td></td<>	pH - Automated	pH Units	N/A			-	-	-
Intergrands as SCN mg/hg 5 NOME < . <td>Total Cyanide</td> <td>mg/kg</td> <td>1</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>	Total Cyanide	mg/kg	1			-	-	-
Tord Subject as SO4 1.6 restruction (2:1) mg/ng 2.5 MCRTS 3.7 . . . Water Soluble Sol 1.6 restruction (2:1.1 leachtate Equivalent) g1 0.00125 MCRTS 0.019 .	Free Cyanide	mg/kg		MCERTS		-	-	-
Mater Soluble Sulphate as SO4 160° extraction (2:1) mg/n 2.5 MCERTS 3.7 - - - Water Soluble SO4 160° extraction (2:1 Leachate Equivalent) g/l 0.012 MCERTS 0.019 - - - - Vater Soluble SO4 160° extraction (2:1 Leachate Equivalent) mg/l 1.25 MCERTS 18.7 -	Thiocyanate as SCN	mg/kg				-	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) onl Local ZA MCRTS 0.019 - - - Water Soluble SOA 16hr extraction (2:1 Leachate Equivalent) mgln 1.1 MCRTS 2.7 - - - - Dygain (Mtter % 0.1 MCRTS 2.7 - - - - Staff Phenols mg/ng 1.1 MCRTS <.0.5	Total Sulphate as SO4	mg/kg	50	MCERTS		-	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) mg/l 1.25 MCERTS 1.8.7 - - - Julphide mg/kg 1 MCERTS 2 - - - - Supplic Matter % 0.1 MCERTS 2.7 - - - Stal Phenols MCERTS <.1.0	Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	37	-	-	-
subplice mg/ng 1 MCERTS 2 - - Total Phenols -	Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.019	-	-	-
Organic Matter % 0.1 MCERTS 2.7 - - Total Phenols mg/kg 1 MCERTS <1.0	Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	18.7	-	-	-
Total Phenols (monohydric) mg/kg 1 MCERTS < 1.0 .	Sulphide	mg/kg	1	MCERTS	2	-	-	-
Total Phenols (monohydric) mg/hg 1 MCERTS < 1.0 - - Speciated PAHs Vaphthalene mg/hg 0.05 MCERTS < 0.05	Organic Matter	%	0.1	MCERTS	2.7	-	-	-
Total Phenols (monohydric) mg/hg 1 MCERTS < 1.0 - - Speciated PAHs Vaphthalene mg/hg 0.05 MCERTS < 0.05								
Speciated PAHs Speciated PAHs Supphtalene mg/hg 0.05 MCERTS < 0.05	Total Phenols							
Naphthalene mg/kg 0.05 MCERTS < 0.05 Acenaphthylene mg/kg 0.05 MCERTS < 0.05	Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	-	-
Accenaphthylene mg/kg 0.05 MCERTS < 0.05	Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Accenaphthene mg/kg 0.05 MCERTS < < 0.05	Acenaphthylene		0.05	MCERTS	< 0.05	-	-	-
Billionene mg/kg 0.05 MCERTS < Phenanthrene mg/kg 0.05 MCERTS 0.54 - - - Auhracene mg/kg 0.05 MCERTS 0.05 - - - Buoranthene mg/kg 0.05 MCERTS 1.8 - - - Senzo(a)anthracene mg/kg 0.05 MCERTS 1.6 - - - Senzo(a)anthracene mg/kg 0.05 MCERTS 1.1 - - - Senzo(b)fuoranthene mg/kg 0.05 MCERTS 1.1 - - - Senzo(b)fuoranthene mg/kg 0.05 MCERTS 1.1 - - - Senzo(b)fuoranthene mg/kg 0.05 MCERTS 0.56 - - - Senzo(a)pyrene mg/kg 0.05 MCERTS 0.66 - - - Senzo(aph)perylene mg/kg						-	-	-
Phenanthrene mg/kg 0.05 MCERTS 0.54 - - Nthracene mg/kg 0.05 MCERTS Luoranthene mg/kg 0.05 MCERTS 1.8 - Verene mg/kg 0.05 MCERTS 1.6 - Serzo(5)anthracene mg/kg 0.05 MCERTS 1.1 - Evrac(b/fluoranthene mg/kg 0.05 MCERTS 1.5 - Serzo(b/fluoranthene mg/kg 0.05 MCERTS 0.54 - Serzo(b/fluoranthene mg/kg 0.05 MCERTS 0.56 - Serzo(b/fluoranthene mg/kg 0.05 MCERTS 0.56 - Serzo(b/fluoranthene mg/kg 0.05 MCERTS 0.56 - Serzo(b/f	•					-	-	-
Anthracene mg/kg 0.05 MCERTS < 0.05 I. Uuoranthene mg/kg 0.05 MCERTS 1.8 - - - Ayrene mg/kg 0.05 MCERTS 1.6 - - - Benzo(a)anthracene mg/kg 0.05 MCERTS 1.1 - - - Chrysene mg/kg 0.05 MCERTS 1.5 - - - Benzo(b)fluoranthene mg/kg 0.05 MCERTS 0.54 - - - Benzo(h)fluoranthene mg/kg 0.05 MCERTS 0.54 - - - Benzo(A)pyrene mg/kg 0.05 MCERTS 0.56 - - - Dibenz(a,h)anthracene mg/kg 0.05 MCERTS 0.56 - - - Benzo(biliperylene mg/kg 0.05 MCERTS 1.1 - - - Sencia(adui regia extractable) mg/kg						-	-	-
Fluoranthene mg/kg 0.05 MCERTS 1.8 - - - Yrene mg/kg 0.05 MCERTS 1.6 - - - Senzo(a)anthracene mg/kg 0.05 MCERTS 1.1 - - - Senzo(b)fluoranthene mg/kg 0.05 MCERTS 1.5 - - - Senzo(b)fluoranthene mg/kg 0.05 MCERTS 0.54 - - - Senzo(b)fluoranthene mg/kg 0.05 MCERTS 0.54 - - - - Senzo(a)pyrene mg/kg 0.05 MCERTS 0.56 - - - - Genzo(a)pyrene mg/kg 0.05 MCERTS 0.66 - - - - Senzo(ghi)perylene mg/kg 0.6 MCERTS 0.6 - - - Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 10.2 - -						-	-	-
Pyrene mg/kg 0.05 MCERTS 1.6 - - - Jenzo(a)anthracene mg/kg 0.05 MCERTS 1.1 - - - Chrysene mg/kg 0.05 MCERTS 1 - - - Senzo(b)fluoranthene mg/kg 0.05 MCERTS 1.5 - - - Senzo(b)fluoranthene mg/kg 0.05 MCERTS 0.54 - - - Senzo(b)pyrene mg/kg 0.05 MCERTS 0.56 - - - Siberz(a), Pinthracene mg/kg 0.05 MCERTS 0.05 - - - Siberz(a), Pinthracene mg/kg 0.05 MCERTS 0.6 - - - Siberz(a), Pinthracene mg/kg 0.8 MCERTS 10.2 - - - Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 1 - - - Specia						-	-	-
Perzo(a)anthracene mg/kg 0.05 MCERTS 1.1 - - - Chrysene mg/kg 0.05 MCERTS 1 - - - Berzo(b)fluoranthene mg/kg 0.05 MCERTS 1.5 - - - Berzo(b)fluoranthene mg/kg 0.05 MCERTS 0.54 - - - Berzo(a)pyrene mg/kg 0.05 MCERTS 0.56 - - - Serzo(a)pyrene mg/kg 0.05 MCERTS 0.56 - - - Serzo(gh)perylene mg/kg 0.05 MCERTS 0.66 - - - Serzo(gh)perylene mg/kg 0.05 MCERTS 0.66 - - - Serzo(a)pyrene mg/kg 0.05 MCERTS 0.66 - - - Serzo(a)pyrene mg/kg 0.05 MCERTS 0.10 - - - Serzo(a)pyrene						-	-	-
Chrysene mg/kg 0.05 MCERTS 1 - - - Benzo(b)fluoranthene mg/kg 0.05 MCERTS 1.5 - - - Benzo(b)fluoranthene mg/kg 0.05 MCERTS 0.54 - - - Benzo(a)pyrene mg/kg 0.05 MCERTS 0.56 - - - Dibenz(a,h)anthracene mg/kg 0.05 MCERTS 0.66 - - - Benzo(ghi)perylene mg/kg 0.05 MCERTS 0.66 - - - Benzo(ghi)perylene mg/kg 0.05 MCERTS 0.66 - - - Sepciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 10.2 - - - Speciated Total EPA-16 PAHs mg/kg 1 MCERTS 10.2 - - - Soron (water soluble) mg/kg 0.8 MCERTS 1.1 - - -						-	-	-
Berzo(b)fluoranthene mg/kg 0.05 MCERTS 1.5 - - - Benzo(k)fluoranthene mg/kg 0.05 MCERTS 0.54 - - - Benzo(k)fluoranthene mg/kg 0.05 MCERTS 0.54 - - - Benzo(k)fluoranthene mg/kg 0.05 MCERTS 0.56 - - - Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.56 - - - Sibenz(a,h)anthracene mg/kg 0.05 MCERTS 0.66 - - - Sibenz(a,h)anthracene mg/kg 0.8 MCERTS 0.6 - - - Sibenz(a,h)anthracene mg/kg 0.8 MCERTS 0.6 - - - Sibenz(a,h)anthracene mg/kg 0.8 MCERTS 10.2 - - - Sipeciated Total EPA-16 PAHs mg/kg 1 MCERTS 10.2 - - -						-	-	-
Benzo(k)(fluoranthene mg/kg 0.05 MCERTS 0.54 - - - Benzo(a)pyrene mg/kg 0.05 MCERTS 1.1 - <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>						-	-	-
Benzo(a)pyrene mg/kg 0.05 MCERTS 1.1 - - - indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.56 - - - Diberz(a,h)anthracene mg/kg 0.05 MCERTS 0.05 - - - Benzo(ghi)perylene mg/kg 0.05 MCERTS 0.6 - - - Fotal PAH mg/kg 0.8 MCERTS 10.2 - - - Speciated Total EPA-16 PAHs mg/kg 0.8 MCERTS 10.2 - - - Avsenic (aqua regia extractable) mg/kg 0.2 MCERTS 1 - - - Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS <0.2						-	-	-
Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS 0.56 - - - Dibenz(a,h)anthracene mg/kg 0.05 MCERTS < 0.05								
Dibenz(a,h)anthracenemg/kg0.05MCERTS< 0.05Benzo(ghi)perylenemg/kg0.05MCERTS0.6Fotal PAHSpeciated Total EPA-16 PAHsmg/kg0.8MCERTS10.2Heavy Metals / MetalloidsArsenic (aqua regia extractable)mg/kg1MCERTS2130ron (water soluble)mg/kg0.2MCERTS1Cadmium (aqua regia extractable)mg/kg0.2MCERTS<								
Benzo(ghi)perylene mg/kg 0.05 MCERTS 0.6 - - - Fotal PAH -							1	
Total PAHSpeciated Total EPA-16 PAHsmg/kg0.8MCERTS10.2Heavy Metals / MetalloidsArsenic (aqua regia extractable)mg/kg1MCERTS21Boron (water soluble)mg/kg0.2MCERTS1Cadmium (aqua regia extractable)mg/kg0.2MCERTSCadmium (aqua regia extractable)mg/kg0.2MCERTS<0.2		1						
Speciated Total EPA-16 PAHsmg/kg0.8MCERTS10.2Heavy Metals / MetalloidsArsenic (aqua regia extractable)mg/kg1MCERTS21Boron (water soluble)mg/kg0.2MCERTS1Cadmium (aqua regia extractable)mg/kg0.2MCERTSCadmium (aqua regia extractable)mg/kg0.2MCERTS<	penzo(giii)hei kielle	iiig/Kg	0.05	PICER15	0.0	-		-
Speciated Total EPA-16 PAHsmg/kg0.8MCERTS10.2Heavy Metals / MetalloidsArsenic (aqua regia extractable)mg/kg1MCERTS21Boron (water soluble)mg/kg0.2MCERTS1Cadmium (aqua regia extractable)mg/kg0.2MCERTSCadmium (aqua regia extractable)mg/kg0.2MCERTS<								
Heavy Metals / MetalloidsArsenic (aqua regia extractable)mg/kg1MCERTS21Boron (water soluble)mg/kg0.2MCERTS1Cadmium (aqua regia extractable)mg/kg0.2MCERTS<0.2				MCEDIC	10.2			
Arsenic (aqua regia extractable)mg/kg1MCERTS21Boron (water soluble)mg/kg0.2MCERTS1Cadmium (aqua regia extractable)mg/kg0.2MCERTS< 0.2	Specialeu 10tal EPA-10 PAHS	mg/kg	0.8	MCERIS	10.2	-	-	-
Arsenic (aqua regia extractable)mg/kg1MCERTS21Boron (water soluble)mg/kg0.2MCERTS1Cadmium (aqua regia extractable)mg/kg0.2MCERTS< 0.2	Honor Motole / Motollaide							
Boron (water soluble)mg/kg0.2MCERTS1Cadmium (aqua regia extractable)mg/kg0.2MCERTS< 0.2				More	24			
Cadmium (aqua regia extractable)mg/kg0.2MCERTS< 0.2Chromium (hexavalent)mg/kg4MCERTS< 4.0								
Chromium (hexavalent)mg/kg4MCERTS< 4.0Chromium (aqua regia extractable)mg/kg1MCERTS14Copper (aqua regia extractable)mg/kg1MCERTS44Lead (aqua regia extractable)mg/kg1MCERTS370Mercury (aqua regia extractable)mg/kg0.3MCERTS0.5Nickel (aqua regia extractable)mg/kg1MCERTS15Selenium (aqua regia extractable)mg/kg1MCERTS								
Chromium (aqua regia extractable)mg/kg1MCERTS14Copper (aqua regia extractable)mg/kg1MCERTS44Lead (aqua regia extractable)mg/kg1MCERTS370Mercury (aqua regia extractable)mg/kg0.3MCERTS0.5Nickel (aqua regia extractable)mg/kg1MCERTS15Selenium (aqua regia extractable)mg/kg1MCERTS								
Copper (aqua regia extractable) mg/kg 1 MCERTS 44 - - - Lead (aqua regia extractable) mg/kg 1 MCERTS 370 - - - Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 0.5 - - - Nickel (aqua regia extractable) mg/kg 1 MCERTS 15 - - - Selenium (aqua regia extractable) mg/kg 1 MCERTS - - -								
mg/kg 1 MCERTS 370 - - - Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 0.5 - - - - Nickel (aqua regia extractable) mg/kg 1 MCERTS 15 - - - - Selenium (aqua regia extractable) mg/kg 1 MCERTS 1.0 - - -								
Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 0.5 - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td>						-	-	-
Nickel (aqua regia extractable) mg/kg 1 MCERTS 15 -	Lead (aqua regia extractable)							
Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0	Mercury (aqua regia extractable)	mg/kg	0.3			-	-	-
	Nickel (aqua regia extractable)	mg/kg	1			-	-	-
Zinc (aqua regia extractable) mg/kg 1 MCERTS 170	Selenium (aqua regia extractable)	mg/kg						
	Zinc (aqua regia extractable)	mg/kg	1	MCERTS	170	-	-	-

