

# **STRUCTURAL CALCULATIONS**

For

476 Garstang Road Broughton PR3 5JB

PROPOSED ALTERATIONS AND EXTENSION

# **STRUCTURAL ENGINEERS**

# **ROBERT E. FRY & ASSOCIATES LTD.**

45 Bridgeman Terrace Wigan WN1 1TT Tel: (01942) 826020 Fax: (01942) 230816

# **PROJECT NO: 19192**

Revision 0 – March 2020

By: Paul M. Bithell I.Eng AMI.Struct.E AaPS

|                             | Project   |                |                |      | Job Ref. |      |
|-----------------------------|-----------|----------------|----------------|------|----------|------|
| KEFA                        |           | 476 Garstang r | oad, Broughto  | n    | 191      | 192  |
| Robert E Fry Associates Ltd | Section   |                | Sheet no./rev. |      |          |      |
|                             |           | ALTERATIONS    | 6 & EXTENSION  | N    | 2        | 2    |
| Wigan, WN1 1TT              | Calc. by  | Date           | Chk'd by       | Date | App'd by | Date |
| Tel: 01942-826020           | P.Bithell | March 2020     |                |      |          |      |

# <u>BRIEF</u>

To provide designs as requested for the proposed alterations and extension at the above property; no other structural aspects have been considered as it is assumed that these comply with Document A/Building Regulations:

The calculations are based on our interpretation of the drawings submitted and a number of assumptions have been made; these assumptions will need to be checked and confirmed on site and any variation which may affect the design should be brought to the attention of the Engineer for comment.

In line with the CDM Regulations 2015, we are obliged to inform the Client of the risks that may be encountered in the works and, wherever possible, risks have been eliminated from the design however it is not possible to remove all risks. The Client must take all reasonable steps to ensure that only competent contractors who are experienced and familiar with this type of work are employed; in addition, suitable arrangements must be in place to manage the works. Further information can be found at: <a href="http://www.hse.gov.uk/pubns/indg411.htm">www.hse.gov.uk/pubns/indg411.htm</a>.

Your appointed Contractor must plan, manage and monitor the construction work under their control so that it is carried out without risks to health and safety and shall co-ordinate their activities with others involved with the project; they are required to prepare a construction phase plan.

Any work that is carried out prior to approval of the calculations/details shall be at the risk of the Client and their Contractor. The Engineer cannot be held responsible for any additional work that may be deemed necessary by the Local Authority or other statutory body after work has commenced prior to approval. The Client and/or Contractor must bear all the costs associated with any additional work.

| RFFA                                  | Project                                      | 470 Constants                                      |                        | <b>h</b> 4a a | Job Ref.        |  |  |
|---------------------------------------|----------------------------------------------|----------------------------------------------------|------------------------|---------------|-----------------|--|--|
|                                       | Section                                      | 476 Garstang r                                     | 19192<br>Sheet no /rev |               |                 |  |  |
| Robert E Fry Associates Ltd           | Geolon                                       |                                                    |                        |               |                 |  |  |
| 45 Bridgeman Terrace<br>Wigan WN1 1TT | Calc. by                                     | Date                                               | Chk'd by               | Date          | App'd by Date   |  |  |
| Tel: 01942-826020                     | P.Bithell                                    | March 2020                                         |                        |               |                 |  |  |
| LOADINGS                              |                                              |                                                    |                        |               |                 |  |  |
| MAIN ROOF                             | tiles                                        | 0.55                                               |                        |               |                 |  |  |
|                                       | felt/battens<br>rafters, etc                 | 0.05<br><u>0.15</u><br>0.75                        |                        |               |                 |  |  |
|                                       | <u>0.75</u> =<br>cos 30º                     | 0.87                                               |                        |               |                 |  |  |
|                                       | framing, etc.<br>insulation<br>ceiling       | 0.15<br>0.05<br><u>0.15</u><br><b>1.22</b>         | kN/m²                  | DEAD          | say, 1.25 kN/m² |  |  |
|                                       | roof/snow                                    | 0.75                                               | kN/m²                  | IMPOSED       |                 |  |  |
| DORMER ROOF                           | tiles<br>felt/battens<br>rafters, etc        | 0.55<br>0.05<br><u>0.15</u><br>0.75                |                        |               |                 |  |  |
|                                       | $\frac{0.75}{\cos 20^{\circ}} =$             | 0.80                                               |                        |               |                 |  |  |
|                                       | insulation<br>ceiling                        | 0.05<br><u>0.15</u><br><b>1.00</b>                 | kN/m²                  | DEAD          |                 |  |  |
|                                       | roof/snow                                    | 0.75                                               | kN/m²                  | IMPOSED       |                 |  |  |
| GRD. FLOOR                            | finishes<br>screed<br>insulation<br>pc floor | 0.15<br>1.80<br>0.05<br><u>3.00</u><br><b>5.00</b> | kN/m²                  | DEAD          |                 |  |  |
|                                       |                                              |                                                    |                        |               |                 |  |  |

E.

|                              | Project                                            |                                                    |                   |        | Job Ref.      |        |
|------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------|--------|---------------|--------|
| KEFA                         |                                                    | 476 Garstang                                       | road, Broug       | hton   |               | 19192  |
| Pohort E En/ Apponiator I td | Section                                            |                                                    |                   |        | Sheet no./rev |        |
| 45 Bridgeman Terrace         |                                                    | ALTERATION                                         | S & EXTENS        | SION   |               | 4      |
| Wigan, WN1 1TT               | Calc. by                                           | Date                                               | Chk'd by          | Date   | App'd by      | Date   |
| Tel: 01942-826020            | P.Bithell                                          | March 2020                                         |                   |        |               |        |
|                              |                                                    | •<br>•                                             |                   | •<br>• |               | •<br>• |
| EXT. WALL                    | 103 brick<br>insulation<br>100 block<br>1-plaster  | 2.18<br>0.05<br>1.39<br><u>0.15</u><br><b>3.77</b> | kN/m <sup>2</sup> | DEAD   |               |        |
| DORMER WALL                  | render+board<br>insulation<br>framing<br>1-plaster | 0.55<br>0.05<br>0.25<br><u>0.15</u><br><b>1.00</b> | kN/m <sup>2</sup> | DEAD   |               |        |

|                                                                       | Project                                                                                                                                                                                          |            |                |      | Job Ref. |      |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|------|----------|------|
| KEFA                                                                  | And Period     476 Garstang road, Broughton       Associates Ltd     Section       ALTERATIONS & EXTENSION       In Terrace       In Terrace       Calc. by       Date       Chk'd by       Date | 19192      |                |      |          |      |
| Robert E Fry Associates Ltd<br>45 Bridgeman Terrace<br>Wigan, WN1 1TT | Section                                                                                                                                                                                          |            | Sheet no./rev. |      |          |      |
|                                                                       |                                                                                                                                                                                                  | ALTERATION | S & EXTENSIO   | N    | 4        | 5    |
|                                                                       | Calc. by                                                                                                                                                                                         | Date       | Chk'd by       | Date | App'd by | Date |
| Tel: 01942-826020                                                     | P.Bithell                                                                                                                                                                                        | March 2020 |                |      |          |      |

# LAYOUT

|                                                                       | Project   |                |                |      | Job Ref.        |      |
|-----------------------------------------------------------------------|-----------|----------------|----------------|------|-----------------|------|
| KEFA                                                                  |           | 476 Garstang ı | road, Broughto | n    | 19 <sup>,</sup> | 192  |
| Robert E Fry Associates Ltd<br>45 Bridgeman Terrace<br>Wigan, WN1 1TT | Section   | Sheet no./rev. |                |      |                 |      |
|                                                                       |           | ALTERATION     | S & EXTENSIO   | N    | (               | 6    |
|                                                                       | Calc. by  | Date           | Chk'd by       | Date | App'd by        | Date |
| Tel: 01942-826020                                                     | P.Bithell | March 2020     |                |      |                 |      |

# **RAFTERS**

Adopt C16 timber rafters at 600mm centres; max. span = 3.25m (on plan) with a roof pitch of 30°

Loading, roof (d) = 1.25kN/m<sup>2</sup> and (i) = 0.75kN/m<sup>2</sup>

# → provide 47x200mm C16 rafters at 600mm centres throughout

## TIMBER RAFTER DESIGN (BS5268-2:2002)

30 degrees



#### **Rafter details**

| Breadth of timber sections;     | b = <b>47</b> mm;                                | Depth of timber sections; | h = <b>200</b> mm                              |
|---------------------------------|--------------------------------------------------|---------------------------|------------------------------------------------|
| Rafter spacing;                 | s = <b>600</b> mm;                               | Rafter span;              | Single span                                    |
| Clear length of span on slope;  | L <sub>cl</sub> = <b>3753</b> mm;                | Rafter slope;             | α <b>= 30.0</b> deg                            |
| Timber strength class;          | C16                                              |                           |                                                |
|                                 |                                                  |                           |                                                |
| Section properties              |                                                  |                           |                                                |
| Cross sectional area of rafter; | A = <b>9400</b> mm²;                             | Section modulus;          | Z = <b>313333</b> mm <sup>3</sup>              |
| Radius of gyration;             | r = <b>58</b> mm;                                | Second moment of area;    | l = 31333333 mm <sup>4</sup>                   |
|                                 |                                                  |                           |                                                |
| Loading details                 |                                                  |                           |                                                |
| Rafter self weight;             | F <sub>j</sub> = <b>0.03</b> kN/m;               | Dead load on slope;       | F <sub>d</sub> = <b>1.04</b> kN/m <sup>2</sup> |
| Imposed snow load on plan;      | F <sub>u</sub> = <b>0.75</b> kN/m <sup>2</sup> ; | Imposed point load;       | F <sub>p</sub> = <b>0.90</b> kN                |
|                                 |                                                  |                           |                                                |
| Modification factors            |                                                  |                           |                                                |
| Section depth factor;           | K <sub>7</sub> = <b>1.05</b> ;                   | Load sharing factor;      | K <sub>8</sub> = <b>1.10</b>                   |
|                                 |                                                  |                           |                                                |

