

Unit J8 | Peek Business Park | Woodside | Bishops Stortford | CM23 5RG 01920 822233 | www.hesi.co.uk | info@hesi.co.uk

Geotechnical Assessments | Environmental Assessments | Desktop Studies | Contamination Analysis

GEOTECHNICAL REPORT

Site Address:	Ware Priory Lido, Priory Street, Ware, SG12 0DE
Report Date:	28 th June 2024
Project No.:	18980
Prepared for:	Ware Town Council The Priory, High Street, Ware, SG12 9AL

Registered No. 02203445. A division of Warren House Ltd.

V.A.T. Registration No. 538 5788 89

CONTENTS

1.	Introduction	. 4
2.	Description of Site	. 4
3.	Fieldwork	. 4
4.	Laboratory Testing	. 4
5.	Fieldwork Results	. 5
6.	Results	. 6

APPENDICES

- APPENDIX 1 Site Plan APPENDIX 2 – Borehole / Trial Pit / Concrete Core Logs
- APPENDIX 3 Laboratory Testing

<u>SUMMARY</u>

ADDRESS: Ware Priory Lido, Priory Street, Ware, SG12 0DE

FOUNDATION OVERVIEW

Location	Description	
TP1	Stepped concrete footing founded at 0.65m bgl	
TP2	Stepped concrete footing founded beyond 0.70m bgl	

SOILS PROFILE

Location	Depths	Made Ground	Natural Soils
TP1	GL – 0.20m bgl	Paving over Sand & Type 1 MOT	
	0.20m bgl – 0.80m bgl	Compact dark brown / black slightly silty claybound brick & gravel	
TP2	GL – 0.20m bgl	Paving over Sand & Type 1 MOT	
	0.25m bgl – 1.40m bgl	Compact dark brown / black slightly silty claybound brick & gravel	
BH1	GL – 0.30m bgl	Grass over a loose dark brown slightly claybound TOPSOIL	
	0.30m bgl – 1.70m bgl	Compact dark brown / black slightly silty claybound brick, gravel & clinker	
	1.70m bgl – 2.90m bgl		Soft dark brown silty CLAY with lens of PEAT
	2.40m bgl – 3.00m bgl		Medium dense orange, brown GRAVEL
BH2	GL – 1.20m bgl	Grass over a loose dark brown slightly claybound TOPSOIL	
	1.20m bgl – 2.90m bgl		Soft dark brown silty CLAY with lens of PEAT
	2.90m bgl – 3.60m bgl		Medium dense grey claybound SAND & GRAVEL
	3.60m bgl – 5.00m bgl		Medium dense grey claybound SAND & GRAVEL

ROOT SYSTEM OVERVIEW

Location	Depth Recorded	Identification (If completed)
TP1	Roots encountered to the close (0.80m bgl)	-
TP2	Roots encountered to the close (0.70m bgl)	-
BH1	Roots encountered to 0.60m bgl)	-
BH2	Roots encountered to 2.70m bgl	-

GROUNDWATER OVERVIEW

Location	Depth Water Struck	Depth of Standing Water	Rate of Inflow
TP1	DRY	-	-
TP2	DRY	-	-
BH1	2.90m bgl	2.20m bgl	Steady
BH2	3.10m bgl	1.70m bgl	Steady-

SOIL ANALYSIS: Cohesive Soils

Casagrande Plasticity Classification:	High - Extremely High
Plasticity Index:	23 -74%
NHBC Shrinkability Classification:	Moderate - High
Significant Desiccation:	No significant desiccation was recorded within the samples tested from the site works
Sulphate Content:	DS-1/AC-1s

SOIL ANALYSIS: Granular Soils

Fines Content:	SAND & GRAVEL geology < 35% fines

1. Introduction

- 1.1 All site investigation works have been undertaken in accordance with BS5930:2015+A1:2020, (Code of Practice for Ground Investigations).
- 1.2 In accordance with your instructions, we visited the above site on the 10th & 18th of June 2024.
- 1.3 The comments and opinions expressed are based purely on the soil and groundwater conditions identified within this report and the subsequent laboratory testing.
- 1.4 Some special condition may be present on site that, to date, has not been encountered within the scope of the site investigation works completed and therefore may not have been considered within the report. The findings of this report are based on the soil and groundwater sampling completed at the locations tested.
- 1.5 Unless otherwise stated, all groundwater recordings relate to short term observations and do not consider fluctuations in elevation due to seasonal, tidal, or other effects. It is possible that fluctuations in the groundwater elevation may have an impact on the proposed design and as such, it is recommended that long term monitoring is undertaken to obtain accurate information relevant to the proposed design in terms of the ground water elevation.