Lab Sample Number				1625822	1625823	1625824	1625825
Sample Reference				WS3	WS3	WS3	WS3
Sample Number				А	В	С	D
Depth (m)				0.20-0.40	1.80-2.00	3.20-3.50	4.50-4.80
Date Sampled				16/09/2020	16/09/2020	16/09/2020	16/09/2020
Time Taken				1140	1200	1220	1240
A set that the second set	6	<u>e</u> E	vort≱				
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
	s	∺g	us n idi				
Monoaromatics & Oxygenates							
Benzene	µg/kg	1	MCERTS	-	-	-	-
Toluene	µg/kg	1	MCERTS	-	-	-	-
Ethylbenzene	µg/kg	1	MCERTS	-	-	-	-
p & m-xylene	µg/kg	1	MCERTS	-	-	-	-
o-xylene	µg/kg	1	MCERTS	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	-	-
	15/5						
Petroleum Hydrocarbons							
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	-	_
	iiig/Kg	0.1	PICENTS	< U.1	< U.1	-	-
	p	10	MCEDES			. 10	. 10
TPH C10 - C40	mg/kg	10	MCERTS	-	-	< 10	< 10
					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	r
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-
	iiig/ikg	10	HIGERIG				
TPH-CWG - Aromatic >EC5 - EC7	ma/ka	0.001	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	-	
	mg/kg			-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS				
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-
TPH (C10 - C25)	mg/kg	10	MCERTS	< 10	< 10	-	-
TPH (C25 - C40)	mg/kg	10	MCERTS	< 10	10	-	-
				-	< 10	-	-
VOC				-	< 10	-	-
VOCs					< 10	-	
	µg/kg	1	ISO 17025		- 10		
	μg/kg μg/kg	1	ISO 17025 NONE		< 10 - -	- - -	-
Chloromethane	1			-	-	-	-
Chloromethane Chloroethane	μg/kg μg/kg	1	NONE	-	-	-	
Chloromethane Chloroethane Bromomethane Vinyl Chloride	μg/kg μg/kg μg/kg	1 1	NONE ISO 17025 NONE			- - -	
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane	μg/kg μg/kg μg/kg μg/kg	1 1 1 1	NONE ISO 17025 NONE NONE			- - - -	
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene	µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1	NONE ISO 17025 NONE NONE NONE	- - - - - -	- - - - - -	- - - - - -	
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1	NONE ISO 17025 NONE NONE ISO 17025	- - - - - - -	- - - - - - -	- - - - - - -	- - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1 1 1	NONE ISO 17025 NONE NONE ISO 17025 MCERTS	- - - - - - - - - - -	- - - - - - - - -	- - - - - - - - - -	- - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether)	<u>µg/kg</u> µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1 1 1 1	NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS	- - - - - - - - - - - -	- - - - - - - - - - -	- - - - - - - - - - - -	- - - - - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1 1 1 1 1	NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS MCERTS	- - - - - - - - - - - - - -	- - - - - - - - - - - - -	- - - - - - - - - - - - -	- - - - - - - - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane 2,2-Dichloropropane	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1 1 1 1 1 1	NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS MCERTS	- - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - -	- - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1 1 1 1 1 1 1	NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS MCERTS MCERTS	- - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1 1 1 1 1 1 1	NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS MCERTS MCERTS	- - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS			- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane 1,2-Dichloroethane 1,2-Dichloropene	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS			- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -
Chloromethane Chloroethane Bromomethane Vinyl Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethane Cis-1,2-dichloroethene MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane 2,2-Dichloropropane Trichloromethane 1,1,1-Trichloroethane 1,2-Dichloroethane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane 1,2-Dichloropthane	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NONE ISO 17025 NONE NONE ISO 17025 MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE			- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -

Lab Sample Number				1625822	1625823	1625824	1625825
Sample Reference				WS3	WS3	WS3	WS3
Sample Number				A	В	C	D
Depth (m)				0.20-0.40	1.80-2.00	3.20-3.50	4.50-4.80
Date Sampled				16/09/2020	16/09/2020	16/09/2020	16/09/2020
Time Taken				1140	10/09/2020	10/03/2020	10/03/2020
		9.5	(0 - P	1140	1200	1220	1240
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
Trichloroethene	µg/kg	1	MCERTS	-	-	-	-
Dibromomethane	µg/kg	1	MCERTS	-	-	-	-
Bromodichloromethane	µg/kg	1	MCERTS	-	-	-	-
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	-	-	-	-
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	-	-	-	-
Toluene	µg/kg	1	MCERTS	-	-	-	-
1,1,2-Trichloroethane	µg/kg	1	MCERTS	-	-	-	-
1,3-Dichloropropane	µg/kg	1	ISO 17025	-	-	-	-
Dibromochloromethane	µg/kg	1	ISO 17025	-	-	-	-
Tetrachloroethene	µg/kg	1	NONE	-	-	-	-
1,2-Dibromoethane	µg/kg	1	ISO 17025	-	-	-	-
Chlorobenzene	µg/kg	1	MCERTS	-	-	-	-
1.1.1.2-Tetrachloroethane	µg/kg	1	MCERTS	-	-	-	-
Ethylbenzene	µg/kg	1	MCERTS	-	-	-	-
p & m-Xylene	µg/kg	1	MCERTS	-	-	-	-
Styrene	µg/kg	1	MCERTS	-	-	-	-
Tribromomethane	µg/kg	1	NONE	-	-	-	-
o-Xylene	µg/kg	1	MCERTS	-	-	-	-
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	-	-	-	-
Isopropylbenzene	µg/kg	1	MCERTS	-	-	-	-
Bromobenzene	µg/kg	1	MCERTS	-	-	-	-
n-Propylbenzene	µg/kg	1	ISO 17025	-	-	-	-
2-Chlorotoluene	µg/kg	1	MCERTS	-	-	-	-
4-Chlorotoluene	µg/kg	1	MCERTS	-	-	-	-
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	-	-	-	-
tert-Butylbenzene	µg/kg	1	MCERTS	-	-	-	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-
sec-Butylbenzene	µg/kg	1	MCERTS	-	-	-	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-
p-Isopropyltoluene	µg/kg	1	ISO 17025	-	-	-	-
1,2-Dichlorobenzene	µg/kg	1	MCERTS	-	-	-	-
1,4-Dichlorobenzene	µg/kg	1	MCERTS	-	-	-	-
Butylbenzene	µg/kg	1	MCERTS	-	-	-	-
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	-	-	-	-
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	-	-	-	-
Hexachlorobutadiene	μg/kg	1	MCERTS	-	-	-	-
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	-	-	-	-
	HA\ vA	1	130 17023		-		-