|                             | Project                                     |                     |                          |                   | Job Ref.                           |                     |
|-----------------------------|---------------------------------------------|---------------------|--------------------------|-------------------|------------------------------------|---------------------|
| REFA                        |                                             | 476 Garstang        | road, Broughto           | n                 | 19                                 | 192                 |
| Pohort E En Accoristos Ltd  | Section                                     |                     |                          |                   | Sheet no./rev.                     |                     |
| 45 Bridgeman Terrace        |                                             | ALTERATION          | S & EXTENSIO             | N                 |                                    | 7                   |
| Wigan, WN1 1TT              | Calc. by                                    | Date                | Chk'd by                 | Date              | App'd by                           | Date                |
| Tel: 01942-826020           | P.Bithell                                   | March 2020          |                          |                   |                                    |                     |
|                             |                                             |                     |                          |                   |                                    |                     |
| <b>.</b>                    |                                             |                     |                          |                   |                                    |                     |
| Consider long term load con | idition                                     |                     |                          | 4 <b>6</b> 4      |                                    |                     |
| Load duration factor;       | $K_3 = 1.00;$                               |                     | Effective apon:          | b. to ratter;     | F = 0.565 KIN/I                    | m                   |
| Notional bearing length,    | Lb – <b>9</b> mm,                           |                     | Ellective spart,         |                   |                                    | 11                  |
| Check bending stress        |                                             |                     |                          |                   |                                    |                     |
| Permissible bending stress; | σ <sub>m adm</sub> = <b>6.096</b> !         | N/mm²;              | Applied bendin           | g stress;         | σ <sub>m max</sub> = <b>3.19</b> 1 | I N/mm <sup>2</sup> |
|                             | _                                           |                     | PASS - Applie            | d bending stres   | s within perm                      | issible limits      |
|                             |                                             |                     |                          |                   |                                    |                     |
| Chack compressive stress n  | arallol to grain                            |                     |                          |                   |                                    |                     |
| Permissible comp. stress:   | $a_{\rm range} = 4.636$                     | l/mm <sup>2</sup> · | Applied compre           | acciva etrace:    | σ                                  | N/mm <sup>2</sup>   |
|                             |                                             | PAS                 | SS - Applied compression | npressive stres   | s within perm                      | issible limits      |
|                             |                                             |                     |                          |                   |                                    |                     |
| <b>.</b>                    |                                             |                     |                          |                   |                                    |                     |
| Check combined bending an   | id compressive s                            | stress parallel     | to grain                 |                   |                                    |                     |
| Complined loading check;    | 0.623 < 1<br>PASS - Combined compre         |                     | ssive and here           | lina strossos ar  | o within norm                      | issible limits      |
|                             | FA33 - COII                                 |                     | essive and bene          | ing suesses a     | e within perm                      |                     |
| Check shear stress          |                                             |                     |                          |                   |                                    |                     |
| Permissible shear stress;   | τ <sub>adm</sub> = <b>0.737</b> N/r         | nm²;                | Applied shear s          | stress;           | τ <sub>max</sub> = <b>0.170</b> N  | l/mm <sup>2</sup>   |
|                             | vaun ener of the tarter,                    |                     | PASS - App               | lied shear stres  | s within perm                      | issible limits      |
|                             |                                             |                     |                          |                   |                                    |                     |
| Check deflection            |                                             |                     |                          |                   |                                    |                     |
| Permissible deflection;     | $\delta_{adm}$ = <b>11.286</b> m            | ım;                 | Total deflection         | 1;                | δ <sub>max</sub> = <b>5.578</b> m  | nm                  |
|                             |                                             |                     | PASS                     | - Total deflectio | n within perm                      | issible limits      |
|                             |                                             |                     |                          |                   |                                    |                     |
| Consider medium term load   | <u>condition</u>                            |                     |                          | to roftor         |                                    | <b>2</b>            |
| Notional bearing length:    | $n_3 = 1.23$ ,<br>$l_{h} = 15 \text{ mm}^2$ |                     | Effective span:          | . to failer,      | $\Gamma = 0.303 \text{ km/l}$      | n                   |
| notional bearing iongui,    |                                             |                     | Encouve span,            |                   |                                    |                     |
| Check bending stress        |                                             |                     |                          |                   |                                    |                     |
| Permissible bending stress; | σ <sub>m_adm</sub> = <b>7.620</b> Ι         | N/mm²;              | Applied bendin           | g stress;         | σm_max = <b>5.112</b>              | 2 N/mm <sup>2</sup> |
|                             |                                             |                     | PASS - Applie            | d bending stres   | ss within permissible limits       |                     |
|                             |                                             |                     |                          |                   |                                    |                     |
| Check compressive stress p  | arallel to grain                            |                     |                          |                   |                                    |                     |
| Permissible comp. stress:   | $\sigma_{c,adm} = 5.420$ N                  | J/mm <sup>2</sup> : | Applied compre           | essive stress:    | σ <sub>c max</sub> = <b>0.627</b>  | ′ N/mm²             |
| · •·····                    |                                             | PAS                 | SS - Applied cor         | npressive stres   | s within perm                      | issible limits      |
|                             |                                             |                     |                          |                   | <b>-</b>                           |                     |
| Chook combined bendling     | d compressive                               | troop norall-1      | to arein                 |                   |                                    |                     |
| Combined loading check:     | 0 815 < 1                                   | stress parallel     | to grain                 |                   |                                    |                     |
| Jonnon loading bicor,       | PASS - Con                                  | bined compre        | essive and bend          | ling stresses ar  | e within perm                      | issible limits      |
|                             |                                             |                     |                          | .g = ccboo ui     |                                    |                     |
| Check shear stress          |                                             |                     |                          |                   |                                    |                     |
| Permissible shear stress;   | τ <sub>adm</sub> = <b>0.921</b> N/r         | nm²;                | Applied shear s          | stress;           | τ <sub>max</sub> = <b>0.271</b> N  | l/mm <sup>2</sup>   |
|                             |                                             |                     | PASS - App               | lied shear stres  | s within perm                      | issible limits      |
|                             |                                             |                     |                          |                   |                                    |                     |

| Check deflection         Permissible deflection;         δi         Consider short term load condit         Load duration factor;         K         Notional bearing length;         L                                                                                                                                 | Section<br>Calc. by<br>P.Bithell<br>adm = <b>11.303</b> m<br>ition<br>3 = <b>1.50</b> ;           | 476 Garstang<br>ALTERATION<br>Date<br>March 2020 | Total deflectior                                      | n<br>N<br>Date   | 19<br>Sheet no./rev.<br>App'd by  | 8<br>Date         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|------------------|-----------------------------------|-------------------|
| Robert E Fry Associates Ltd       45 Bridgeman Terrace         Wigan, WN1 1TT       0         Tel: 01942-826020       0         Check deflection       6         Permissible deflection;       δ.         Consider short term load condit       Load duration factor;       K         Notional bearing length;       L | Section<br>Calc. by<br>P.Bithell<br>Madm = <b>11.303</b> m<br><u>ition</u><br>K3 = <b>1.50</b> ;  | ALTERATION<br>Date<br>March 2020                 | S & EXTENSIO                                          | N<br>Date        | Sheet no./rev.                    | 8<br>Date         |
| 45 Bridgeman Terrace         Wigan, WN1 1TT         Tel: 01942-826020    Check deflection          Permissible deflection;         Ø.    Consider short term load condit          Load duration factor;       K         Notional bearing length;       L                                                               | Calc. by<br>P.Bithell<br>Jadm = <b>11.303</b> m<br><u>ition</u><br>K <sub>3</sub> = <b>1.50</b> ; | ALTERATION<br>Date<br>March 2020                 | S & EXTENSION<br>Chk'd by<br>Total deflection<br>PASS | N<br>Date        | App'd by                          | 8<br>Date         |
| Wigan, WN1 1TT       (         Tel: 01942-826020       (         Check deflection       (         Permissible deflection;       δ.         Consider short term load condit       Load duration factor;       K         Notional bearing length;       L                                                                | Calc. by<br>P.Bithell<br>adm = <b>11.303</b> m<br>i <u>tion</u><br>K3 = <b>1.50</b> ;             | Date<br>March 2020<br>m;                         | Chk'd by<br>Total deflection<br><b>PASS</b>           | Date .           | App'd by                          | Date              |
| Tel: 01942-826020         Check deflection         Permissible deflection;       δ.         Consider short term load condit         Load duration factor;       K         Notional bearing length;       L                                                                                                             | P.Bithell<br>iadm = <b>11.303</b> m<br><u>ition</u><br>K <sub>3</sub> = <b>1.50</b> ;             | March 2020                                       | Total deflectior                                      |                  |                                   |                   |
| Check deflection         Permissible deflection;       δ.         Consider short term load condit         Load duration factor;       K         Notional bearing length;       L                                                                                                                                       | a <sub>dm</sub> = 11.303 m<br><u>ition</u><br>(3 = 1.50;                                          | m;                                               | Total deflectior                                      |                  |                                   |                   |
| Check deflection         Permissible deflection;       δ.         Consider short term load condit         Load duration factor;       K         Notional bearing length;       L                                                                                                                                       | a <sub>dm</sub> = 11.303 m<br><u>ition</u><br>∕₃ = 1.50;                                          | m;                                               | Total deflectior<br><b>PASS</b>                       |                  |                                   |                   |
| Check deflection         Permissible deflection;       δ.         Consider short term load condit         Load duration factor;       K         Notional bearing length;       L         Check bending stress                                                                                                          | a <sub>dm</sub> = 11.303 m<br>i <u>tion</u><br>K3 = 1.50;                                         | m;                                               | Total deflection<br><b>PASS</b>                       |                  |                                   |                   |
| Permissible deflection;       δ         Consider short term load condit       Load duration factor;         K       Notional bearing length;       L         Check bending stress       L                                                                                                                              | <sub>iadm</sub> = 11.303 m<br><u>ition</u><br>⊲ = 1.50;                                           | m;                                               | Total deflectior<br><b>PASS</b>                       | •                |                                   |                   |
| Consider short term load condi<br>Load duration factor; K<br>Notional bearing length; L                                                                                                                                                                                                                                | <u>ition</u><br>⊲ = <b>1.50</b> ;                                                                 |                                                  | PASS                                                  | ,                | δ <sub>max</sub> = <b>8.962</b> n | nm                |
| Consider short term load condition factor; K<br>Notional bearing length; L                                                                                                                                                                                                                                             | <u>ition</u><br>⟨₃ = 1.50;                                                                        |                                                  |                                                       | Total deflection | n within perm                     | issible limits    |
| Consider short term load condiLoad duration factor;KNotional bearing length;LCheck bending stress                                                                                                                                                                                                                      | <u>ition</u><br>∖₃ = 1.50;                                                                        |                                                  |                                                       |                  |                                   |                   |
| Load duration factor; K<br>Notional bearing length; L                                                                                                                                                                                                                                                                  | K₃ = <b>1.50</b> ;                                                                                |                                                  |                                                       |                  |                                   |                   |
| Notional bearing length; L                                                                                                                                                                                                                                                                                             |                                                                                                   |                                                  | Total UDL perp                                        | o. to rafter;    | F = 0.565 kN/                     | m                 |
| Chook handing stress                                                                                                                                                                                                                                                                                                   | <sub>-b</sub> = <b>13</b> mm;                                                                     |                                                  | Effective span;                                       |                  | L <sub>eff</sub> = <b>3766</b> mr | n                 |
| Chook handling stress                                                                                                                                                                                                                                                                                                  |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
| check behaing stress                                                                                                                                                                                                                                                                                                   |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
| Permissible bending stress; $\sigma$                                                                                                                                                                                                                                                                                   | ⊽m_adm = <b>9.144</b> №                                                                           | N/mm²;                                           | Applied bendin                                        | g stress;        | σ <sub>m_max</sub> = 5.539        | 9 N/mm²           |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  | PASS - Applie                                         | d bending stres  | s within perm                     | nissible limits   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
| Check compressive stress par                                                                                                                                                                                                                                                                                           | allel to grain                                                                                    |                                                  |                                                       |                  |                                   |                   |
| Permissible completes:                                                                                                                                                                                                                                                                                                 | $r_{\rm r} = 6.072$ N                                                                             | l/mm <sup>2</sup> ·                              | Applied compre                                        | acciva etrace:   | σ                                 | N/mm <sup>2</sup> |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   | <i>Ρ</i> Δς                                      | Applied comple                                        | nnressive stres  | s within norm                     | nissihle limite   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  | o                                 |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
| Check combined bending and o                                                                                                                                                                                                                                                                                           | compressive s                                                                                     | stress parallel                                  | to grain                                              |                  |                                   |                   |
| Combined loading check; 0                                                                                                                                                                                                                                                                                              | .695 < 1                                                                                          |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        | PASS - Com                                                                                        | bined compre                                     | essive and bend                                       | ling stresses ar | e within perm                     | issible limits    |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
| Check shear stress                                                                                                                                                                                                                                                                                                     |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
| Permissible shear stress; $\tau_i$                                                                                                                                                                                                                                                                                     | <sub>adm</sub> = <b>1.106</b> N/n                                                                 | nm²;                                             | Applied shear s                                       | stress;          | τ <sub>max</sub> = <b>0.294</b> Ν | √mm²              |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  | PASS - App                                            | lied shear stres | s within perm                     | issible limits    |
| <b>. .</b> .                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
| Check deflection                                                                                                                                                                                                                                                                                                       |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
| Permissible deflection; $\delta_i$                                                                                                                                                                                                                                                                                     | <sub>adm</sub> = <b>11.297</b> m                                                                  | m;                                               | Total deflectior                                      | l;               | δ <sub>max</sub> = <b>8.913</b> n | nm                |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  | PASS - Total deflect                                  |                  | tion within permissible limits    |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |
|                                                                                                                                                                                                                                                                                                                        |                                                                                                   |                                                  |                                                       |                  |                                   |                   |

| REFA                 | Project   |              |               |      | Job Ref.       |      |
|----------------------|-----------|--------------|---------------|------|----------------|------|
|                      |           | 476 Garstang | road, Brought | on   | 19             | 192  |
|                      | Section   |              |               |      | Sheet no./rev. |      |
| 45 Bridgeman Terrace |           | ALTERATION   | S & EXTENSIO  | ON   |                | 9    |
| Wigan, WN1 1TT       | Calc. by  | Date         | Chk'd by      | Date | App'd by       | Date |
| Tel: 01942-826020    | P.Bithell | March 2020   |               |      |                |      |
|                      | •         |              |               | •    | •              | -    |