2. <u>Description of Site</u>

- 2.1 The site is formed by a single storey structure in use as reception area and changing rooms for the outdoor swimming pools surrounded soft and hard landscaped areas.
- 2.2 The site is shown within the British Geological Survey Online Geology Viewer (Scale 1:50 000, Solid & Drift), which shows that the site situated with an area of Kempton Park Gravel Member Sand and gravel over Lewes Nodular Chalk Formation and Seaford Chalk Formation Chalk.

3. Fieldwork

- 3.1 In order to assess the site, the following site investigation works were implemented.
 - 2 No. Dynamic Competitor Rig boreholes, along with Dynamic Probes were sunk to a maximum depth of 10.00 meters.
 - A groundwater monitoring well has been installed within a borehole undertaken upon the site for the purpose of groundwater monitoring. This was sunk in BH2.
 - 2 No. Hand excavated trial pits were undertaken to a maximum depth of 0.80m bgl.
 - 2 No. Concrete cores
 - Geotechnical Laboratory Testing
- 3.2 The location of these works is indicated on the site plan-forming Appendix 1.
- 3.3 The various strata encountered were noted and are recorded on the excavation logs forming Appendix2.
- 3.4 Full ranges of samples were recovered as noted and retained for subsequent laboratory testing.

4. Laboratory Testing

4.1 Laboratory testing has been undertaken in accordance with BS 1377-2:2022, (Methods for Tests for Soils for Civil Engineering Purposes), the results of which are enclosed.

- 4.2 Selected samples were recovered to determine their Atterberg Limits, Particle Size Distribution Testing, Hand Penetrometer Testing, Soluble Sulphate value and pH.
- 4.3 The results of this laboratory testing are enclosed and form Appendix 3.
- 5. Fieldwork Results
 - 5.1 The existing footing details have been recorded and detailed within the logs forming appendix 2 and summarised below.

Table 1 Footing Details

Location	Description	
TP1	Stepped concrete footing founded at 0.65m bgl	
TP2	Stepped concrete footing founded beyond 0.70m bgl	

5.2 Based on the borehole logs which can be found forming Appendix 2 a reviewed of the geology within the site is as follows: -

Table 2 Geological Profile

Location	Depths	Made Ground	Natural Soils
TP1	GL – 0.20m bgl	Paving over Sand & Type 1 MOT	
	0.20m bgl – 0.80m bgl	Compact dark brown / black slightly silty claybound brick & gravel	
TP2	GL – 0.20m bgl	Paving over Sand & Type 1 MOT	
	0.25m bgl – 1.40m bgl	Compact dark brown / black slightly silty claybound brick & gravel	
BH1	GL – 0.30m bgl	Grass over a loose dark brown slightly claybound TOPSOIL	
	0.30m bgl – 1.70m bgl	Compact dark brown / black slightly silty claybound brick, gravel & clinker	
	1.70m bgl – 2.90m bgl		Soft dark brown silty CLAY with lens of PEAT
	2.40m bgl – 3.00m bgl		Medium dense orange, brown GRAVEL
BH2	GL – 1.20m bgl	Grass over a loose dark brown slightly claybound TOPSOIL	
	1.20m bgl – 2.90m bgl		Soft dark brown silty CLAY with lens of PEAT
	2.90m bgl – 3.60m bgl		Medium dense grey claybound SAND & GRAVEL
	3.60m bgl – 5.00m bgl		Medium dense grey claybound SAND & GRAVEL

Table 3 Groundwater Overview

Location	Depth Water Struck	Depth of Standing Water	Rate of Inflow
TP1	DRY	-	-
TP2	DRY	-	-
BH1	2.90m bgl	2.20m bgl	Steady
BH2	3.10m bgl	1.70m bgl (10 th June 2024) 1.49m bgl (18 th June 2024)	Steady-

- 5.3 Groundwater records, unless otherwise stated, are based on short-term observations, and do not allow for or consider seasonal or other fluctuations, global warming, or periods of excessive wet or dry weather. All groundwater records are noted at the time of the drilling works and any other subsequent groundwater readings taken which, if present, are shown. Should the development be reliant on groundwater impacting on either below ground excavations, basements or short- or long-term excavations, HESI would recommend the installation of standpipes to depths relevant to any proposed excavation works and a period of either short- or long-term monitoring. This can be completed on request.
- 5.4 Roots were encountered within the boreholes based on examination of the soil samples across the site as shown below and recorded within the attached sample logs in Appendix 2.

