

Tom Keating and Associates Limited

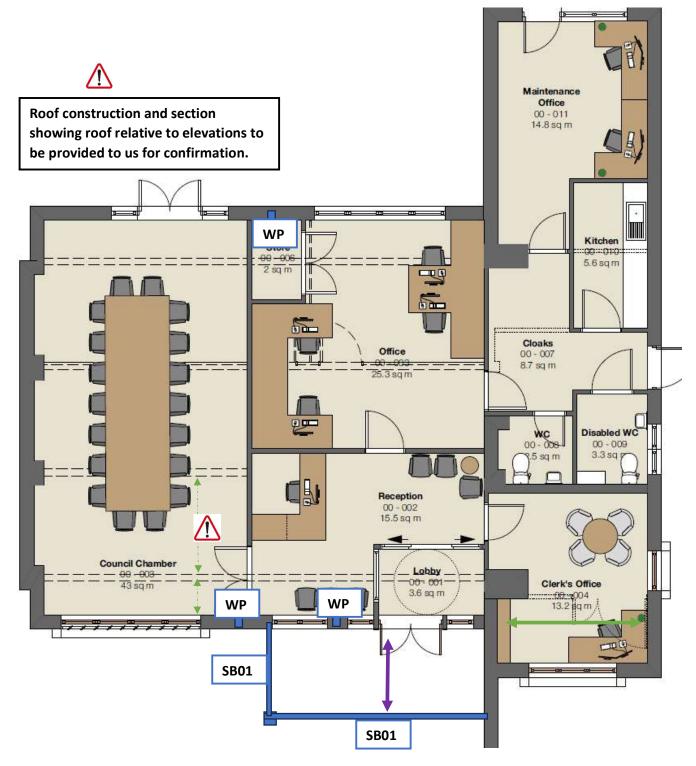
Cromford House, Amber Drive Langley Mill Nottingham NG16 4BE

P: 01332 980020 E: info@tkalimited.com W: www.tkalimited.com

STRUCTURAL CALCULATIONS

Lutterworth Town Council Building

for


Lutterworth Town Council

Reference: 230646-TAA-CAL-001

Revision History							
Version	Description	Ву	Chk'd	Date			
A01	First issue	MF	MET	22.09.2023			
A02	Second issue: Correction of existing foundation layout	MF	-	03.11.2023			

Summary

Ground floor plan showing roof structure over

Timber Flat roof joists supporting green roof over canopy. Assumed span = 2m

By: MF Ch

Chk'd: **MET**

	Size	Bearing/connection details
Flat roof joists	47 x 175 C16 rafters @ 400mm c/c	Proprietary joist hangers and wall plates to support a safe working load of 1.1KN. For fixing into front elevation use M10 Rawlbolt shield anchors, staggered @ 225mm horizontal centres. Install to manufacturer's instructions
		An 8mm thk plate may be welded to the bottom flange to support any cladding.
		Beam-Beam connection: Weld a 10mm thk end plate to the web of the smalle SB01 using 6mm CFW and bolt into web of longer SB01 using 4No M16 8.8 bolts.
SB01	178 x 102 x 19 UB Min.Grade S275 JR	Connection to SC01: Weld a 10mm thk capping plate to the top of SC01 usin 6mm CFW and bolt bottom flange of SB01 to capping plate using 4No M12 8.8 bolts. See sheet 23.
		At wall ends: Bear 100mm onto a 215mm long x 100mm wide x 215mm deep 50N concrete padstone and bolt bottom flange of SB01 into concrete padstone using 2No M12 5.8 resin anchors, min. embedment of 150mm.
SC01	80 x 80 x 5 SHS Grade S355 JRH	10mm thk, 200mm x 200mm base plate to be welded to the bottom of SC01 using 6mm CFW and bolted into new pad foundation using 4No M16 5.6 res anchors, min. embedment of 150mm.
External lintels	Standard duty Catnic lintels or equivalent to match thermal requirements and cavity width	Min. 150mm bearings at either end. Install to manufacturer's details.
Wind post, WP	100 x 50 x 5 RHS Grade S355 with the post the same width as the blockwork.	Bottom of wind post to be welded to a 10mm thk, 200mm long x 100mm wind base plate using 6mm CFW and bolted into the new strip footings using 2Nc M16 5.6 resin anchors. Fix into joist wall plate and strap back to at least 3 noggins.

Extension super structure Specifaction

All new external openings to have Ancon AMR/S/D3.0/W60 bed joint reinforcement provided in the first and second courses above and below all openings and should extend no less than 600mm either side of the opening unless otherwise specified.

The North oriented front panel to consist of AMR/S/D3.0/W60 bed joint reinforcement in all courses of block and brick above openings.

Position of existing flat roof joists relative to masonry panels to be confirmed back to us.

Wind post to support front elevation and should be suitably strapped to new masonry @ max.225mm vertical centres. Ensure Joint between blockwork and wind post is to be tightly packed with mortar.