# **DORMER PURLIN**

Adopt C16 timber, max. span = 1.80m (on plan), loading as follows

| roof (d) | = | 1.00 <sup>#</sup> x (2.05 / 2)         | = | 1.03 |      |
|----------|---|----------------------------------------|---|------|------|
| roof (d) | = | 1.25 <sup>#</sup> x (1.20 / 2)         | = | 0.75 |      |
| roof (i) | = | 0.75 <sup>#</sup> x [(2.05+1.20) / 2)] | = |      | 1.22 |

(for detail) provide 47x200mm C16  $\rightarrow$ purlin

## TIMBER BEAM ANALYSIS & DESIGN TO BS5268-2:2002

TEDDS calculation version 1.7.02



| DEEA                                   | Project                                |                          |                                   |                 | Job Ref.                          |             |
|----------------------------------------|----------------------------------------|--------------------------|-----------------------------------|-----------------|-----------------------------------|-------------|
| KEFA                                   |                                        | 476 Garstang             | road, Broughto                    | n               | 19                                | 192         |
|                                        | Section                                |                          |                                   |                 | Sheet no./rev.                    |             |
| Robert E Fry Associates Ltd            |                                        | ALTERATION               | S & EXTENSIO                      | N               |                                   | 10          |
| 45 Bridgeman Terrace<br>Wigan, WN1 1TT | Calc. by                               | Date                     | Chk'd by                          | Date            | App'd by                          | Date        |
| Tel: 01942-826020                      | P.Bithell                              | March 2020               |                                   |                 |                                   |             |
|                                        |                                        |                          |                                   |                 |                                   |             |
|                                        |                                        |                          |                                   |                 |                                   |             |
| Applied loading                        |                                        |                          |                                   |                 |                                   |             |
| Roam loads                             |                                        |                          |                                   |                 |                                   |             |
| Dealli Ioaus                           |                                        | Dood colf                | woight of boom                    | - 1             |                                   |             |
|                                        |                                        | Dead sell                |                                   | I               |                                   |             |
|                                        |                                        | Dead full (              | JDL 1.030 KN/M                    |                 |                                   |             |
| dormer                                 |                                        | Dead full (              |                                   |                 |                                   |             |
| r+d                                    |                                        | Imposed fu               | UII UDL 1.220 KN                  | I/m             |                                   |             |
|                                        |                                        |                          |                                   |                 |                                   |             |
| Load combinations                      |                                        |                          |                                   |                 |                                   |             |
| Load combination 1                     |                                        | Support A                |                                   | Dead            | 1.00                              |             |
|                                        |                                        |                          |                                   | Impose          | d <sup>´</sup> 1 00               |             |
|                                        |                                        | Span 1                   |                                   | Dood            | 1 00                              |             |
|                                        |                                        | Spann                    |                                   | Deau            | 1.00                              |             |
|                                        |                                        |                          |                                   | Impose          | u 1.00                            |             |
|                                        |                                        | Support B                |                                   | Dead            | 1.00                              |             |
|                                        |                                        |                          |                                   | Impose          | d 1.00                            |             |
|                                        |                                        |                          |                                   |                 |                                   |             |
| Analysis results                       |                                        |                          |                                   |                 |                                   |             |
| Design moment;                         | M = 1.229 kNm;                         |                          | Design shear;                     |                 | F = <b>2.731</b> kN               |             |
| Total load on beam;                    | W <sub>tot</sub> = <b>5.461</b> kN     |                          |                                   |                 |                                   |             |
| Reactions at support A;                | RA max = 2.731 k                       | kN;                      | R <sub>A min</sub> = <b>2.731</b> | kN              |                                   |             |
| Unfactored dead load reaction a        | at support A;                          | $R_{A_{Dead}} = 1$       | I. <b>633</b> kN                  |                 |                                   |             |
| Unfactored imposed load reaction       | on at support A;                       | R <sub>A_Imposed</sub> = | = <b>1.098</b> kN                 |                 |                                   |             |
| Reactions at support B;                | R <sub>B_max</sub> = 2.731 k           | N;                       | R <sub>B_min</sub> = 2.731        | kN              |                                   |             |
| Unfactored dead load reaction a        | at support B;                          | $R_{B_{Dead}} = 1$       | I <b>.633</b> kN                  |                 |                                   |             |
| Unfactored imposed load reacti         | on at support B;                       | R <sub>B_Imposed</sub> = | = <b>1.098</b> kN                 |                 |                                   |             |
| Timber section details                 |                                        |                          |                                   |                 |                                   |             |
| Breadth of section:                    | b = <b>47</b> mm:                      |                          | Depth of sectio                   | n:              | h = <b>200</b> mm                 |             |
| Number of sections:                    | N = 1:                                 |                          | Breadth of bea                    | m:              | b₀ = <b>47</b> mm                 |             |
| Timber strength class;                 | C16                                    |                          |                                   |                 |                                   |             |
| Mombor dotails                         |                                        |                          |                                   |                 |                                   |             |
| Service class of timber                | 1·                                     |                          | Load duration.                    |                 | Medium term                       | 1           |
| Length of span:                        | -,<br>  <sub>s1</sub> = <b>1800</b> mm |                          |                                   |                 |                                   |             |
| Length of bearing:                     | $L_{\rm b} = 50 \text{ mm}$            |                          |                                   |                 |                                   |             |
| _ogar or souring,                      | _µ <b>vv</b> mm                        |                          |                                   |                 |                                   |             |
| Lateral support - cl.2.10.8            |                                        |                          |                                   |                 |                                   |             |
| Permiss.depth-to-breadth ratio;        | <b>5.00</b> ;                          |                          | Actual depth-to                   | -breadth ratio; | 4.26                              |             |
|                                        |                                        |                          |                                   | PASS - L        | ateral suppor                     | t is adequa |
| Check bearing stress                   |                                        |                          |                                   |                 |                                   |             |
| -                                      | σc adm = <b>2.125</b> Ν                | l/mm²;                   | Applied bearing                   | g stress;       | σ <sub>c_a</sub> = <b>1.162</b> Ν | l/mm²       |
| Permissible bearing stress:            |                                        |                          |                                   | - '             |                                   |             |

|                             | Project                           |                         |                                  |                                      | Job Ref.                                  |                                     |
|-----------------------------|-----------------------------------|-------------------------|----------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------|
| KEFA                        |                                   | 476 Garstang            | road, Broughte                   | on                                   | 1                                         | 9192                                |
|                             | Section                           |                         |                                  |                                      | Sheet no./rev.                            |                                     |
| AS Bridgeman Terrace        |                                   | ALTERATION              | ERATIONS & EXTENSION             |                                      |                                           | 11                                  |
| Wigan, WN1 1TT              | Calc. by                          | Date                    | Chk'd by                         | Date                                 | App'd by                                  | Date                                |
| Tel: 01942-826020           | P.Bithell                         | March 2020              |                                  |                                      |                                           |                                     |
|                             |                                   |                         |                                  |                                      |                                           |                                     |
| Bending parallel to grain   |                                   |                         |                                  |                                      |                                           | N/ 2                                |
| Permissible bending stress; | σm_adm <b>= 6.927</b>             | N/mm²;<br>PASS - Applie | Applied bendli<br>d bending stre | ng stress;<br><b>ss is less than</b> | σ <sub>m_a</sub> = 3.922<br>permissible b | N/mm <sup>2</sup><br>Dending stress |
| Shear parallel to grain     |                                   |                         |                                  |                                      |                                           |                                     |
| Permissible shear stress;   | τ <sub>adm</sub> = <b>0.838</b> N | /mm²;                   | Applied shear                    | stress;                              | τa = <b>0.436</b> N/                      | /mm²                                |
|                             |                                   | PASS - A                | pplied shear s                   | tress is less the                    | an permissibl                             | e shear stress                      |
| Deflection                  |                                   |                         |                                  |                                      |                                           |                                     |
| Permissible deflection;     | δ <sub>adm</sub> = <b>5.400 m</b> | ım;                     | Total deflectio                  | n;                                   | δa <b>= 2.715</b> m                       | m                                   |
|                             |                                   | P                       | ASS - Total de                   | flection is less                     | than permiss                              | ible deflection                     |
|                             |                                   |                         |                                  |                                      |                                           |                                     |
|                             |                                   |                         |                                  |                                      |                                           |                                     |
|                             |                                   |                         |                                  |                                      |                                           |                                     |

|                      | Project   |            |              |      | Job Ref.       |      |
|----------------------|-----------|------------|--------------|------|----------------|------|
| KEFA                 |           | 19192      |              |      |                |      |
|                      | Section   |            |              |      | Sheet no./rev. |      |
| 45 Bridgeman Terrace |           | ALTERATION | S & EXTENSIO | N    | 1              | 2    |
| Wigan, WN1 1TT       | Calc. by  | Date       | Chk'd by     | Date | App'd by       | Date |
| Tel: 01942-826020    | P.Bithell | March 2020 |              |      |                |      |

# **DORMER 'TRIMMERS'**

Adopt C16 timber, max. span = 3.25m (on plan); supports nominal loading from the main roof, reaction from purlin plus weight of dormer wall

| roof (d)   | = | 1.25 <sup>#</sup> x (0.60 / 2)     | = | 0.38             |
|------------|---|------------------------------------|---|------------------|
| roof (d)   | = | 0.75 <sup>#</sup> x (0.62 / 2)     | = | 0.23             |
| purlin (d) | = | from design                        | = | 1.63kN           |
| purlin (i) | = | from design                        | = | 1.10kN           |
| dormer (d) | = | 1.00 <sup>#</sup> x 1.33(2.35 / 2) | = | 1.56kN/m partial |

→ provide 3-No. 47x200mm C16 rafters
 screwed together to form trimmers
 either side of dormer

#### TIMBER BEAM ANALYSIS & DESIGN TO BS5268-2:2002

TEDDS calculation version 1.7.02



|                             | Project   |            | Job Ref. |      |                |      |
|-----------------------------|-----------|------------|----------|------|----------------|------|
| KEFA                        |           | 19192      |          |      |                |      |
| Robert E Fry Associates Ltd | Section   |            |          |      | Sheet no./rev. |      |
|                             |           | ALTERATION | 13       |      |                |      |
| Wigan, WN1 1TT              | Calc. by  | Date       | Chk'd by | Date | App'd by       | Date |
| Tel: 01942-826020           | P.Bithell | March 2020 |          |      |                |      |

| Applied loading               |                                       |                                          |                                  |
|-------------------------------|---------------------------------------|------------------------------------------|----------------------------------|
| Beam loads                    |                                       |                                          |                                  |
|                               |                                       | Dead self weight of beam $ eq$ 1         |                                  |
| roof lower                    |                                       | Dead partial UDL 0.380 kN/m fro          | om 0 mm to 2050 mm               |
| roof lower                    |                                       | Imposed partial UDL 0.230 kN/n           | n from 0 mm to 2050 mm           |
| roof upper                    |                                       | Dead partial UDL 0.750 kN/m fro          | om 2050 mm to 3250 mm            |
| roof upper                    |                                       | Imposed partial UDL 0.450 kN/n           | n from 2050 mm to 3250 mm        |
| purlin                        |                                       | Dead point load 1.630 kN at 205          | 50 mm                            |
| purlin                        |                                       | Imposed point load 1.100 kN at           | 2050 mm                          |
| dormer wall                   |                                       | Dead partial UDL 1.560 kN/m fro          | om 0 mm to 2050 mm               |
| Load combinations             |                                       |                                          |                                  |
| Load combination 1            |                                       | Support A                                | Dead <sup>´</sup> 1.00           |
|                               |                                       |                                          | Imposed 1.00                     |
|                               |                                       | Span 1                                   | Dead                             |
|                               |                                       |                                          | Imposed $(1.00)$                 |
|                               |                                       | Support B                                | $Dead \stackrel{\frown}{=} 1.00$ |
|                               |                                       | Support D                                |                                  |
|                               |                                       |                                          | imposea 1.00                     |
| Analysis results              |                                       |                                          |                                  |
| Design moment;                | M = <b>4.427</b> kNm;                 | Design shear;                            | F = <b>4.486</b> kN              |
| Total load on beam;           | W <sub>tot</sub> = <b>8.951</b> kN    |                                          |                                  |
| Reactions at support A;       | R <sub>A_max</sub> = <b>4.486</b> kN; | R <sub>A_min</sub> = <b>4.486</b> kN     |                                  |
| Unfactored dead load react    | ion at support A;                     | R <sub>A_Dead</sub> = <b>3.657</b> kN    |                                  |
| Unfactored imposed load re    | eaction at support A;                 | RA_Imposed = <b>0.829</b> kN             |                                  |
| Reactions at support B;       | R <sub>B_max</sub> = <b>4.465</b> kN; | R <sub>B_min</sub> = <b>4.465</b> kN     |                                  |
| Unfactored dead load react    | ion at support B;                     | R <sub>B_Dead</sub> = <b>3.183</b> kN    |                                  |
| Unfactored imposed load re    | eaction at support B;                 | R <sub>B_Imposed</sub> = <b>1.283</b> kN |                                  |
| $\uparrow$ $\Lambda$ /        |                                       |                                          |                                  |
| X   X   X   30<br>- 28        |                                       |                                          | $\leq$                           |
| /  /  /  /                    |                                       |                                          |                                  |
|                               |                                       |                                          |                                  |
| <b> </b> ≪──141── <b>&gt;</b> | ∙<br>→ 50 ←                           |                                          |                                  |
|                               |                                       |                                          |                                  |
| Timber section details        |                                       |                                          |                                  |
| Breadth of section;           | b = <b>47</b> mm;                     | Depth of section;                        | h = <b>200</b> mm                |
| Number of sections;           | N = 3;                                | Breadth of beam;                         | b <sub>b</sub> = <b>141</b> mm   |
| Timber strength class;        | C16                                   |                                          |                                  |
| Member details                |                                       |                                          |                                  |