SVOCs

57663							
Aniline	mg/kg	0.1	NONE	-	-	-	-
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	-	-	-
Isophorone	mg/kg	0.2	MCERTS	-	-	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	-	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	-	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-

Lab Sample Number				1625822	1625823	1625824	1625825
Sample Reference				WS3	WS3	WS3	WS3
Sample Number				А	В	С	D
Depth (m)				0.20-0.40	1.80-2.00	3.20-3.50	4.50-4.80
Date Sampled				16/09/2020	16/09/2020	16/09/2020	16/09/2020
Time Taken				1140	1200	1220	1240
Analytical Demonster	6	요드	S a P				
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-	-
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Carbazole	mg/kg	0.3	MCERTS	-	-	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-

Miscellaneous Organics

Product ID N/A NONE	· · · · · · · · · · · · · · · · · · ·						
	Product ID	N/A	NONE	-	-	-	-

 ${\sf U}/{\sf S} = {\sf Unsuitable \ Sample} \qquad {\sf I}/{\sf S} = {\sf \ Insufficient \ Sample}$

Lab Sample Number				1625826	1625827	1625828	1625829
Sample Reference				WS4	WS4	WS4	WS4
Sample Number				A	В	С	D
Depth (m)				0.30-0.50	0.90-1.10	1.80-2.00	4.00-4.20
Date Sampled				16/09/2020	16/09/2020	16/09/2020	16/09/2020
Time Taken				1300	1320	1340	1400
Analytical Parameter	Ē	Limit of detecti on	Acc tat				
(Soil Analysis)	Units	on tect	Accredi tation Status				
			vi - =				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.1 N/A	NONE	15	13	3.9	4.1
Total mass of sample received		0.001	NONE	1.2	0.9	0.8	0.4
	kg	0.001	NONL	1.2	0.9	0.0	0.4
Asbestos in Soil	Turne	N/A	ISO 17025	Not-detected	-	-	-
Aspestos III Juli	Туре	N/A	150 17025	Not-detected	-	-	-
General Inorganics							
			MOEDTO	0.1		1	
pH - Automated	pH Units	N/A	MCERTS	9.1	-	-	
Total Cyanide	mg/kg	1	MCERTS	< 1	-	-	
Free Cyanide	mg/kg	1	MCERTS	< 1		1	
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	-	-	-
Total Sulphate as SO4	mg/kg	50	MCERTS	1400	-	-	-
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5 0.00125	MCERTS	78 0.039	-	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	1.25	MCERTS MCERTS	39	-	-	
Sulphide	mg/l	1.25	MCERTS	< 1.0	-	-	-
Organic Matter	mg/kg %	0.1	MCERTS	0.7	-	-	-
Organic Matter	70	0.1	MCER15	0.7	-	-	-
Tetal Bhonele							
Total Phenols				. 1.0			
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	-	-
Speciated PAHs		1					
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	-	-	-
Total PAH					1		
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	-	-	-
Heavy Metals / Metalloids	-				ī		
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9.1	-	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	-	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.2	-	-	-
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	11	-	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	10	-	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	39	-	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	5.8	-	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	-	-