Table 4 Root Depths

Location	Depth Recorded	Identification (If completed)
TP1	Roots encountered to the close (0.80m bgl)	-
TP2	Roots encountered to the close (0.70m bgl)	-
BH1	Roots encountered to 0.60m bgl)	-
BH2	Roots encountered to 2.70m bgl	-

5.5 In addition to above site works, two concrete core samples were undertaken through the internal floor in order to detail the existing construction. The results of this testing can be found within the attached appendices.

6. <u>Results</u>

- 6.1 By inspection of the borehole logs and from a visual assessment of the samples recovered, a scheme of laboratory testing has been undertaken. The results are enclosed within Appendix 3 and prove the following:
- 6.2 Hand Penetrometer tests have been undertaken disturbed samples recovered from the site works. From the information gathered, it is recorded that cohesion values of between 90 – 120 kN/m² were achieved.
- 6.3 Within the underlying SAND & GRAVEL geology, SPT 'N' values of between 1 28 were achieved. Therefore, the minimum safe bearing capacity of 10 kN/m² can be used within the design, although due to groundwater being present upon the site this value should be halved for use within the design.
- 6.4 Atterberg Limits tests proved the clay soils to be of High Extremely High plasticity, (PI= 23 74 %), which indicates a Moderate High susceptibility to movement associated with moisture content change.

- 6.5 A measurement of the potential desiccation has been completed using Driscoll's Method of Desiccation Analysis which uses a comparison of moisture content profiles measures against the liquid limit measured in the Atterberg Limits test. This assumes as to the state of the soil moisture content against the state of the soil in its liquid state to assess desiccation. Driscoll makes a comparison that the soils would likely be in a state of slight desiccation if the moisture content of the soil was less than 0.5 multiplied by the liquid limit state of the soil, (slight desiccation being a level of desiccation at which overburden pressure may influence), and significant desiccation if the moisture content of the soil was less than 0.4 multiplied by the liquid limit, (significant desiccation being a level which would be unnatural to reduce to and therefore influenced by surrounding trees or vegetation). This is a mathematical representation of the state of the clay and does not consider overburden pressure which may form a factor in this calculation.
- 6.6 If the state of desiccation is a driving factor to consider foundation design, HESI would recommend the use of soil suction analysis utilising a control borehole as a comparison against desiccation levels which will provide a more accurate depiction of tree influence at that time.
- 6.7 Utilizing Driscoll's method of assessment, no significant desiccation has been identified within the samples tested, which would indicate that the underlying clay has not been impacted by the presence of the surrounding trees and vegetation to such an extent as to excessively dry out the soil.
- 6.8 Included within the laboratory testing was sulphate analysis, which can determine the use of sulphate resisting cement within the foundation design for the development. The results are enclosed and prove the classification in accordance with ACEC to be DS- 1 /AC-1S.
- 6.9 Particle Size Distribution Testing has been completed on the made ground at the site in order to assess the granular content of the soils. Based on the information gained, we can confirm that the soils tested contained less than 35% fines and as such, can be considered non shrinkable when subjected to moisture content change.

I hope the foregoing is sufficient for your requirements, although please do not hesitate to contact us should require any further information regarding the above.

Yours faithfully

D A Hudd Senior Contract Engineer

C S Gray PG Dip, PG Cert, M.Sc Managing Director

3 18980 June 2024

eotechnical Assessments | Environmental Assessments | Desktop Studies | Contamination Analysis