Service class of timber;

1;

Load duration;

Medium term

| DEEA                            | Project                            |                     |                   |                              | Job Ref.                        |                   |
|---------------------------------|------------------------------------|---------------------|-------------------|------------------------------|---------------------------------|-------------------|
| KEFA                            |                                    | 476 Garstang        | road, Broughto    | on                           | 1                               | 9192              |
| Pohort E Env Associatos I td    | Section                            |                     |                   |                              | Sheet no./rev.                  |                   |
| 45 Bridgeman Terrace            |                                    | ALTERATION          | S & EXTENSIO      | N                            |                                 | 14                |
| Wigan, WN1 1TT                  | Calc. by                           | Date                | Chk'd by          | Date                         | App'd by                        | Date              |
| Tel: 01942-826020               | P.Bithell                          | March 2020          |                   |                              |                                 |                   |
|                                 |                                    |                     |                   |                              |                                 |                   |
|                                 |                                    |                     |                   |                              |                                 |                   |
| Length of span;                 | L <sub>s1</sub> = <b>3250</b> mm   |                     |                   |                              |                                 |                   |
| Length of bearing;              | L <sub>b</sub> = <b>50</b> mm      |                     |                   |                              |                                 |                   |
|                                 |                                    |                     |                   |                              |                                 |                   |
| Lateral support - cl.2.10.8     |                                    |                     |                   |                              |                                 |                   |
| Permiss.depth-to-breadth ratio; | <b>5.00</b> ;                      |                     | Actual depth-to   | o-breadth ratio;             | 1.42                            |                   |
|                                 |                                    |                     |                   | PASS - L                     | ateral suppo                    | rt is adequate    |
|                                 |                                    |                     |                   |                              |                                 |                   |
| Check bearing stress            |                                    |                     |                   |                              |                                 |                   |
| Permissible bearing stress;     | σc_adm = <b>2.338 I</b>            | N/mm²;              | Applied bearing   | g stress;                    | $\sigma_{c_a}$ = 0.636          | N/mm²             |
| PAS                             | S - Applied con                    | pressive stres      | ss is less than p | permissible con              | npressive str                   | ess at bearing    |
|                                 |                                    |                     |                   |                              |                                 |                   |
| Bending parallel to grain       |                                    |                     |                   |                              |                                 |                   |
| Permissible bending stress;     | σm_adm <b>= 7.620</b>              | N/mm <sup>2</sup> ; | Applied bendir    | ig stress;                   | σ <sub>m_a</sub> = <b>4.710</b> | N/mm <sup>2</sup> |
|                                 |                                    | PASS - Applie       | d bending stre    | ss is less than <sub>l</sub> | permissible b                   | ending stress     |
| Shear parallel to grain         |                                    |                     |                   |                              |                                 |                   |
| Permissible shear stress:       | Tadm = 0.921 N/                    | mm²:                | Applied shear     | stress:                      | τa <b>= 0.239</b> N/            | /mm <sup>2</sup>  |
|                                 |                                    | PASS - A            | pplied shear st   | tress is less tha            | n permissible                   | e shear stress    |
|                                 |                                    |                     |                   |                              |                                 |                   |
| Deflection                      |                                    |                     |                   |                              |                                 |                   |
| Permissible deflection;         | δ <sub>adm</sub> = <b>9.750</b> mr | n;                  | Total deflection  | ו;                           | δa <b>= 7.493</b> m             | m                 |
|                                 |                                    | P                   | ASS - Total dei   | flection is less t           | than permiss                    | ible deflection   |
|                                 |                                    |                     |                   |                              |                                 |                   |
|                                 |                                    |                     |                   |                              |                                 |                   |

|                             | Project                      |             |               |      | Job Ref.       |      |
|-----------------------------|------------------------------|-------------|---------------|------|----------------|------|
| KEFA                        | 476 Garstang road, Broughton |             |               |      | 19192          |      |
| Robert E Fry Associates Ltd | Section                      |             |               |      | Sheet no./rev. |      |
|                             |                              | ALTERATIONS | S & EXTENSION | N    | 1              | 5    |
| Wigan, WN1 1TT              | Calc. by                     | Date        | Chk'd by      | Date | App'd by       | Date |
| Tel: 01942-826020           | P.Bithell                    | March 2020  |               |      |                |      |

# **RIDGE BEAM**

<u>/!</u>`

Beam supports new roof construction and reaction from dormer trimmers only, no other loads considered; assume beam be restrained over its 6.00m span and limit deflection, under total dead & imposed, to 15mm (approx. span/360)

| Loading:  | roof (d)                     | = 1.25 <sup>#</sup> x (6.50 | (2) / 2) = 4.06                                                     |
|-----------|------------------------------|-----------------------------|---------------------------------------------------------------------|
|           | roof (i)                     | = 0.75 <sup>#</sup> x (6.50 | (2) / 2) = 2.44                                                     |
|           | reaction (d)<br>reaction (i) | = 3.18 kN<br>= 1.28 kN      | applied at 3.6m & 5.4m from $R_A$ applied at 3.6m & 5.4m from $R_A$ |
| Reactions | R <sub>A</sub> =             | 33.20 kN ult. (d =          | 14.6kN & i = 8.0kN)                                                 |
|           | R <sub>B</sub> =             | 39.70 kN ult. (d =          | 17.8kN & i = 9.2kN)                                                 |

## $\rightarrow$ adopt 305 x 102 x 28 UB (S275)

beam weight approx. 170kgs; contractor/builder to consider handling issues during installation; ensure adequate propping of gable wall until beam – and roof – can be constructed the execution of the works

#### STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07







Support conditions

Support A

Support B

## **Applied loading**

Beam loads

Vertically restrained Rotationally free Vertically restrained Rotationally free

Dead self weight of beam 1 roof - Dead full UDL 4.06 kN/m roof - Imposed full UDL 2.44 kN/m dormer - Dead point load 3.18 kN at 3600 mm Imposed point load 1.28 kN at 3600 mm dormer - Dead point load 3.18 kN at 5400 mm Imposed point load 1.28 kN at 5400 mm

 $\delta_{min}$  = 0 mm

#### Load combinations

Deflection;

| Load combination 1 - gravity | Support A                           | Dead                               |
|------------------------------|-------------------------------------|------------------------------------|
|                              |                                     | Imposed                            |
|                              |                                     | Dead                               |
|                              |                                     | Imposed 1.60                       |
|                              | Support B                           | Dead                               |
|                              |                                     | Imposed 1.60                       |
| Analysis results             |                                     |                                    |
| Maximum moment;              | M <sub>max</sub> = <b>55.2</b> kNm; | M <sub>min</sub> = <b>0</b> kNm    |
| Maximum shear;               | V <sub>max</sub> = <b>33.2</b> kN;  | V <sub>min</sub> = <b>-39.7</b> kN |

δ<sub>max</sub> = **12.7** mm;

|                         |                     | Project                                |                       |                    |                      | Job Ref.             |                 |
|-------------------------|---------------------|----------------------------------------|-----------------------|--------------------|----------------------|----------------------|-----------------|
| KEFA                    |                     |                                        | 476 Garstan           | g road, Brough     | 19                   | 19192                |                 |
| Robert E Env Associat   | as I ta             | Section                                |                       |                    |                      | Sheet no./rev.       |                 |
| 45 Bridgeman Terrac     | es Liu              |                                        | ALTERATIO             | NS & EXTENSI       | NC                   |                      | 17              |
| Wigan, WN1 1TT          | •                   | Calc. by                               | Date                  | Chk'd by           | Date                 | App'd by             | Date            |
| Tel: 01942-826020       |                     | P.Bithell                              | March 2020            | )                  |                      |                      |                 |
|                         |                     |                                        |                       |                    |                      |                      |                 |
|                         |                     |                                        |                       |                    |                      |                      |                 |
| Maximum reaction at     | cupport A           |                                        | P                     | 22 2 KNI-          | D                    | - 33 3 KNI           |                 |
|                         | support A           | ,<br>at support Δ·                     | RA_max -              | - 14 6 kN          | INA_min -            | - <b>33.2</b> KIN    |                 |
| Unfactored imposed      | load reacti         | on at support A.                       | RA Impage             | a = 8  kN          |                      |                      |                 |
| Maximum reaction at     | support B           | :                                      | R <sub>B max</sub> =  | 39.7 kN:           | R <sub>B</sub> min = | = <b>39.7</b> kN     |                 |
| Unfactored dead load    | d reaction a        | ,<br>at support B:                     | RB Dead =             | = <b>17.8</b> kN   |                      |                      |                 |
| Unfactored imposed      | load reacti         | on at support B:                       | R <sub>B</sub> Impose | a = 9.2 kN         |                      |                      |                 |
|                         |                     | , ii ,                                 | 5beed                 | -                  |                      |                      |                 |
|                         |                     |                                        |                       |                    |                      |                      |                 |
| Section details         |                     |                                        |                       |                    |                      |                      |                 |
| Section type;           |                     | UB 305x102x2                           | 8 (BS4-1);            | Steel grade;       |                      | S275                 |                 |
|                         |                     |                                        | _                     |                    |                      |                      |                 |
| Classification of cro   | oss sectio          | ns - Section 3.5                       |                       |                    | : <b>6</b> :         | Disstis              |                 |
| rensile strain coeffici | ent;                | ε = 1.00;                              |                       | Section class      | incation;            | Plastic              |                 |
| Shoar capacity So       | ction 4 2 2         | 2                                      |                       |                    |                      |                      |                 |
| Design shear force:     | cuon 4.2.3          | ,<br>F., = <b>39 7</b> kN <sup>.</sup> |                       | Design shear       | resistance:          | P. = 305 6 kN        | I               |
| Design shear lorde,     |                     | 1 v – <b>33</b> .7 kN,                 | P                     | ASS - Design shear | hear resistance e    | xceeds desig         | n shear force   |
|                         |                     |                                        | •                     |                    |                      | Access acong         |                 |
| Moment capacity - S     | Section 4.2         | 2.5                                    |                       |                    |                      |                      |                 |
| Design bending mor      | ient;               | M = <b>55.2</b> kNm;                   |                       | Moment capa        | icity low shear;     | Mc = <b>110.8</b> kN | Im              |
|                         |                     |                                        |                       | PASS - Momen       | capacity exceed      | ls design ben        | ding moment     |
|                         |                     |                                        |                       |                    |                      |                      |                 |
| Check vertical defle    | ction - Se          | ction 2.5.2                            |                       |                    |                      |                      |                 |
| Consider deflection d   | ue to dead          | d and imposed lo                       | bads                  |                    |                      |                      |                 |
| Limiting deflection     |                     | δ <sub>lim</sub> = <b>15</b> mm;       |                       | Maximum dei        | flection;            | δ <b>= 12.661</b> mr | n               |
|                         |                     |                                        | P                     | ASS - Maximum      | deflection does      | not exceed de        | eflection limit |
|                         |                     |                                        |                       |                    |                      |                      |                 |
|                         |                     |                                        |                       |                    |                      |                      |                 |
|                         |                     |                                        |                       |                    |                      |                      |                 |
| check beam bea          | rings:              |                                        |                       |                    |                      |                      |                 |
|                         |                     |                                        |                       |                    |                      |                      |                 |
| Reactions               | RA                  | = 33.20                                | kN ult                | d = 14.6           | i = 8.0              |                      |                 |
|                         | R <sub>B</sub>      | = 39.70                                | kN ult                | d = 17.8           | i = 9.2              |                      |                 |
|                         | 2                   |                                        | *                     |                    |                      |                      |                 |
|                         |                     |                                        |                       |                    |                      |                      |                 |
| Worse case is R         | <sub>B</sub> onto h | lock wall/dah                          | le: adont 1           | 00mm thick         | $3.6N/mm^2$ bloc     | kwork laid i         | in M4           |
| mortar throughou        | t with no           | rmal manufac                           | cture and c           | onstruction        |                      |                      |                 |
|                         |                     |                                        |                       |                    |                      |                      |                 |
|                         |                     |                                        |                       |                    |                      |                      |                 |
|                         |                     |                                        | $\rightarrow$         | provide            | 300mm long           | y x 100mm            | wide            |
|                         |                     |                                        |                       | (C8/10)            | concrete na          | dstone 15            | 0mm             |
|                         |                     |                                        |                       | doon               | at hearings:         | hoam to              | havo            |
|                         |                     |                                        |                       | deep,              |                      |                      |                 |
|                         |                     |                                        |                       | 100mm              | seating' onto        | padstone/            | wall            |
|                         |                     |                                        |                       |                    |                      |                      |                 |