Lab Sample Number				1625826	1625827	1625828	1625829
Sample Reference				WS4	WS4	WS4	WS4
Sample Number				A	В	С	D
Depth (m)				0.30-0.50	0.90-1.10	1.80-2.00	4.00-4.20
Date Sampled				16/09/2020	16/09/2020	16/09/2020	16/09/2020
Time Taken				1300	1320	1340	1400
Analytical Parameter	c	de Li	State				
(Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
(<u> </u>	s n di				
Managementing & Operandos							
Monoaromatics & Oxygenates						1	
Benzene	µg/kg	1	MCERTS	-	< 1.0	-	-
Toluene	µg/kg	1	MCERTS	-	< 1.0	-	-
Ethylbenzene	µg/kg	1	MCERTS		< 1.0	-	-
p & m-xylene	µg/kg	1	MCERTS	-	< 1.0	-	-
o-xylene MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	< 1.0	-	-
	µg/kg	1	MCERTS	-	< 1.0	-	-
Potroloum Hydrocorbons							
Petroleum Hydrocarbons		0.1	MCEDIC	. 0.1		. 0.1	
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	< 0.1	-
		10	1405575				. 10
TPH C10 - C40	mg/kg	10	MCERTS	-	-	-	< 10
					. 0.001		
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001	-	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	-	-
TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	1	MCERTS	-	< 1.0	-	-
	mg/kg	2	MCERTS	-	< 2.0	-	
TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS		20 260	-	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	8 10	MCERTS	-	280	-	-
TPT-CWG - Aliphatic (LCS - LCSS)	mg/kg	10	MCERTS	-	260	-	-
		0.001	MOEDTO		. 0.001		
TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	-
TPH-CWG - Aromatic >EC7 - EC8 TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS MCERTS	-	< 0.001	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0	-	
TPH-CWG - Aromatic >EC12 - EC12	mg/kg mg/kg	2	MCERTS		< 2.0	-	
TPH-CWG - Aromatic >EC12 - EC10	mg/kg	10	MCERTS	-	< 10	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS		74	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	78	-	-
	iiig/kg	10	PICEICIS		70		
TPH (C10 - C25)	mg/kg	10	MCERTS	< 10	-	< 10	-
TPH (C25 - C40)	mg/kg	10	MCERTS	< 10	-	< 10	-
	iiig/kg	10	PICEICIS	< 10		< 10	
VOCs							
Chloromethane	µg/kg	1	ISO 17025	-	< 1.0	-	-
Chloroethane	µg/kg µg/kg	1	NONE	-	< 1.0	-	-
Bromomethane	µg/kg µg/kg	1	ISO 17025	-	< 1.0	-	-
Vinyl Chloride	µg/kg	1	NONE	-	< 1.0	-	-
Trichlorofluoromethane	µg/kg	1	NONE	-	< 1.0	-	-
1,1-Dichloroethene	µg/kg	1	NONE	-	< 1.0	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	-	< 1.0	-	-
Cis-1,2-dichloroethene	µg/kg	1	MCERTS	-	< 1.0	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	< 1.0	-	-
1,1-Dichloroethane	µg/kg	1	MCERTS	-	< 1.0	-	-
2,2-Dichloropropane	µg/kg	1	MCERTS	-	< 1.0	-	-
Trichloromethane	µg/kg	1	MCERTS	-	< 1.0	-	-
1,1,1-Trichloroethane	µg/kg	1	MCERTS	-	< 1.0	-	-
1,2-Dichloroethane	µg/kg	1	MCERTS	-	< 1.0	-	-
1,1-Dichloropropene	µg/kg	1	MCERTS	-	< 1.0	-	-
Trans-1,2-dichloroethene	µg/kg	1	NONE	-	< 1.0	-	-
Benzene	μg/kg	1	MCERTS	-	< 1.0	-	-
Tetrachloromethane	µg/kg	1	MCERTS	-	< 1.0	-	-
1,2-Dichloropropane	µg/kg	1	MCERTS	-	< 1.0	-	-
A SPECIAL STREET						8	

Lab Sample Number				1625826	1625827	1625828	1625829
Sample Reference				WS4	WS4	WS4	WS4
Sample Number				A	В	C	D
Depth (m)				0.30-0.50	0.90-1.10	1.80-2.00	4.00-4.20
Date Sampled				16/09/2020	16/09/2020	16/09/2020	16/09/2020
Time Taken				1300	1320	1340	1400
	-	<u>e</u> E	N et P				
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
Trichloroethene	µg/kg	1	MCERTS	-	< 1.0	-	-
Dibromomethane	µg/kg	1	MCERTS	-	< 1.0	-	-
Bromodichloromethane	µg/kg	1	MCERTS	-	< 1.0	-	-
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	-	< 1.0	-	-
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	-	< 1.0	-	-
Toluene	µg/kg	1	MCERTS	-	< 1.0	-	-
1,1,2-Trichloroethane	µg/kg	1	MCERTS	-	< 1.0	-	-
1,3-Dichloropropane	µg/kg	1	ISO 17025	-	< 1.0	-	-
Dibromochloromethane	µg/kg	1	ISO 17025	-	< 1.0	-	-
Tetrachloroethene	µg/kg	1	NONE	-	< 1.0	-	-
1,2-Dibromoethane	µg/kg	1	ISO 17025	-	< 1.0	-	-
Chlorobenzene	µg/kg	1	MCERTS	-	< 1.0	-	-
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	-	< 1.0	-	-
Ethylbenzene	µg/kg	1	MCERTS	-	< 1.0	-	-
p & m-Xylene	µg/kg	1	MCERTS	-	< 1.0	-	-
Styrene	µg/kg	1	MCERTS	-	< 1.0	-	-
Tribromomethane	µg/kg	1	NONE	-	< 1.0	-	-
o-Xylene	µg/kg	1	MCERTS	-	< 1.0	-	-
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	-	< 1.0	-	-
Isopropylbenzene	µg/kg	1	MCERTS	-	< 1.0	-	-
Bromobenzene	µg/kg	1	MCERTS	-	< 1.0	-	-
n-Propylbenzene	µg/kg	1	ISO 17025	-	< 1.0	-	-
2-Chlorotoluene	µg/kg	1	MCERTS	-	< 1.0	-	-
4-Chlorotoluene	µg/kg	1	MCERTS	-	< 1.0	-	-
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	-	< 1.0	-	-
tert-Butylbenzene	µg/kg	1	MCERTS	-	< 1.0	-	-
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	-	< 1.0	-	-
sec-Butylbenzene	µg/kg	1	MCERTS	-	< 1.0	-	-
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	-	< 1.0	-	-
p-Isopropyltoluene	µg/kg	1	ISO 17025	-	< 1.0	-	-
1,2-Dichlorobenzene	µg/kg	1	MCERTS	-	< 1.0	-	-
1,4-Dichlorobenzene	µg/kg	1	MCERTS	-	< 1.0	-	-
Butylbenzene	µg/kg	1	MCERTS	-	< 1.0	-	-
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	-	< 1.0	-	-
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	-	< 1.0	-	-
Hexachlorobutadiene	µg/kg	1	MCERTS	-	< 1.0	-	-
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	-	< 1.0	-	-