Ware Priory Lido, Priory Street, Ware, SG12 0DE

				(0					I	T		
Description of Stratum		gend	pth	kness n)	ater vel	Samples			S.P.T N-Value	DC's pm) llations	lations	ing th, (m)
	Beschpiton of Stratam	Le(De	Thick (n	К К	No	Type	Depth (m)	Strength	N d	Instal	Casir Dept
-	Grass over a loose dark brown slighlty silty TOPSOIL - MADE GROUND		0.30	0.30		1	U	G.L 1.00				
-	Compact dark brown / black slightly silty claybound brick, gravel & clinker - MADE GROUND											
- <u>1.0</u> -				1.40		2	U	1.00 - 2.00	N=5			
-	Soft dark brown silty CLAY with lens of PEAT		1.70		-							
 2.0 					2.20	3	U	2.00 - 3.00	N=6			
-				1.20	Steady							
-			2.90			-						
<u>3.0</u>	Borebole closed at 3 00m bol		3.00		2.90							3.00
	The borehole was then continued by means of Dynamic Probe to a depth of 10.00m bgl											
5.0	Remarks - Roots encountered to 0.60m bgl	1	1	1]	I	1	1	1	Sc	ale 1 : 25	1
	Key : U - Undisturbed Sample B - Bulk Sample D - Disturb	ed Sa	mple	W T	- Water	Sampl	le –	N	- SPT	N-Value	N m ²)	
	(100mm diameter)	Stand	110		- Cnemi	carru	0	V	- vane	. 1est, <u>(K</u>		

4 18980 June 2024

Geotechnical Assessments | Environmental Assessments | Desktop Studies | Contamination Analysis

Ware Priory Lido, Priory Street, Ware, SG12 0DE

Description of Stratum				(ness	ater vel		Samples		S.P.T N-Value		ations	ן (m), ר
				Thick (T	Le Va	No	Type	Depth (m)	or Vane Strength	OV OV	Install	Casin Depth
Grass over a TOPSOIL - M	loose dark brown slighlty silty IADE GROUND			1.20		1	U	G.L 1.00			lid Pipework	
			1.20			2	U	1.00 - 2.00	N=6			
Soft dark brov	wn silty CLAY with lens of PEAI											
- - <u>2.0</u> - -				1.70	1.70	3	U	2.00 - 3.00	N=1			
			2.90		-						00000000000000000000000000000000000000	
3.0 Medium dens	e grey claybound SAND & GRAVEL			0.70	Steady 3.10	4	U	3.00 - 4.00	N=28			3.00
Loose - medi	um dense orange brown GRAVEL		3.60		-	5	U	4.00 - 5.00	N=13			
Borehole clos	ed at 5.00m bgl		5.00	. <u>-</u>	<u> </u>	5	U	5.00	N=10	Ļ		
Remarks - 1	Ne borehole was then continued by mean Roots encountered to 2.70m bgl	ans o	of Dyn	amic F	robe	to a	dept	n of 10).00m b	gl Sc	ale 1 : 25	
Key : U - Undist (100mm	urbed Sample B - Bulk Sample D - Disturt diameter) I - Water Struck I - Water	bed Sa Standi	mple ing	W T	- Water - Chem	Sampl cal Tul	e D	N V	- SPT - Vane	N-Value e Test, (k	N.m²)	

Appendix No Sheet No lob No

DEPTH

18980

June 2024

WATER LEVELS CASING LEVELS

DRY

CASING LEVELS

WATER LEVELS

DRY

DEPTH

War	Herts & Inves Geotech re Priory L crete Core	Essex Site tigations inical Assessme ido, Priory	Unit J8 Pe 01 ents Environm Street, Wa	eek Business Park Woodside Bishops Stortford CM23 1920 822233 www.hesi.co.uk info@hesi.co.uk nental Assessments Desktop Studies Contamination Analysis are, SG12 0DE	5RG	A S Ja D	ppendix heet No ob No ate
DN	DEPTH	LEVEL	(NESS TA			SA	MPLES
LEGE	G.L.	A.O.D	THICK OF STRA	DESCRIPTION OF STRATA	NO.	ТҮРЕ	DEF
	0.13		0.13	Dense concrete screed			
	0.20		0.07	Dense concrete			
	0.25		0.05	Weak concrete with many VOIDS			
	0.40		0.21	Dense concrete			
	0.46		0.07	Weak concrete with many VOIDS			
				Concrete core complete at 0.53m bgl			
Con	crete Core	e Two					
END	DEPTH BELOW		KNESS ATA	DESCRIPTION OF STRATA		SA	MPLES
LEG	G.L.	A.O.D	THICH OF STR/		NO.	ТҮРЕ	DEF
	0.50		0.50	30mm Screed, over Weak Concrete with voids	-		
	0.70		0.20	Dense Concrete			
				Concrete core complete at 0.53m bgl			

Key : U - Undisturbed Sample (100mm diameter)