|                             | Project                      |                |              |      | Job Ref. |      |
|-----------------------------|------------------------------|----------------|--------------|------|----------|------|
| KEFA                        | 476 Garstang road, Broughton |                |              |      | 19192    |      |
| Robert E Fry Associates Ltd | Section                      | Sheet no./rev. |              |      |          |      |
|                             |                              | ALTERATION     | S & EXTENSIO | N    | 1        | 8    |
| Wigan, WN1 1TT              | Calc. by                     | Date           | Chk'd by     | Date | App'd by | Date |
| Tel: 01942-826020           | P.Bithell                    | March 2020     |              |      |          |      |

## MASONRY BEARING DESIGN TO BS5628-1:2005

TEDDS calculation version 1.0.07

| Masonry details                 |                                                    |                               |                                                  |
|---------------------------------|----------------------------------------------------|-------------------------------|--------------------------------------------------|
| Masonry type;                   | Aggregate concrete blocks (                        | 25% or less formed voids)     |                                                  |
| Compressive strength;           | p <sub>unit</sub> = <b>3.6</b> N/mm <sup>2</sup> ; | Mortar designation;           | iii                                              |
| Least horiz dim of units;       | l <sub>unit</sub> = <b>100</b> mm;                 | Height of units;              | h <sub>unit</sub> = <b>215</b> mm                |
| Masonry units;                  | Category II;                                       | Construction control;         | Normal                                           |
| Partial safety factor;          | γm = <b>3.5</b> ;                                  | Characteristic strength;      | f <sub>k</sub> = <b>3.5</b> N/mm <sup>2</sup>    |
| Leaf thickness;                 | t = <b>100</b> mm;                                 | Effective wall thickness;     | t <sub>ef</sub> = <b>135</b> mm                  |
| Wall height;                    | h = <b>3000</b> mm;                                | Effective height of wall;     | h <sub>ef</sub> = <b>3000</b> mm                 |
| Bearing details                 |                                                    |                               |                                                  |
| Beam spanning out of plane of   | wall                                               |                               |                                                  |
| Width of bearing;               | B = <b>102</b> mm;                                 | Length of bearing;            | l <sub>b</sub> = <b>100</b> mm                   |
| Edge distance;                  | x <sub>edge</sub> = <b>350</b> mm                  |                               |                                                  |
| Loading details                 |                                                    |                               |                                                  |
| Concentrated dead load;         | G <sub>k</sub> = <b>18</b> kN;                     | Concentrated imposed load;    | Q <sub>k</sub> = <b>9</b> kN                     |
| Design concentrated load;       | F = <b>39.6</b> kN                                 |                               |                                                  |
| Masonry bearing type            |                                                    |                               |                                                  |
| Bearing type;                   | Туре 2 ;                                           | Bearing safety factor;        | γ <sub>bear</sub> = <b>1.50</b>                  |
| Check design bearing without    | ut a spreader                                      |                               |                                                  |
| Design bearing stress;          | f <sub>ca</sub> = <b>3.886</b> N/mm <sup>2</sup> ; | Allowable bearing stress;     | f <sub>cp</sub> = <b>1.500</b> N/mm <sup>2</sup> |
|                                 | FAIL - Design bearing                              | stress exceeds allowable bea  | nring stress, use a spreader                     |
| Spreader details                |                                                    |                               |                                                  |
| Length of spreader;             | l <sub>s</sub> = <b>300</b> mm;                    | Depth of spreader;            | hs <b>= 150</b> mm                               |
| Edge distance;                  | s <sub>edge</sub> = <b>251</b> mm                  |                               |                                                  |
| Spreader bearing type           |                                                    |                               |                                                  |
| Bearing type;                   | Туре 2 ;                                           | Bearing safety factor;        | γ <sub>bear</sub> = <b>1.50</b>                  |
| Check design bearing with a     | spreader                                           |                               |                                                  |
| Loading acts at midpoint of spi | reader                                             |                               |                                                  |
| Design bearing stress;          | f <sub>ca</sub> = <b>1.321</b> N/mm <sup>2</sup> ; | Allowable bearing stress;     | f <sub>cp</sub> = <b>1.500</b> N/mm <sup>2</sup> |
|                                 | PASS -                                             | Allowable bearing stress exc  | eeds design bearing stress                       |
| Check design bearing at 0.4     | imes h below the bearing level                     |                               |                                                  |
| Design bearing stress;          | f <sub>ca</sub> = <b>0.240</b> N/mm²;              | Allowable bearing stress;     | f <sub>cp</sub> = <b>0.680</b> N/mm <sup>2</sup> |
| PASS -                          | Allowable bearing stress at 0.                     | 4 ´ h below bearing level exc | eeds design bearing stress                       |
|                                 |                                                    |                               |                                                  |
|                                 |                                                    |                               |                                                  |
|                                 |                                                    |                               |                                                  |

|                             | Project                      |             | Job Ref.                 |      |          |      |
|-----------------------------|------------------------------|-------------|--------------------------|------|----------|------|
| KEFA                        | 476 Garstang road, Broughton |             |                          |      | 19192    |      |
| Robert E Fry Associates Ltd | Section                      |             | Sheet no./rev.           |      |          |      |
|                             |                              | ALTERATIONS | <b>3 &amp; EXTENSION</b> | N    | 1        | 9    |
| Wigan, WN1 1TT              | Calc. by                     | Date        | Chk'd by                 | Date | App'd by | Date |
| Tel: 01942-826020           | P.Bithell                    | March 2020  |                          |      |          |      |

# **BEAM/LINTEL**

Beam/lintel supports new roof construction, reaction from dormer trimmers and masonry over, no other loads considered; assume beam be unrestrained over its 3.95m span and limit deflection, under total dead & imposed, to 10mm (approx. span/360)

| roof (d)<br>roof (i)                                | =<br>=                                                                                                        | 1.25 <sup>#</sup> x (6.50 /<br>0.75 <sup>#</sup> x (6.50 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4)<br>4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =<br>=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| brick (d)                                           | =                                                                                                             | 2.18 <sup>#</sup> x (0.45m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ו)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| block (d)                                           | =                                                                                                             | 1.59 <sup>#</sup> x (0.45m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ו)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| dormer (d)                                          | =                                                                                                             | 1.00 <sup>#</sup> x (2.35m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ו)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.35ki                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/m partial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| reaction (d)<br>reaction (i)                        | =<br>=                                                                                                        | 3.66 kN<br>0.83 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | applied<br>applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l at 2.4<br>l at 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5m fror<br>5m fror                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $n R_A$<br>$n R_A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| R <sub>A</sub> =<br>R <sub>B</sub> =                | 20.30<br>24.90                                                                                                | ) kN ult. (d = 11<br>) kN ult. (d = 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.4kN &<br>1.5kN &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i = 2.7<br>i = 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kN)<br>kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                     |                                                                                                               | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | adopt<br>(S355)<br>plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200 x<br>comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a 100 x<br>lete wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x 8.0mm thk RHS<br>th 6mm thk ledger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| weight approx<br>lation; ensure a<br>ructed the exe | k. 170kg<br>adequat<br>cution o                                                                               | gs; contractor/bu<br>te propping of ga<br>f the works                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uilder to<br>able wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | consid<br>II until                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | der han<br>beam –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dling issues during<br>- and roof – can be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                     | roof (d)<br>roof (i)<br>brick (d)<br>block (d)<br>dormer (d)<br>reaction (d)<br>reaction (i)<br>$R_A = R_B =$ | roof (d)=roof (i)=brick (d)=block (d)=dormer (d)=reaction (d)=reaction (i)= $R_A$ = $20.30$ $R_B$ =24.90weight approx. 170kgvalue of the execution of the ex | roof (d) = $1.25^{\#} \times (6.50 / 700 \text{ roof (i)})$ = $0.75^{\#} \times (6.50 / 700 \text{ brick (d)})$ = $2.18^{\#} \times (0.45 \text{ mrs})$<br>block (d) = $1.59^{\#} \times (0.45 \text{ mrs})$<br>dormer (d) = $1.00^{\#} \times (2.35 \text{ mrs})$<br>reaction (d) = $3.66 \text{ kN}$<br>reaction (i) = $0.83 \text{ kN}$<br>$R_A = 20.30 \text{ kN ult.}$ (d = $147 \text{ R}_B$ ) = $24.90 \text{ kN ult.}$ (d = $147 \text{ reaction}$ )<br>$R_B = 24.90 \text{ kN ult.}$ (d = $147 \text{ reaction}$ )<br>$\Rightarrow$<br>weight approx. 170kgs; contractor/but<br>lation; ensure adequate propping of gas<br>ructed the execution of the works | roof (d) = $1.25^{\#} \times (6.50 / 4)$<br>roof (i) = $0.75^{\#} \times (6.50 / 4)$<br>brick (d) = $2.18^{\#} \times (0.45m)$<br>block (d) = $1.59^{\#} \times (0.45m)$<br>dormer (d) = $1.00^{\#} \times (2.35m)$<br>reaction (d) = $3.66 \text{ kN}$ applied<br>reaction (i) = $0.83 \text{ kN}$ applied<br>$R_A$ = $20.30 \text{ kN}$ ult. (d = $11.4 \text{ kN} \& R_B$ = $24.90 \text{ kN}$ ult. (d = $14.5 \text{ kN} \& R_B$ )<br>$\Rightarrow$ adopt<br>(S355)<br>plate<br>weight approx. 170kgs; contractor/builder to<br>lation; ensure adequate propping of gable was<br>ructed the execution of the works | roof (d) = $1.25^{\#} \times (6.50 / 4)$ =<br>roof (i) = $0.75^{\#} \times (6.50 / 4)$ =<br>brick (d) = $2.18^{\#} \times (0.45m)$ =<br>block (d) = $1.59^{\#} \times (0.45m)$ =<br>dormer (d) = $1.00^{\#} \times (2.35m)$ =<br>reaction (d) = $3.66 \text{ kN}$ applied at 2.4<br>reaction (i) = $0.83 \text{ kN}$ applied at 2.4<br>$R_A$ = $20.30 \text{ kN}$ ult. (d = $11.4 \text{ kN} \& i = 2.7$<br>$R_B$ = $24.90 \text{ kN}$ ult. (d = $14.5 \text{ kN} \& i = 2.9$<br>$\rightarrow$ adopt 200 $\times$ (S355) comp<br>plate<br>weight approx. 170kgs; contractor/builder to consid<br>lation; ensure adequate propping of gable wall until tructed the execution of the works | roof (d) = $1.25^{\#} \times (6.50 / 4)$ = $2.03$<br>roof (i) = $0.75^{\#} \times (6.50 / 4)$ =<br>brick (d) = $2.18^{\#} \times (0.45m)$ = $0.98$<br>block (d) = $1.59^{\#} \times (0.45m)$ = $0.72$<br>dormer (d) = $1.00^{\#} \times (2.35m)$ = $2.35k1$<br>reaction (d) = $3.66 \text{ kN}$ applied at $2.45m$ from<br>reaction (i) = $0.83 \text{ kN}$ applied at $2.45m$ from<br>$R_A$ = $20.30 \text{ kN}$ ult. (d = $11.4\text{ kN} \& i = 2.7\text{ kN}$ )<br>$R_B$ = $24.90 \text{ kN}$ ult. (d = $14.5\text{ kN} \& i = 2.9\text{ kN}$ )<br>$\Rightarrow$ adopt 200 x 100 x<br>(S355) complete wight<br>plate<br>weight approx. 170kgs; contractor/builder to consider han<br>lation; ensure adequate propping of gable wall until beam -<br>ructed the execution of the works |

|             |                     |                 |        |                        | TEDDS | calculation version |
|-------------|---------------------|-----------------|--------|------------------------|-------|---------------------|
| an length & | partial factors for | r loading       |        |                        |       |                     |
| Span        | Factor              | s for moments & | forces | Factors for deflection |       |                     |
| (mm)        | γfd                 | γfi             | γfw    | γdd                    | γdi   | γdw                 |
| 3950        | 1.40                | 1.60            | 0.00   | 1.00                   | 1.00  | 1.00                |

|                      | Project   |                | Job Ref.               |      |          |      |
|----------------------|-----------|----------------|------------------------|------|----------|------|
| KEFA                 |           | 476 Garstang r | oad, Broughton         | n    | 191      | 92   |
|                      | Section   |                | Sheet no./rev.         |      |          |      |
| 45 Bridgeman Terrace |           | ALTERATIONS    | <b>&amp; EXTENSION</b> | 4    | 2        | 0    |
| Wigan, WN1 1TT       | Calc. by  | Date           | Chk'd by               | Date | App'd by | Date |
| Tel: 01942-826020    | P.Bithell | March 2020     |                        |      |          |      |