SVOCs

57663							
Aniline	mg/kg	0.1	NONE	-	< 0.1	-	-
Phenol	mg/kg	0.2	ISO 17025	-	< 0.2	-	-
2-Chlorophenol	mg/kg	0.1	MCERTS	-	< 0.1	-	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	< 0.2	-	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	-	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	< 0.1	-	-
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2	-	-
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	< 0.1	-	-
2-Methylphenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-
Hexachloroethane	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Nitrobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-
4-Methylphenol	mg/kg	0.2	NONE	-	< 0.2	-	-
Isophorone	mg/kg	0.2	MCERTS	-	< 0.2	-	-
2-Nitrophenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	< 0.3	-	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-

Lab Sample Number				1625826	1625827	1625828	1625829
Sample Reference				WS4	WS4	WS4	WS4
Sample Number				A	В	C	D
Depth (m)				0.30-0.50	0.90-1.10	1.80-2.00	4.00-4.20
Date Sampled				16/09/2020	16/09/2020	16/09/2020	16/09/2020
Time Taken				1300	1320	1340	1400
		95	(0 + ≥	1500	1320	1510	1100
Analytical Parameter (Soil Analysis)	Units	Limit of detecti on	Accredi tation Status				
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	< 0.3	-	-
4-Chloroaniline	mg/kg	0.1	NONE	-	< 0.1	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	< 0.1	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	< 0.1	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	< 0.1	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	< 0.2	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	< 0.1	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	< 0.1	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	< 0.1	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	< 0.1	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	< 0.2	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	< 0.2	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	< 0.3	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	< 0.2	-	-
Fluorene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Azobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	< 0.2	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Carbazole	mg/kg	0.3	MCERTS	-	< 0.3	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2	-	-
Anthraquinone	mg/kg	0.3	MCERTS	-	< 0.3	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	< 0.3	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05	-	-
						1	

Miscellaneous Organics

Product ID N/A NONE - See Appendix						
		N/A	NONE	-	-	-

 ${\sf U}/{\sf S} = {\sf Unsuitable \ Sample} \qquad {\sf I}/{\sf S} = {\sf \ Insufficient \ Sample}$

Lab Sample Number				1625830	1625831	1625832
Sample Reference				WS5	WS5	WS5
Sample Number				A	B	C
Depth (m)				0.40-0.60	1.40-1.60	2.40-2.60
Date Sampled				16/09/2020 1420	16/09/2020	16/09/2020
Time Taken				1420	1440	1500
Analytical Parameter	Units	Limit of detecti on	Accredi tation Status			
(Soil Analysis)	t di	° ≞ f	edi us			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	15	6.5	3.5
Total mass of sample received	kg	0.001	NONE	1.2	0.9	0.8
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	-
	-					
General Inorganics						
pH - Automated	pH Units	N/A	MCERTS	8	-	-
Total Cyanide	mg/kg	1	MCERTS	< 1	-	-
Free Cyanide	mg/kg	1	MCERTS	< 1	-	-
Thiocyanate as SCN	mg/kg	5	NONE	< 5.0	-	-
Total Sulphate as SO4	mg/kg	50	MCERTS	330	-	-
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	72	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.036	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	35.8	-	-
Sulphide	mg/kg	1	MCERTS	< 1.0	-	-
Organic Matter	%	0.1	MCERTS	2.5	-	-
Total Phenols						
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	-
Speciated PAHs		0.05	MOEDTO	. 0.05		
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	-	-
Acenaphthene	mg/kg	0.05	MCERTS			-
Fluorene Phenanthrene	mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	-	-
Anthracene	mg/kg			< 0.05	-	-
Fluoranthene	mg/kg	0.05	MCERTS MCERTS	< 0.05	-	-
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-
Benzo(a)pyrene	mg/kg mg/kg	0.05	MCERTS	< 0.05	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-
Dibenz(a,h)anthracene	-1	0.05	MCERTS	< 0.05	-	
Benzo(ghi)perylene	mg/kg mg/kg	0.05	MCERTS	< 0.05	-	-
sence(ample) field	iiig/kg	0.05	PICENTS	< 0.0J	-	-
Total PAH						
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	-	-
	iiig/kg	0.0	PICENTS	~ 0.00	-	_
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	19	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	-
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-	-
Chromium (aqua regia extractable)	mg/kg	4	MCERTS	13	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	36	-	-
copper (uquu regiu excluerable)		1	MCERTS	130	-	-
ead (aqua regia extractable)			PICERIS	120	-	-
	mg/kg			< 0.2	_	_
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	-
Lead (aqua regia extractable) Mercury (aqua regia extractable) Nickel (aqua regia extractable) Selenium (aqua regia extractable)				< 0.3 16 < 1.0	-	-

Lab Sample Number	•				1625830	1625831	1625832
Sample Reference					WS5	WS5	WS5
Sample Number				А	В	С	
epth (m)					0.40-0.60	1.40-1.60	2.40-2.60
Date Sampled	Sampled					16/09/2020	16/09/2020
Time Taken					1420	1440	1500
Analytical Parameter (Soil Analysis)		Units	Limit of detecti on	Accredi tation Status			

Monoaromatics & Oxygenates

Benzene	µg/kg	1	MCERTS	-	-	< 1.0
Toluene	µg/kg	1	MCERTS	-	-	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	-	-	< 1.0
p & m-xylene	µg/kg	1	MCERTS	-	-	< 1.0
o-xylene	µg/kg	1	MCERTS	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	< 1.0

Petroleum Hydrocarbons

Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-	-
TPH C10 - C40	mg/kg	10	MCERTS	-	< 10	-
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	-	-	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	-	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	< 10
					-	-
TPH (C10 - C25)	mg/kg	10	MCERTS	< 10	-	-
TPH (C25 - C40)	mg/kg	10	MCERTS	< 10	-	-