B - Bulk Sample - Water Struck

D - Disturbed Sample - Water Standing

W Т

- Water Sample - Chemical Tub

- SPT N-Value - Vane Test, (kN.m²) N V

	Appendix No.	2
Bishops Stortford CM23 5RG	Sheet No.	6
Herts & Essex Site 01920 822233 www.hesi.co.uk info@hesi.co.uk Investigations	Job No.	18980
Geotechnical Assessments Environmental Assessments Desktop Studies Contamination Analysis	Date	Jun-24

DYNAMIC PROBE TEST RESULTS

DYNAMIC PROBE TEST RESULTS

Unit J8 | Peek Business Park | Woodside Bishops Stortford | CM23 5RG

01920 822233 | www.hesi.co.uk | info@hesi.co.uk

APPENDIX SHEET JOB NUMBER

DATE

1 18980 Jun-24

ssments | Environmental Assessments | Desktop Studies | Contamination Analysis

LOCATION Ware Priory Lido, Priory Street, Ware, Herts, SG12 0DE

Excavation Location Number Depth (m) Sample Moisture (m) Natural Moisture (%) Limit Limit (m) Plasticity Index Group Symbol Ammende Plasticity (%) Desiccatio Particity (%) Perfette Perfette (%) BH1 1.00 U2 300 (%) <th colspan="9">ATTERBERG LIMITS TEST DATA</th>	ATTERBERG LIMITS TEST DATA										
(m) (%) <th>Excavation Location Number</th> <th>Depth</th> <th>Sample</th> <th>Natural Moisture Content</th> <th>Liquid Limit</th> <th>Plastic Limit</th> <th>Plasticity Index</th> <th>Group Symbol</th> <th>Ammended Plasticity Index</th> <th>Desiccation Profile</th> <th>Percentage Retained on 425 Micron Sieve</th>	Excavation Location Number	Depth	Sample	Natural Moisture Content	Liquid Limit	Plastic Limit	Plasticity Index	Group Symbol	Ammended Plasticity Index	Desiccation Profile	Percentage Retained on 425 Micron Sieve
BH1 1.00 U2 30 52 22 30 MH 23 No 25 BH1 2.00 U3 28 52 22 30 MH 23 No 25 BH1 2.00 U3 U3 28 52 22 30 MH 23 No 25 BH2 1.00 U2 39 116 32 84 CE 74 No 12 BH2 1.00 U3 278 116 32 84 CE 74 No 12 BH2 2.00 U3 278 14		(m)		(%)	(%)	(%)	(%)		(%)		(%)
BH1 1.00 U2 30 52 22 30 MH 23 No 25 BH1 2.00 U3 28 52 22 30 MH 23 No 25 BH1 2.00 U3 28 52 22 30 MH 23 No 25 BH1 3.00 U3 - - - - - - 25 BH2 1.00 U2 39 - - - - - - - - 12 BH2 1.50 U2 69 116 32 84 CE 74 No 12 BH2 2.00 U3 278 -<											
BH1 1.50 U2 30 28 52 22 30 MH 23 No 25 BH1 2.50 U3 28 52 22 30 MH 23 No 25 BH1 3.00 U3 28 52 22 30 MH 23 No 25 BH2 1.00 U2 39 116 32 84 CE 74 No 12 BH2 1.00 U3 278 116 32 84 CE 74 No 12 BH2 3.00 U4 14	BH1	1.00	U2								
BH1 2.00 U3 28 52 22 30 MH 23 No 25 BH1 3.00 U3 U4 U3 U4	BH1	1.50	U2	30							
BH1 2.50 U3	BH1	2.00	U3	28	52	22	30	МН	23	No	25
BH1 3.00 U3	BH1	2.50	U3								
BH2 1.00 U2 39 116 32 84 CE 74 No 12 BH2 1.50 U2 69 116 32 84 CE 74 No 12 BH2 2.00 U3 176 12 10 12 12 BH2 2.50 U3 278 16 16 16 17 12 BH2 3.00 U4 14 16 16 16 16 17 12 BH2 3.00 U4 14 16 16 16 16 16 17 BH2 3.00 U4 14 </td <td>BH1</td> <td>3.00</td> <td>U3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	BH1	3.00	U3								
BH2 1.50 U2 69 116 32 84 CE 74 No 12 BH2 2.00 U3 176 1	BH2	1 00	U2	39							
BH2 2.00 U3 176 BH2 2.50 U3 278 BH2 3.00 U4 BH2 3.50 U4 BH2 4.00 U4 Image: Hold of the state	BH2	1.50	U2	69	116	32	84	CE	74	No	12
BH2 2.50 U3 278 BH2 3.00 U4 BH2 3.50 U4 BH2 4.00 U4	BH2	2.00	U3	176			0.				
BH2 3.00 U4 BH2 3.50 U4 BH2 4.00 U4	BH2	2.50	U3	278							
BH2 3.50 U4 BH2 4.00 U4	BH2	3.00	U4								
BH2 4.00 U4	BH2	3.50	U4								
	BH2	4.00	U4								