#### Load descriptions

Loads are applied normal to the major principal axis (x-axis) of the member.

| Ref. | Category  | Description    |
|------|-----------|----------------|
| 1    | "Dead"    | "self-wt"      |
| 2    | "Dead"    | "roof"         |
| 3    | "Imposed" | "roof"         |
| 4    | "Dead"    | "blk"          |
| 5    | "Dead"    | "bwk"          |
| 6    | "Dead"    | "dormer walls" |
| 7    | "Imposed" | "dormer walls" |
| 8    | "Dead"    | "dormer front" |

## Loading data

| Ref. # | Category  | Туре       | Load          | Position | Load | Position | Eccentricity |
|--------|-----------|------------|---------------|----------|------|----------|--------------|
|        |           |            | kN/m          | mm       | kN/m | mm       | mm           |
| 1      | "Dead"    | UDL        | 1.0           | 0        | -    | 3950     | 0            |
| 2      | "Dead"    | UDL        | 2.0           | 0        | -    | 3950     | 0            |
| 3      | "Imposed" | UDL        | 1.2           | 0        | -    | 3950     | 0            |
| 4      | "Dead"    | UDL        | 1.0           | 0        | -    | 3950     | 0            |
| 5      | "Dead"    | UDL        | 0.7           | 0        | -    | 3950     | 200          |
| 6      | "Dead"    | Point load | <b>3.7</b> kN | 2450     | -    | -        | 0            |
| 7      | "Imposed" | Point load | <b>0.8</b> kN | 2450     | -    | -        | 0            |
| 8      | "Dead"    | UDL        | 2.4           | 2450     | -    | 3950     | 0            |

## Analysis results - entire span

| Ra       | R₀       | F <sub>vy</sub> | M <sub>x</sub>  |           | Tq        | Deflecti         | on: δEl <sub>x</sub> |
|----------|----------|-----------------|-----------------|-----------|-----------|------------------|----------------------|
| kN (fac) | kN (fac) | kN (fac)        | kNm (fac) Sense |           | kNm (fac) | kNm <sup>3</sup> | Direction            |
| 20.3     | 24.9     | 24.9            | 24.1            | "Sagging" | 0.80      | 26.51            | "Down"               |

#### Unfactored support reactions

| Support A; | Dead load; <b>-11.4</b> kN; | Live load; -2.7 kN;        | Wind load; <b>0.0</b> kN; |
|------------|-----------------------------|----------------------------|---------------------------|
| Support B; | Dead load; <b>-14.5</b> kN; | Live load; <b>-2.9</b> kN; | Wind load; <b>0.0</b> kN; |

## LTB segment results

| Seg. | x₅ | x <sub>e</sub> | L <sub>LT</sub> | M∟⊤       | M <sub>mLT2</sub> | M <sub>mLT3</sub> | M <sub>mLT4</sub> |
|------|----|----------------|-----------------|-----------|-------------------|-------------------|-------------------|
|      | mm | mm             | mm              | kNm (fac) | kNm (fac)         | kNm (fac)         | kNm (fac)         |
| 1    | 0  | 3950           | 3950            | 24.1      | 15.9              | 23.4              | 18.8              |



|                      | Project   |                | Job Ref.                 |      |                 |      |
|----------------------|-----------|----------------|--------------------------|------|-----------------|------|
| KEFA                 |           | 476 Garstang r | oad, Broughto            | n    | 19 <sup>.</sup> | 192  |
|                      | Section   |                | Sheet no./rev.           |      |                 |      |
| 45 Bridgeman Terrace |           | ALTERATION     | <b>S &amp; EXTENSION</b> | N    | 2               | 2    |
| Wigan, WN1 1TT       | Calc. by  | Date           | Chk'd by                 | Date | App'd by        | Date |
| Tel: 01942-826020    | P.Bithell | March 2020     |                          |      |                 |      |

| Check;                  | Load;                                                                | Capacity;                                     | Notes;                                                                                        | Result; |
|-------------------------|----------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------|---------|
| Deflection;             | δ <sub>y_max</sub> = <b>5.8</b> mm;                                  | δ <sub>lim</sub> = <b>10.0</b> mm;            | Span / 360 or 10.0 mm;                                                                        | Pass    |
| Twist angle             | φ <sub>sls</sub> = <b>0.01</b> deg                                   | φ <sub>lim</sub> = <b>2.00</b> deg            | T <sub>qu</sub> = <b>0.57</b> kNm                                                             | Pass    |
| Shear;                  | F <sub>vy</sub> = <b>24.9</b> kN;                                    | P <sub>vy</sub> = <b>635.5</b> kN;            | Low shear;                                                                                    | Pass;   |
| Moment;                 | M <sub>x</sub> = <b>24.1</b> kNm;                                    | M <sub>cx</sub> = <b>95.2</b> kNm;            | Serviceability governs;                                                                       | Pass    |
| LTB;                    | λ = <b>126</b> ;                                                     | λ <sub>lim</sub> = <b>263</b> ;               | LTB check not req'd;<br>L <sub>E_LT</sub> = 5140 mm;                                          | Pass    |
| Overall buckling        | Index; i <sub>b</sub> = <b>0.229</b>                                 | Limit = 1.0                                   | σ <sub>byt</sub> = <b>0</b> N/mm <sup>2</sup>                                                 | Pass    |
| Local capacity          | σ <sub>bx</sub> + σ <sub>byt</sub><br>= <b>108</b> N/mm <sup>2</sup> | p <sub>y</sub> = <b>355</b> N/mm <sup>2</sup> | $ σ_{bx} = 108 \text{ N/mm}^2 $<br>$ σ_{byt} = 0 \text{ N/mm}^2 $                             | Pass    |
| Combined shear stresses | τ = <b>12</b> N/mm <sup>2</sup>                                      | p <sub>v</sub> = <b>213</b> N/mm <sup>2</sup> | τ <sub>bw</sub> = <b>10</b> N/mm <sup>2</sup><br>τ <sub>vt</sub> = <b>2</b> N/mm <sup>2</sup> | Pass    |

# check flange plate & welds:

| Moment applied to plate  | Μ              | =<br>=<br>= | 1.40 [(0.98 x 0.225)<br>1.40 [0.22]<br><b>0.31 kNm/m</b> | brickwork only                        |
|--------------------------|----------------|-------------|----------------------------------------------------------|---------------------------------------|
| Plate thickness required | t <sub>p</sub> | =           | (6M / bp <sub>y</sub> ) <sup>1/2</sup>                   | where $b = 1000mm \& p_y = 275N/mm^2$ |
|                          |                | =<br>=      | [(6 x 0.31 x 10 <sup>6</sup> ) / (10<br>2.60mm minimum   | 00 x 275)] <sup>½</sup>               |

# → provide 6mm 'flange' plate for detail

Assume (conservatively) 70mm minimum lever-arm between welds, thus

| Force in welds | = | (0.31 x 10³) / 70mm |
|----------------|---|---------------------|
|                | = | 4.43 kN/m           |