External blockwork above DPC to consist of 3.6N blockwork in M4 mortar.

External masonry below DPC to consist of 7.3N blockwork in M6 sulphate resistant mortar with blockwork below ground confirmed for use by the manufacturer.

By: MF Chk'd: MET

Foundation Specification (See sheet 32)

The formation below all foundations is to comprise natural ground having a safe net bearing capacity **of at least 100 kN/m².** This is to be confirmed on site by Building Control, with Engineer to be informed in good time if any doubts arise so that the design of the foundations may be reassessed.

All new external footings to be min.600mm wide.

Pad footing under SC01 to be 600mm x 600mm x min. 300mm thk

Building control to advise on site if additional mesh reinforcement is required ie. Soft spots

Depth to bottom of all footings, to building control approval with all foundations to be founded to the same depth and bearing strata – subject to confirmation from Building Control. Provide 50mm Cordek Claymaster board or similar approved to the internal face of trench fill foundations as a provision for heave protection.

Suitability of ground bearing concrete slab to building control approval. If more than 600mm of fill is required or the ground is susceptible to heave due to nearby trees, a suspended floor should be specified. This should be confirmed with Building Control. Should it be found ground bearing slabs are not suitable, TKA are to be consulted for further guidance.

NOTE:- All new unreinforced concrete foundations to be min.gen 3 grade concrete.

Contents

Summary	2
Notes	6
Scope of Works and design philosophy	7
Designer's Risk Assessment	9
Structural Design	11
General Loadings	11
Wind Loadings	12
Timber analysis and design	19
Timber flat roof joists	19
Steel analysis and design	22
Steel canopy beam: SB01	22
Steel canopy column: SC01	23
Lintel Analysis & Design	24
External wall lintels	24
Masonry Analysis & Design	25
Front panel check	26
Rear panel check	29
Foundations Analysis & Design	31
Ground parameters	
Concrete specification	31
Pad footing under SC01	31
New foundations under walls (not retaining)	32
Appendix A: Existing Site	
Appendix B: Wind directional factors	35
Appendix C : Green roof loadings	

Notes

- 1. These calculations have been based on, and should be read in conjunction with the following drawings sent by Tim Adams Architecture:
- 143-TAA-XX-ZZ-DR-A-0200-P01-Existing Floor Plans
- 143-TAA-XX-ZZ-DR-A-0400-P01-Existing Elevations
- 143-TAA-XX-ZZ-DR-A-1100-P01-Proposed Site Plan
- 143-TAA-XX-ZZ-DR-A-1200-P01-Proposed Floor Plans
- 143-TAA-XX-ZZ-DR-A-1400-P01-Proposed Front Elevation
- 143-TAA-XX-ZZ-DR-A-1401-P01-Proposed Rear Elevation
- 143-TAA-XX-ZZ-DR-A-1402-P01-Proposed Side Elevation
- 143-TAA-XX-ZZ-DR-A-1403-P01-Proposed Side Elevation

If these are not the latest drawings, we should be informed.

- 2. All dimensions shown within these calculations are for design purposes only and are to be checked on site before ordering materials.
- 3. All details are subject to approval by all concerned parties which should be obtained before construction commences.
- 4. Any assumptions made by the designer have been highlighted within these calculations. These should be checked before ordering materials. If any findings differ from these assumptions, we are to be informed so that our design can be re-assessed.
- 5. In case of any doubts regarding these calculations please feel free to contact us.

Scope of Works and design philosophy

We have been asked to provide structural engineering services to allow for modifications to an existing single storey structure to accommodate an extended floor plate to the rear and front with an additional green roof canopy.

The extent of our design input is noted below:

- Design of:
 - Flat roof joists for extension and green roof canopy
 - Canopy eaves beams
 - Canopy support post
 - New foundations
- Specification of:
 - Beam bearings and padstones
 - Block strengths
 - o Lintels
- Engineer's sketches to show structural requirements

Building control is to advice on the suitability of a ground bearing slab, however our calculations will assume beam and block floor will be required.

We have not been provided with a geotechnical report, therefore assumptions regarding ground conditions are taken from BS 8002. In the case of the new foundations we have assumed the bearing strata consists of a moderately stiff clay of a minimum safe net bearing capacity of 100KN/m² which is to be checked and confirmed by building control on site, with engineer to be informed in good time if doubts arise. Building control is also to decide the required depths to bottom of all footings considering the ground conditions and presence of any trees.

Overview: The current structure, which TKA has not visited, is a load bearing masonry structure with a flat roof which is anticipated to be supported by joists spanning front to back and intermediated supported by several bulkhead beams spanning side to side across load bearing walls. The existing front elevation consists of several timber mullion members supporting a glazed facade. It is anticipated that the global lateral stability is provided by the bulkhead beams which transfer wind loadings into suitable shear walls. In plane wind loadings may be resisted by a portal frame, perhaps steel encased in concrete. The proposed structure will also rely on the existing global stability of the structure transferring any out of plane wind loadings from the masonry panels into the existing flat roof diaphragm. We have not been provided with a section showing the level of the existing diaphragm, therefore assumptions have been made when checking the masonry panels.