VOCS						
Chloromethane	µg/kg	1	ISO 17025	-	-	-
Chloroethane	µg/kg	1	NONE	-	-	-
Bromomethane	µg/kg	1	ISO 17025	-	-	-
Vinyl Chloride	µg/kg	1	NONE	-	-	-
Trichlorofluoromethane	µg/kg	1	NONE	-	-	-
1,1-Dichloroethene	µg/kg	1	NONE	-	-	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	µg/kg	1	ISO 17025	-	-	-
Cis-1,2-dichloroethene	µg/kg	1	MCERTS	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	-	-	-
1,1-Dichloroethane	µg/kg	1	MCERTS	-	-	-
2,2-Dichloropropane	µg/kg	1	MCERTS	-	-	-
Trichloromethane	µg/kg	1	MCERTS	-	-	-
1,1,1-Trichloroethane	µg/kg	1	MCERTS	-	-	-
1,2-Dichloroethane	µg/kg	1	MCERTS	-	-	-
1,1-Dichloropropene	µg/kg	1	MCERTS	-	-	-
Trans-1,2-dichloroethene	µg/kg	1	NONE	-	-	-
Benzene	µg/kg	1	MCERTS	-	-	-
Tetrachloromethane	µg/kg	1	MCERTS	-	-	-
1,2-Dichloropropane	µg/kg	1	MCERTS	-	-	-

Lab Sample Number				1625830	1625831	1625832
Sample Reference				WS5	WS5	WS5
Sample Number				А	В	С
Depth (m)				0.40-0.60	1.40-1.60	2.40-2.60
Date Sampled				16/09/2020	16/09/2020	16/09/2020
Time Taken				1420	1440	1500
Analytical Parameter		de Lin	St at A			
(Soil Analysis)	Units	Limit of detecti on	Accredi tation Status			
Trichloroethene	µg/kg	1	MCERTS	-	-	-
Dibromomethane	µg/kg	1	MCERTS	-	-	-
Bromodichloromethane	µg/kg	1	MCERTS	-	-	-
Cis-1,3-dichloropropene	µg/kg	1	ISO 17025	-	-	-
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	-	-	-
Toluene	µg/kg	1	MCERTS	-	-	-
1,1,2-Trichloroethane	µg/kg	1	MCERTS	-	-	-
1,3-Dichloropropane	µg/kg	1	ISO 17025	-	-	-
Dibromochloromethane	µg/kg	1	ISO 17025	-	-	-
Tetrachloroethene	µg/kg	1	NONE	-	-	-
1,2-Dibromoethane	µg/kg	1	ISO 17025	-	-	-
Chlorobenzene	µg/kg	1	MCERTS	-	-	-
1,1,1,2-Tetrachloroethane	µg/kg	1	MCERTS	-	-	-
Ethylbenzene	µg/kg	1	MCERTS	-	-	-
p & m-Xylene	µg/kg	1	MCERTS	-	-	-
Styrene	µg/kg	1	MCERTS	-	-	-
Tribromomethane	µg/kg	1	NONE	-	-	-
o-Xylene	µg/kg	1	MCERTS	-	-	-
1,1,2,2-Tetrachloroethane	µg/kg	1	MCERTS	-	-	-
Isopropylbenzene	µg/kg	1	MCERTS	-	-	-
Bromobenzene	µg/kg	1	MCERTS	-	-	-
n-Propylbenzene	µg/kg	1	ISO 17025	-	-	-
2-Chlorotoluene	µg/kg	1	MCERTS	-	-	-
4-Chlorotoluene	µg/kg	1	MCERTS	-	-	-
1,3,5-Trimethylbenzene	µg/kg	1	ISO 17025	-	-	-
tert-Butylbenzene	µg/kg	1	MCERTS	-	-	-
1,2,4-Trimethylbenzene	µg/kg	1	ISO 17025	-	-	-
sec-Butylbenzene	µg/kg	1	MCERTS	-	-	-
1,3-Dichlorobenzene	µg/kg	1	ISO 17025	-	-	-
p-Isopropyltoluene	µg/kg	1	ISO 17025	-	-	-
1,2-Dichlorobenzene	µg/kg	1	MCERTS	-	-	-
1,4-Dichlorobenzene	µg/kg	1	MCERTS	-	-	-
Butylbenzene	µg/kg	1	MCERTS	-	-	-
1,2-Dibromo-3-chloropropane	µg/kg	1	ISO 17025	-	-	-
1,2,4-Trichlorobenzene	µg/kg	1	MCERTS	-	-	-
Hexachlorobutadiene	µg/kg	1	MCERTS	-	-	-
1,2,3-Trichlorobenzene	µg/kg	1	ISO 17025	-	-	-

SVOCs

mg/kg	0.1	NONE	-	-	-
mg/kg	0.2	ISO 17025	-	-	-
mg/kg	0.1	MCERTS	-	-	-
mg/kg	0.2	MCERTS	-	-	-
mg/kg	0.2	MCERTS	-	-	-
mg/kg	0.1	MCERTS	-	-	-
mg/kg	0.2	MCERTS	-	-	-
mg/kg	0.1	MCERTS	-	-	-
mg/kg	0.3	MCERTS	-	-	-
mg/kg	0.05	MCERTS	-	-	-
mg/kg	0.3	MCERTS	-	-	-
mg/kg	0.2	NONE	-	-	-
mg/kg	0.2	MCERTS	-	-	-
mg/kg	0.3	MCERTS	-	-	-
mg/kg	0.3	MCERTS	-	-	-
mg/kg	0.3	MCERTS	-	-	-
mg/kg	0.3	MCERTS	-	-	-
	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mg/kg 0.2 mg/kg 0.1 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 0.1 mg/kg 0.1 mg/kg 0.1 mg/kg 0.2 mg/kg 0.3 mg/kg 0.3 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 0.3 mg/kg 0.2 mg/kg 0.3 mg/kg 0.3 mg/kg 0.3 mg/kg 0.3 mg/kg 0.3 mg/kg 0.3	mg/kg 0.2 ISO 17025 mg/kg 0.1 MCERTS mg/kg 0.2 MCERTS mg/kg 0.2 MCERTS mg/kg 0.2 MCERTS mg/kg 0.1 MCERTS mg/kg 0.1 MCERTS mg/kg 0.2 MCERTS mg/kg 0.3 MCERTS mg/kg 0.3 MCERTS mg/kg 0.2 NONE mg/kg 0.2 MCERTS mg/kg 0.3 MCERTS mg/kg 0.2 NONE mg/kg 0.2 MCERTS mg/kg 0.3 MCERTS	mg/kg 0.2 ISO 17025 - mg/kg 0.1 MCERTS - mg/kg 0.2 MCERTS - mg/kg 0.2 MCERTS - mg/kg 0.2 MCERTS - mg/kg 0.1 MCERTS - mg/kg 0.1 MCERTS - mg/kg 0.1 MCERTS - mg/kg 0.1 MCERTS - mg/kg 0.3 MCERTS - mg/kg 0.3 MCERTS - mg/kg 0.3 MCERTS - mg/kg 0.2 NONE - mg/kg 0.2 MCERTS - mg/kg 0.2 MCERTS - mg/kg 0.2 MCERTS - mg/kg 0.3 MCERTS - mg/kg 0.3 MCERTS - mg/kg 0.3 MCERTS - mg/kg <td>mg/kg 0.2 ISO 17025 - - mg/kg 0.1 MCERTS - - mg/kg 0.2 MCERTS - - mg/kg 0.1 MCERTS - - mg/kg 0.2 MCERTS - - mg/kg 0.1 MCERTS - - mg/kg 0.3 MCERTS - - mg/kg 0.3 MCERTS - - mg/kg 0.3 MCERTS - - mg/kg 0.2 NONE - - mg/kg 0.2 MCERTS - - mg/kg 0.3 MCERTS - - mg/kg 0.3 MCERTS - - mg/kg <td< td=""></td<></td>	mg/kg 0.2 ISO 17025 - - mg/kg 0.1 MCERTS - - mg/kg 0.2 MCERTS - - mg/kg 0.1 MCERTS - - mg/kg 0.2 MCERTS - - mg/kg 0.1 MCERTS - - mg/kg 0.3 MCERTS - - mg/kg 0.3 MCERTS - - mg/kg 0.3 MCERTS - - mg/kg 0.2 NONE - - mg/kg 0.2 MCERTS - - mg/kg 0.3 MCERTS - - mg/kg 0.3 MCERTS - - mg/kg <td< td=""></td<>