Adopting 4mm fillet welds with a capacity of 0.62kN/mm, thus

| REFA                                                                                                                                                                                                                                                                                                                                                      |                              | Project                                                                                                                                                                                                                                                                | Job Ref.                                                                    | Job Ref.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                                                                                                                                                                        |                                                                             | 19192                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                |
| Robert E Frv Associate                                                                                                                                                                                                                                                                                                                                    | s Ltd                        | Section                                                                                                                                                                                                                                                                | Sheet no./rev                                                               |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                |
| 45 Bridgeman Terrace                                                                                                                                                                                                                                                                                                                                      |                              |                                                                                                                                                                                                                                                                        | ALTERA                                                                      | TIONS                            | & EXTENSIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N                                                                                                                                                                                 |                                                                                                                                                                                                                               | 23                                                                                                             |
| Wigan, WN1 1TT                                                                                                                                                                                                                                                                                                                                            |                              | Calc. by                                                                                                                                                                                                                                                               | Date                                                                        |                                  | Chk'd by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date                                                                                                                                                                              | App'd by                                                                                                                                                                                                                      | Date                                                                                                           |
| Tel: 01942-826020                                                                                                                                                                                                                                                                                                                                         |                              | P.Bithell                                                                                                                                                                                                                                                              | March 2                                                                     | 2020                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                                                                                                                                                                        |                                                                             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                                                                                                                                                                        |                                                                             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                |
| Weld length require                                                                                                                                                                                                                                                                                                                                       | ed                           | =                                                                                                                                                                                                                                                                      | 4.43 /                                                                      | 0.62                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                           |                              | =                                                                                                                                                                                                                                                                      | 7.14m                                                                       | m/m                              | nominal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                                                                                                                                                                        |                                                                             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                                                                                                                                                                        |                                                                             | $\rightarrow$                    | adopt 4r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nm FW's at                                                                                                                                                                        | 50mm hit/:                                                                                                                                                                                                                    | 300mm                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                                                                                                                                                                        |                                                                             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                                                                                                                                                                        |                                                                             |                                  | miss alo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ng plate ler                                                                                                                                                                      | ngth                                                                                                                                                                                                                          |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                                                                                                                                                                        |                                                                             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                                                                                                                                                                        |                                                                             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                                                                                                                                                                        |                                                                             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                |
| check beam bear                                                                                                                                                                                                                                                                                                                                           | ings:                        |                                                                                                                                                                                                                                                                        |                                                                             |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                               |                                                                                                                |
| Reactions                                                                                                                                                                                                                                                                                                                                                 | R₄                           | = 20.30                                                                                                                                                                                                                                                                | 0 kN ult                                                                    |                                  | d = 11 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | i = 27                                                                                                                                                                            | ,                                                                                                                                                                                                                             |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                           | D_                           | - 24.90                                                                                                                                                                                                                                                                |                                                                             |                                  | d = 1/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i – 2.0                                                                                                                                                                           | 1                                                                                                                                                                                                                             |                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                           | ΓB                           | - 24.50                                                                                                                                                                                                                                                                |                                                                             |                                  | u – 14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 - 2.9                                                                                                                                                                           | )                                                                                                                                                                                                                             |                                                                                                                |
| Worse case is R <sub>B</sub><br>mortar throughout                                                                                                                                                                                                                                                                                                         | onto bl<br>with nc           | lock wall/rh-fr<br>ormal manufa                                                                                                                                                                                                                                        | ont; adop<br>acture and                                                     | ot 100<br>d cons<br>→            | mm thick, 3<br>struction<br><b>provide</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .6N/mm², bl<br>300mm lor                                                                                                                                                          | lockwork lain<br>ng x 100mr                                                                                                                                                                                                   | d in M4<br><b>n wide</b>                                                                                       |
| Worse case is R <sub>B</sub> mortar throughout                                                                                                                                                                                                                                                                                                            | onto bl<br>with nc           | lock wall/rh-fr<br>ormal manufa                                                                                                                                                                                                                                        | ont; adop<br>acture and                                                     | ot 100<br>d cons<br>→            | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .6N/mm², bl<br>300mm lor<br>concrete p<br>bearings; b                                                                                                                             | lockwork lain<br>ng x 100mr<br>padstone, f<br>peam/lintel t                                                                                                                                                                   | d in M4<br>m wide<br>150mm<br>to have                                                                          |
| Worse case is R <sub>B</sub><br>mortar throughout                                                                                                                                                                                                                                                                                                         | onto bl<br>with nc           | lock wall/rh-fr<br>ormal manufa                                                                                                                                                                                                                                        | ont; adop<br>acture and                                                     | ot 100<br>d cons<br>→            | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .6N/mm <sup>2</sup> , bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on                                                                                                 | lockwork lain<br>ng x 100mr<br>padstone,<br>peam/lintel t                                                                                                                                                                     | d in M4<br>m wide<br>150mm<br>to have<br>e/wall                                                                |
| Worse case is R <sub>B</sub> mortar throughout                                                                                                                                                                                                                                                                                                            | onto bl<br>with nc           | lock wall/rh-fr<br>ormal manufa                                                                                                                                                                                                                                        | ront; adop<br>icture and                                                    | ot 100<br>d cons<br>→            | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .6N/mm², bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on                                                                                                              | lockwork lai<br>ng x 100mr<br>badstone,<br>beam/lintel t<br>ito padston                                                                                                                                                       | d in M4<br>n wide<br>150mm<br>to have<br>e/wall                                                                |
| Worse case is R <sub>B</sub> mortar throughout                                                                                                                                                                                                                                                                                                            | onto bl<br>with nc           | lock wall/rh-fr<br>ormal manufa<br><u>N TO BS5628-1</u>                                                                                                                                                                                                                | ont; adop<br>icture and                                                     | ot 100<br>d cons<br>→            | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .6N/mm², bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on                                                                                                              | lockwork lai<br>ng x 100mr<br>badstone,<br>beam/lintel t<br>nto padston                                                                                                                                                       | d in M4<br>m wide<br>150mm<br>to have<br>e/wall                                                                |
| Worse case is R <sub>B</sub><br>mortar throughout                                                                                                                                                                                                                                                                                                         | onto bl<br>with nc           | lock wall/rh-fr<br>ormal manufa<br><u>N TO BS5628-1</u>                                                                                                                                                                                                                | ont; ador<br>icture and                                                     | ot 100<br>d cons<br>→            | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .6N/mm², bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on                                                                                                              | lockwork lain<br>ng x 100mr<br>badstone, f<br>beam/lintel t<br>ato padston                                                                                                                                                    | d in M4<br>m wide<br>150mm<br>to have<br>e/wall                                                                |
| Worse case is R <sub>B</sub><br>mortar throughout<br><u>MASONRY BEARING</u><br>Masonry details                                                                                                                                                                                                                                                            | onto bl<br>with nc           | lock wall/rh-fr<br>ormal manufa<br><u>N TO BS5628-1</u>                                                                                                                                                                                                                | ront; adop<br>icture and<br>:2005                                           | ot 100<br>d cons<br>→            | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .6N/mm <sup>2</sup> , bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on                                                                                                 | lockwork laid<br>ng x 100mr<br>padstone, f<br>peam/lintel t<br>nto padston                                                                                                                                                    | d in M4<br>m wide<br>150mm<br>to have<br>e/wall                                                                |
| Worse case is R <sub>B</sub><br>mortar throughout<br><u>MASONRY BEARING</u><br>Masonry details<br>Masonry type;                                                                                                                                                                                                                                           | onto bl<br>with nc           | lock wall/rh-fr<br>ormal manufa<br><u>N TO BS5628-1</u><br>Aggregate co                                                                                                                                                                                                | ront; adop<br>icture and<br><u>:2005</u><br>ncrete blo                      | ot 100<br>d cons<br>→            | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .6N/mm <sup>2</sup> , bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on<br>seating' on                                                                                  | lockwork lain<br>ng x 100mr<br>badstone, f<br>beam/lintel t<br>ato padston<br>TEDDS calcu                                                                                                                                     | d in M4<br>m wide<br>150mm<br>to have<br>e/wall                                                                |
| Worse case is R <sub>B</sub><br>mortar throughout<br><u>MASONRY BEARING</u><br>Masonry details<br>Masonry type;<br>Compressive strength;<br>Least horiz dim of units                                                                                                                                                                                      | onto bl<br>with nc           | lock wall/rh-fr<br>ormal manufa<br><u>N TO BS5628-1</u><br>Aggregate co<br>p <sub>unit</sub> = <b>3.6</b> N/mr                                                                                                                                                         | ront; adop<br>icture and<br><u>:2005</u><br>ncrete bloo<br>m <sup>2</sup> ; | ot 100<br>d cons<br>→<br>cks (25 | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm f<br>3% or less for<br>Mortar designa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .6N/mm <sup>2</sup> , bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on<br>seating' on<br>med voids)                                                                    | lockwork laid<br>ng x 100mr<br>badstone, f<br>beam/lintel f<br>nto padston<br>TEDDS calcu<br>iii<br>hun = 215 r                                                                                                               | d in M4<br>m wide<br>150mm<br>to have<br>e/wall<br>Jation version 1                                            |
| Worse case is R <sub>B</sub><br>mortar throughout<br><u>MASONRY BEARING</u><br>Masonry details<br>Masonry type;<br>Compressive strength;<br>Least horiz dim of units<br>Masonry units:                                                                                                                                                                    | onto bl<br>with nc<br>DESIGN | lock wall/rh-fr<br>ormal manufa<br><u>N TO BS5628-1</u><br>Aggregate co<br>p <sub>unit</sub> = 3.6 N/mr<br>l <sub>unit</sub> = 100 mm;<br>Category II:                                                                                                                 | ront; adop<br>icture and<br><u>:2005</u><br>ncrete blo<br>m <sup>2</sup> ;  | ot 100<br>d cons<br>→<br>cks (25 | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .6N/mm <sup>2</sup> , bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on<br>seating' on<br>med voids)                                                                    | lockwork lain<br>ng x 100mr<br>badstone, f<br>beam/lintel f<br>nto padston<br>TEDDS calcu<br>iii<br>hunit = 215 r<br>Normal                                                                                                   | d in M4<br>m wide<br>150mm<br>to have<br>e/wall                                                                |
| Worse case is R <sub>B</sub><br>mortar throughout<br><u>MASONRY BEARING</u><br>Masonry details<br>Masonry type;<br>Compressive strength;<br>Least horiz dim of units<br>Masonry units;<br>Partial sofaty factor;                                                                                                                                          | onto bl<br>with nc           | lock wall/rh-fr<br>ormal manufa<br>N TO BS5628-1<br>Aggregate co<br>punit = 3.6 N/mr<br>lunit = 100 mm;<br>Category II;                                                                                                                                                | ront; adop<br>icture and<br><u>:2005</u><br>ncrete blo<br>m <sup>2</sup> ;  | ot 100<br>d cons<br>→<br>cks (25 | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm '<br>3% or less for<br>Mortar designa<br>Height of units<br>Construction c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .6N/mm <sup>2</sup> , bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on<br>seating' on<br>med voids)<br>tion;                                                           | lockwork lain<br>ng x 100mr<br>badstone, fo<br>beam/lintel to<br>beam/lintel to<br>to padston<br>TEDDS calcu<br>iii<br>hunit = 215 r<br>Normal<br>f. = 2.5 N/m                                                                | d in M4<br>m wide<br>150mm<br>to have<br>e/wall<br>ulation version 1<br>nm                                     |
| Worse case is R <sub>B</sub><br>mortar throughout<br>MASONRY BEARING<br>Masonry details<br>Masonry type;<br>Compressive strength;<br>Least horiz dim of units<br>Masonry units;<br>Partial safety factor;                                                                                                                                                 | onto bl<br>with nc           | lock wall/rh-fr<br>ormal manufa<br><u>N TO BS5628-1</u><br>Aggregate co<br>p <sub>unit</sub> = 3.6 N/mr<br>l <sub>unit</sub> = 100 mm;<br>Category II;<br>γ <sub>m</sub> = 3.5;<br>t = 100 mm;                                                                         | ront; adop<br>icture and<br><u>:2005</u><br>ncrete bloo<br>m <sup>2</sup> ; | ot 100<br>d cons<br>→<br>cks (25 | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm f<br>225mm f<br>wortar designate<br>Height of units<br>Construction construction constructi construction co | .6N/mm <sup>2</sup> , bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on<br>seating' on<br>med voids)<br>tion;<br>tion;<br>strength;                                     | lockwork laid<br>ng x 100mr<br>badstone, f<br>beam/lintel f<br>nto padston<br>TEDDS calcu<br>iii<br>h <sub>unit</sub> = 215 r<br>Normal<br>f <sub>k</sub> = 3.5 N/m                                                           | d in M4<br>m wide<br>150mm<br>to have<br>e/wall<br>ulation version 1<br>nm                                     |
| Worse case is R <sub>B</sub><br>mortar throughout<br>MASONRY BEARING<br>Masonry details<br>Masonry type;<br>Compressive strength;<br>Least horiz dim of units<br>Masonry units;<br>Partial safety factor;<br>Leaf thickness;                                                                                                                              | onto bl<br>with nc           | lock wall/rh-fr<br>prmal manufa<br><u>N TO BS5628-1</u><br>Aggregate co<br>p <sub>unit</sub> = 3.6 N/mr<br>l <sub>unit</sub> = 100 mm;<br><b>Category II</b> ;<br>γ <sub>m</sub> = 3.5;<br>t = 100 mm;                                                                 | ront; adop<br>icture and<br>:2005<br>ncrete blo<br>m²;                      | ot 100<br>d cons<br>→<br>cks (25 | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm 4<br>8% or less for<br>Mortar designate<br>Height of units<br>Construction of<br>Characteristic states                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .6N/mm <sup>2</sup> , bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on<br>med voids)<br>tion;<br>tion;<br>tion;<br>strength;<br>hickness;                              | lockwork laid<br>ng x 100mr<br>badstone, f<br>beam/lintel t<br>nto padston<br>TEDDS calcu<br>iii<br>h <sub>unit</sub> = 215 r<br>Normal<br>f <sub>k</sub> = 3.5 N/m<br>t <sub>ef</sub> = 135 mr                               | d in M4<br>m wide<br>150mm<br>to have<br>e/wall<br>ulation version 1<br>nm<br>nm                               |
| Worse case is R <sub>B</sub><br>mortar throughout<br>MASONRY BEARING<br>Masonry details<br>Masonry type;<br>Compressive strength;<br>Least horiz dim of units<br>Masonry units;<br>Partial safety factor;<br>Leaf thickness;<br>Wall height;                                                                                                              | onto bl<br>with nc           | lock wall/rh-fr<br>ormal manufa<br><u>N TO BS5628-1</u><br>Aggregate co<br>p <sub>unit</sub> = 3.6 N/mr<br>l <sub>unit</sub> = 100 mm;<br>Category II;<br>γ <sub>m</sub> = 3.5;<br>t = 100 mm;<br>h = 3000 mm;                                                         | ront; adop<br>icture and<br><u>:2005</u><br>ncrete bloo<br>m <sup>2</sup> ; | ot 100<br>d cons<br>→<br>cks (25 | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm 4<br>3% or less for<br>Mortar designate<br>Height of units<br>Construction can<br>Characteristic state<br>Effective wall the<br>Effective height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .6N/mm <sup>2</sup> , bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on<br>seating' on<br>med voids)<br>tion;<br>tion;<br>strength;<br>hickness;<br>t of wall;          | lockwork laid<br>ng x 100mr<br>badstone, f<br>beam/lintel f<br>nto padston<br>TEDDS calcu<br>iii<br>h <sub>unit</sub> = 215 r<br>Normal<br>f <sub>k</sub> = 3.5 N/m<br>t <sub>ef</sub> = 135 mr<br>h <sub>ef</sub> = 3000 r   | d in M4<br>m wide<br>150mm<br>to have<br>e/wall<br>ulation version 1<br>nm<br>nm<br>nm <sup>2</sup><br>m       |
| Worse case is R <sub>B</sub><br>mortar throughout<br>MASONRY BEARING<br>Masonry details<br>Masonry type;<br>Compressive strength;<br>Least horiz dim of units<br>Masonry units;<br>Partial safety factor;<br>Leaf thickness;<br>Wall height;<br>Bearing details                                                                                           | onto bl<br>with nc           | lock wall/rh-fr<br>ormal manufa<br><u>N TO BS5628-1</u><br>Aggregate co<br>p <sub>unit</sub> = 3.6 N/mr<br>l <sub>unit</sub> = 100 mm;<br>Category II;<br>γ <sub>m</sub> = 3.5;<br>t = 100 mm;<br>h = 3000 mm;                                                         | ront; adop<br>acture and<br><u>:2005</u><br>ncrete blo<br>m <sup>2</sup> ;  | ot 100<br>d cons<br>→<br>cks (25 | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm 4<br>3% or less for<br>Mortar designate<br>Height of units<br>Construction construction constr | .6N/mm <sup>2</sup> , bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on<br>seating' on<br>med voids)<br>tion;<br>tion;<br>strength;<br>hickness;<br>t of wall;          | lockwork laid<br>ng x 100mr<br>badstone, fo<br>beam/lintel fo<br>to padston<br>TEDDS calcu<br>iii<br>h <sub>unit</sub> = 215 r<br>Normal<br>f <sub>k</sub> = 3.5 N/m<br>t <sub>ef</sub> = 135 mr<br>h <sub>ef</sub> = 3000 r  | d in M4<br>m wide<br>150mm<br>to have<br>e/wall<br>ulation version 1<br>nm<br>nm <sup>2</sup><br>m             |
| Worse case is R <sub>B</sub><br>mortar throughout<br>MASONRY BEARING<br>Masonry details<br>Masonry type;<br>Compressive strength;<br>Least horiz dim of units<br>Masonry units;<br>Partial safety factor;<br>Leaf thickness;<br>Wall height;<br>Bearing details<br>Beam spanning in plan                                                                  | onto bl<br>with nc           | lock wall/rh-fr<br>prmal manufa<br>N TO BS5628-1<br>Aggregate co<br>punit = 3.6 N/mr<br>lunit = 100 mm;<br>Category II;<br>$\gamma_m$ = 3.5;<br>t = 100 mm;<br>h = 3000 mm;                                                                                            | ront; adop<br>icture and<br>:2005<br>ncrete blo<br>m <sup>2</sup> ;         | ot 100<br>d cons<br>→<br>cks (25 | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm 4<br>3% or less for<br>Mortar designate<br>Height of units<br>Construction of<br>Characteristic state<br>Effective wall the<br>Effective height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .6N/mm <sup>2</sup> , bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on<br>seating' on<br>med voids)<br>tion;<br>tion;<br>strength;<br>hickness;<br>t of wall;          | lockwork laid<br>ng x 100mr<br>badstone, f<br>beam/lintel f<br>nto padston<br>TEDDS calcu<br>iii<br>h <sub>unit</sub> = 215 r<br>Normal<br>f <sub>k</sub> = 3.5 N/m<br>t <sub>ef</sub> = 135 mr<br>h <sub>ef</sub> = 3000 r   | d in M4<br>m wide<br>150mm<br>to have<br>e/wall<br>ulation version 1<br>nm<br>nm                               |
| Worse case is R <sub>B</sub><br>mortar throughout<br>MASONRY BEARING<br>Masonry details<br>Masonry type;<br>Compressive strength;<br>Least horiz dim of units<br>Masonry units;<br>Partial safety factor;<br>Leaf thickness;<br>Wall height;<br>Bearing details<br>Beam spanning in plan<br>Width of bearing;                                             | onto bl<br>with nc<br>DESIGN | lock wall/rh-fr<br>prmal manufa<br><u>N TO BS5628-1</u><br>Aggregate co<br>p <sub>unit</sub> = 3.6 N/mr<br>l <sub>unit</sub> = 100 mm;<br>Category II;<br>γ <sub>m</sub> = 3.5;<br>t = 100 mm;<br>h = 3000 mm;                                                         | ront; adop<br>acture and<br><u>:2005</u><br>ncrete blo<br>m <sup>2</sup> ;  | ot 100<br>d cons<br>→<br>cks (25 | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm 4<br>3% or less for<br>Mortar designate<br>Height of units<br>Construction construction constr | .6N/mm <sup>2</sup> , bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on<br>med voids)<br>ition;<br>tion;<br>strength;<br>hickness;<br>t of wall;                        | lockwork laid<br>ng x 100mr<br>badstone, fo<br>beam/lintel fo<br>to padston<br>TEDDS calcu<br>iii<br>h <sub>unit</sub> = 215 rr<br>Normal<br>f <sub>k</sub> = 3.5 N/m<br>t <sub>ef</sub> = 135 mr<br>h <sub>ef</sub> = 3000 r | d in M4<br>m wide<br>150mm<br>to have<br>e/wall<br>ulation version 1<br>nm<br>nm <sup>2</sup><br>m<br>mm       |
| Worse case is R <sub>B</sub> mortar throughout<br>MASONRY BEARING<br>Masonry details<br>Masonry type;<br>Compressive strength;<br>Least horiz dim of units<br>Masonry units;<br>Partial safety factor;<br>Leaf thickness;<br>Wall height;<br>Bearing details<br>Beam spanning in plan<br>Width of bearing;                                                | onto bl<br>with nc<br>DESIGN | lock wall/rh-fr<br>formal manufa<br>N TO BS5628-1<br>Aggregate compunit = 3.6 N/mr<br>lunit = 100 mm;<br>Category II;<br>$\gamma_m$ = 3.5;<br>t = 100 mm;<br>h = 3000 mm;<br>B = 100 mm;                                                                               | ront; adop<br>icture and<br>:2005<br>ncrete blo<br>m²;                      | ot 100<br>d cons<br>→<br>cks (25 | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm 4<br>% or less for<br>Mortar designa<br>Height of units<br>Construction ca<br>Characteristic s<br>Effective wall the<br>Effective heigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .6N/mm <sup>2</sup> , bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on<br>med voids)<br>tion;<br>tion;<br>strength;<br>hickness;<br>t of wall;                         | lockwork laid<br>ng x 100mr<br>badstone, f<br>beam/lintel f<br>nto padston<br>TEDDS calcu<br>iii<br>h <sub>unit</sub> = 215 r<br>Normal<br>f <sub>k</sub> = 3.5 N/m<br>t <sub>ef</sub> = 135 mr<br>h <sub>ef</sub> = 3000 r   | d in M4<br>m wide<br>150mm<br>to have<br>e/wall<br>ulation version 1<br>nm<br>nm <sup>2</sup><br>m<br>mm       |
| Worse case is R <sub>B</sub><br>mortar throughout<br>MASONRY BEARING<br>Masonry details<br>Masonry type;<br>Compressive strength;<br>Least horiz dim of units<br>Masonry units;<br>Partial safety factor;<br>Leaf thickness;<br>Wall height;<br>Bearing details<br>Beam spanning in plan<br>Width of bearing;<br>Loading details                          | onto bl<br>with nc<br>DESIGN | lock wall/rh-fr<br>brmal manufa<br>N TO BS5628-1<br>Aggregate col<br>punit = 3.6 N/mr<br>lunit = 100 mm;<br>Category II;<br>$\gamma_m$ = 3.5;<br>t = 100 mm;<br>h = 3000 mm;<br>B = 100 mm;                                                                            | ront; adop<br>acture and<br><u>:2005</u><br>ncrete blo<br>m <sup>2</sup> ;  | ot 100<br>d cons<br>→<br>cks (25 | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm 4<br>6% or less for<br>Mortar designate<br>Height of units<br>Construction of<br>Characteristic state<br>Effective wall the<br>Effective height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .6N/mm², bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on<br>med voids)<br>tion;<br>tion;<br>strength;<br>hickness;<br>t of wall;                                      | lockwork laid<br>ng x 100mr<br>badstone, foeam/lintel f<br>bto padston<br>TEDDS calcu<br>iii<br>$h_{unit} = 215 rr$<br>Normal<br>$f_k = 3.5 N/rr$<br>$t_{ef} = 135 mr$<br>$h_{ef} = 3000 rr$<br>$l_b = 225 mr$                | d in M4<br>m wide<br>150mm<br>to have<br>e/wall<br>ulation version 1<br>mm<br>mm                               |
| Worse case is R <sub>B</sub><br>mortar throughout<br>MASONRY BEARING<br>Masonry details<br>Masonry type;<br>Compressive strength;<br>Least horiz dim of units<br>Masonry units;<br>Partial safety factor;<br>Leaf thickness;<br>Wall height;<br>Bearing details<br>Beam spanning in plan<br>Width of bearing;<br>Loading details<br>Concentrated dead loa | onto bl<br>with nc<br>DESIGI | lock wall/rh-fr<br>prmal manufa<br><b>N TO BS5628-1</b><br><b>Aggregate co</b><br>punit = <b>3.6</b> N/mr<br>lunit = <b>100</b> mm;<br><b>Category II</b> ;<br>$\gamma_m = 3.5$ ;<br>t = <b>100</b> mm;<br>h = <b>3000</b> mm;<br>B = <b>100</b> mm;<br>$G_k = 15 kN;$ | ront; adop<br>icture and<br>:2005<br>ncrete blo<br>m <sup>2</sup> ;         | ot 100<br>d cons<br>→            | mm thick, 3<br>struction<br>provide<br>(C8/10)<br>deep, at<br>225mm 4<br>% or less for<br>Mortar designa<br>Height of units<br>Construction of<br>Characteristic =<br>Effective wall the<br>Effective height<br>Length of bear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .6N/mm <sup>2</sup> , bl<br>300mm lor<br>concrete p<br>bearings; b<br>seating' on<br>med voids)<br>tion;<br>tion;<br>strength;<br>hickness;<br>t of wall;<br>ing;<br>mposed load; | lockwork laid<br>ng x 100mr<br>badstone, f<br>beam/lintel f<br>nto padston<br>TEDDS calcu<br>iii<br>hunit = 215 r<br>Normal<br>fk = 3.5 N/m<br>tef = 135 mr<br>hef = 3000 r<br>lb = 225 mn<br>Qk = 3 kN                       | d in M4<br>m wide<br>150mm<br>to have<br>e/wall<br>ulation version 1<br>nm<br>nm<br>nm <sup>2</sup><br>m<br>nm |