3

Unit J8 Peek Business Park Woodside Bishops Stortford CM23 5RG

01920 822233 | www.hesi.co.uk | info@hesi.co.uk

APPENDIX SHEET JOB NUMBER DATE

technical Assessments | Environmental Assessments | Desktop Studies | Contamination Analys

LOCATION

Ware Priory Lido, Priory Street, Ware, Herts, SG12 0DE HAND PENETROMETER STRENGTH TEST RESULTS

Excavation Location Number	Depth	Sample	Natural Moisture Content	Hand Penotrometer	Estimated Allowable Bearing Capacity	Notes
	(m)		(%)	(Undrained)	(kN/m²)	
BH1	1.00	U2				
BH1	1.50	U2	30			
BH1	2.00	U3	28	45	90	
BH1	2.50	U3				
BH1	3.00	U3				
D U IO	4.00				100	
BH2	1.00	02	39	60	120	
BH2	1.50	02	69	45	90	
BH2	2.00	03	176			
	2.50	03	278			
	3.00	04				
BH2	3.30 4.00	04 114				
DHZ	4.00	04				

LOCATION

Unit J8 | Peek Business Park | Woodside Bishops Stortford | CM23 5RG APPENDIX SHEET JOB NUMBER DATE

chnical Assessments Environmental Assessments Desktop Studies Contamination Analysis

Ware Priory Lido, Priory Street, Ware, Herts, SG12 0DE

SULPHATE ANALYSIS								
Excavation			Concer	trations of Soluble	e Sulphate			
Location	Depth	Sample		Soil	Groundwater	Classification	pН	
Number			Total SO4	SO4 in 2:1				
	(m)		(%)	Water:soil (g/l)				
BH1	2.00	U3		0.48		DS-1 / AC-1s	7.57	
BH2	1.50	U2		0.02		DS-1 / AC-1s	7.25	
BH2	2.50	U3		0.04		DS-1 / AC-1s	7.16	

3 3 189<u>80</u>

Jun-24

Unit J8 Peek Business Park Woodside Bishops Stortford CM23 5RG	Appendix No. Sheet No. 4
Herts & Essex Site 01920 822233 www.hesi.co.uk info@hesi.co.uk	Job No. 18980
Geotechnical Assessments Environmental Assessments Desktop Studies Contamination Analysis	Date Jun-24

LOCATION Ware Priory Lido, Priory Street, Ware, Herts, SG12 0DE

Fines (%) = **3** Sands (%) = **15** Gravels (%) = **82** Cobbles (%) = **0**

British Standard Sieve Test 5930:2015 as Per Test 7a

Unit J8 Peek Business Park Woodside Bishops Stortford CM23 5RG	Appendix No. Sheet No.	3 5
Herts & Essex Site 01920 822233 www.hesi.co.uk info@hesi.co.uk	Job No. 1898	0
Geotechnical Assessments Environmental Assessments Desktop Studies Contamination Analysis	Date Jun-2	4

LOCATION Ware Priory Lido, Priory Street, Ware, Herts, SG12 0DE

Fines (%) = **3** Sands (%) = **20** Gravels (%) = **77** Cobbles (%) = **0**

British Standard Sieve Test 5930:2015 as Per Test 7a

Unit J8 Peek Business Park Woodside Bishops Stortford CM23 5RG	Appendix No. Sheet No.	3 6
Herts & Essex Site 01920 822233 www.hesi.co.uk info@hesi.co.uk	Job No.	18980
Geotechnical Assessments Environmental Assessments Desktop Studies Contamination Analysis	Date	Jun-24

LOCATION Ware Priory Lido, Priory Street, Ware, Herts, SG12 0DE

Fines (%) = 4 Sands (%) = 13 Gravels (%) = 83 Cobbles (%) = 0

British Standard Sieve Test 5930:2015 as Per Test 7a