Lab Sample Number				1625830	1625831	1625832
Sample Reference				WS5	WS5	WS5
Sample Number				А	В	С
Depth (m)				0.40-0.60	1.40-1.60	2.40-2.60
Date Sampled				16/09/2020	16/09/2020	16/09/2020
Time Taken				1420	1440	1500
Analytical Parameter	c	de Lir	Stat A			
(Soil Analysis)	Units	Limit of detecti on	Accredi tation Status			
Naphthalene	mg/kg	0.05	MCERTS	-	-	-
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	-
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-
Fluorene	mg/kg	0.05	MCERTS	-	-	-
Azobenzene	mg/kg	0.3	MCERTS	-	-	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-
Anthracene	mg/kg	0.05	MCERTS	-	-	-
Carbazole	mg/kg	0.3	MCERTS	-	-	-
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-	-
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-

Miscellaneous Organics

Product ID N/A NONE	· ····································					
		N/A	NONE	-	-	-

 ${\sf U}/{\sf S} = {\sf Unsuitable \ Sample} \qquad {\sf I}/{\sf S} = {\sf \ Insufficient \ Sample}$

Analytical Report Number : 20-31121

Project / Site name: Station Road, Southwold

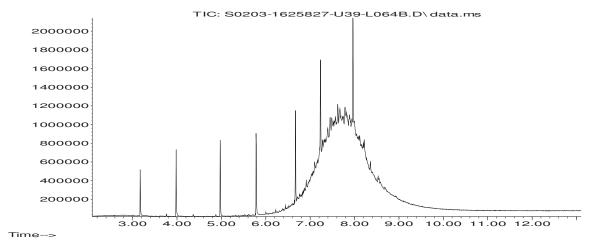
* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1625814	WS1	А	0.10-0.30	Brown loam and sand with gravel and vegetation.
1625815	WS1	В	0.80-1.00	Brown loam and sand with gravel.
1625816	WS1	С	1.80-2.00	Brown loam and sand with gravel.
1625817	WS1	D	3.70-4.00	Brown loam and sand with gravel.
1625818	WS2	A	0.20-0.40	Brown loam and sand with gravel.
1625819	WS2	В	0.80-1.00	Brown loam and sand with gravel.
1625820	WS2	С	1.80-2.00	Brown loam and sand with gravel.
1625821	WS2	D	4.70-4.00	Brown loam and sand with gravel.
1625822	WS3	A	0.20-0.40	Brown loam and clay with gravel.
1625823	WS3	В	1.80-2.00	Brown loam and sand with gravel.
1625824	WS3	С	3.20-3.50	Brown loam and sand with gravel.
1625825	WS3	D	4.50-4.80	Brown loam and sand with gravel.
1625826	WS4	А	0.30-0.50	Brown loam and sand with gravel and brick.
1625827	WS4	В	0.90-1.10	Brown loam and clay with gravel.
1625828	WS4	С	1.80-2.00	Brown loam and sand with gravel.
1625829	WS4	D	4.00-4.20	Brown loam and sand with gravel.
1625830	WS5	А	0.40-0.60	Brown loam and clay with gravel.
1625831	WS5	В	1.40-1.60	Brown loam and sand with gravel.
1625832	WS5	С	2.40-2.60	Brown loam and sand with gravel.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodiun hydroxide followed by distillation followed by colorimetry.		L080-PL	W	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC- MS.	In-house method based on USEPA8260	L088-PL	w	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Thiocyanate in soil	Determination of thiocyanate in soil by extraction in water followed by acidification followed by addition of ferric nitrate followed by discrete analyser (spectrophotometer).	In-house method	L082-PL	D	NONE
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.		L064-PL	D	MCERTS



Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Product ID in soil	Determination of product ID by interpretation against standard chromatograms - Soil.	In-house method	L064-PL/UK	w	NONE
TPH Oils (Soils)	Determination of extractable hydrocarbons in soil by GC- MS/FID.	In-house method with silica gel split/clean up.	L076-PL	D	MCERTS
DRO (Soil)	Determination of extractable hydrocarbons in soil by GC- MS/FID.	In-house method with silica gel split/clean up.	L076-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	w	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	w	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Abundance

The total ion count (TIC trace) shows a carbon range from C10 to C22. The sample TIC trace is complex, showing aliphatic product sources. The trace does not match the standard product profiles.

Appendix D – Asbestos survey within demolition specification

Pre-demolition Information – Produced by Chick & Partners Ltd For: Southwold Town Council Our Reference: IC21/004

Appendix E – Demolition Specification

Pre-demolition Information – Produced by Chick & Partners Ltd For: Southwold Town Council Our Reference: IC21/004