| DEEA                        | Project                                                  | Job Ref.                                           |                              |                  |                                                  |             |
|-----------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------|------------------|--------------------------------------------------|-------------|
| KEFA                        |                                                          | 19192                                              |                              |                  |                                                  |             |
| Robert E Frv Associates Ltd | Section                                                  |                                                    |                              |                  | Sheet no./rev.                                   |             |
| 45 Bridgeman Terrace        |                                                          | ALTERATION                                         | S & EXTENSIO                 | N                | 24                                               |             |
| Wigan, WN1 1TT              | Calc. by                                                 | Date                                               | Chk'd by                     | Date             | App'd by                                         | Date        |
| Tel: 01942-826020           | P.Bithell                                                | March 2020                                         |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
| Masonry boaring type        |                                                          |                                                    |                              |                  |                                                  |             |
| Bearing type:               |                                                          |                                                    | Bearing safety               | factor           | Mars - 1 25                                      |             |
| beamig type,                | турет,                                                   |                                                    | bearing salety               |                  | γbear - 1.25                                     |             |
| Check design bearing witho  | ut a spreader                                            |                                                    |                              |                  |                                                  |             |
| Design bearing stress;      | Design bearing stress: $f_{ca} = 1.108 \text{ N/mm}^{2}$ |                                                    |                              | ng stress;       | f <sub>cp</sub> = <b>1.250</b> N/mm <sup>2</sup> |             |
|                             |                                                          | PASS -                                             | Allowable bearing stress exc |                  | eeds design bearing stre                         |             |
|                             |                                                          |                                                    |                              | -                | -                                                | -           |
| Check design bearing at 0.4 | × h below the b                                          | earing level                                       |                              |                  |                                                  |             |
| Design bearing stress;      | f <sub>ca</sub> = <b>0.175</b> N/m                       | .175 N/mm <sup>2</sup> ; Allowable bearing stress; |                              |                  | f <sub>cp</sub> = <b>0.680</b> N/mm <sup>2</sup> |             |
| PASS -                      | Allowable beari                                          | ing stress at 0.4                                  | f ´ h below be               | aring level exce | eeds design be                                   | earing stre |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |
|                             |                                                          |                                                    |                              |                  |                                                  |             |