At the front a new canopy will be checked for the the combined saturated loading from an extensive green roof system, along with an uplift load case assuming a lightweight finish.

Proposed vertical loads will be transmitted to the ground via the foundations and masonry above.

The building is classed as a class 2A structure therefore effective ties need to be considered, in particular the canopy which is exposed externally.

Where proposed materials are unknown to us, permanent loadings have been approximated with BS-EN 1991-1-1:2002. In the case of the green roof loadings the loadings have been approximated from the tabel shown in appendix C.

All assumptions are to be checked before ordering materials. If any discrepancies are found, we are to be contacted so that we can re-assess our design.

The proposed calculations have been undertaken using the following Approved Documents, Eurocodes and National annexes.

- BS 8004 Code of practice for foundations
- BS 8103 Structural design of low-rise buildings
- BS EN 1990 Basis of structural design
- BS EN 1991 Actions on structures
- BS EN 1993 Design of steel structures
- BS EN 1995 Design of timber structures
- BS EN 1996 Design of Masonry structures

Designer's Risk Assessment

	Checklist of potential operations and hazards				
Potential hazards	Present	Key significant hazards to be addressed			
Client operations					
Adjacent activities					
Restricted site					
Traffic					
Interface with public					
Near to highways					
Near to railways					
Near to waterways					
Tidal working					
Ground instability					
Contamination		Unknow - No GI provided			
Soil gas					
Ground water					
Vegetation					
Inundation					
Sewage					
Fuel tanks					
Services					
Overhead cables	Х	BT cables overhead			
Demolition					
Unstable structures					
Explosives					
Asbestos	Х	Potential hazard given the age of the building			
Bird droppings					
Dust					
Hazardous materials					
Radiation					
Hot working					
Confined spaces					
Working at height					
Manual handling	Х				
Lifting operations	Х				
Vibration					
Noise					
Other (state)					

Hazard	Action by Designer	Residual Hazard
Unknown ground	To eliminate: Cannot be eliminated	
conditions		
	To reduce: A net safe bearing capacity of 100KN/m ² has been assumed which is considered an acceptable assumption for most clay strata.	Risk remains, all ground conditions are to be assessed on site by building control before any foundation works commence.

Structural Design

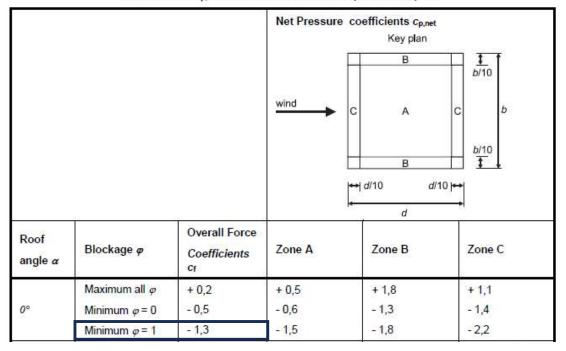
General Loadings

SECTION				OUTPUT
	<u>Loadings - in accord</u>	dance with BS EN 1991-1-1:2002 and NA		
		7		
	Roof - flat			
	Dead		9k	
	Coverings & Serv	18mm plywood and finishes	0.38	
	Joists etc.	47x175mm C16 timbers 2 400mm c/c	0.10	9k =
	Ceiling/insulation	12mm plasterboard and skim	0.18	0.66 kn/m
	Variable		٩k	9k =
1. 3.3.2 (1)	Snow or roof	Max. of snow or imposed load (Category H)	0.60	0.60 kN/m
	Roof - flat, g	reen canopy		
	Dead		9k	
	Coverings & Serv	High-end Extensive green roof., saturated	1.75	
	Joists etc.	47x175mm C16 timbers @ 400mm c/c	0.10	9k =
	Ceiling/insulation	12mm plasterboard and skim	0.18	2.03 kN/m
	Variable		٩k	9k =
1. 3.3.2 (1)	Snow or roof	Max. of snow or imposed load (Category H)	0.60	0.60 kn/m
		_		
	Walls			
	Dead		9k	
	215 Solid brick		4.73	
	100 brick		2.20	
	100 block		1.50	
	Timber		0.40	
	Glazing		0.40	
			0.18	

*Note: We have not been provided with a green roof specification, therefore the maximum saturated weight of the green room system has been approximated through manufacturer's upper bounds for an extensive green roof (appropriate for green roof canopies). The weight of the additional water within the soil is taken as a dead load however may be combined with snow loadings during low temperatures.

By: MF Chk'd: MET

Wind Loadings


In accordance with EN1991-1-4:2005+A1:2010 and the UK national annex

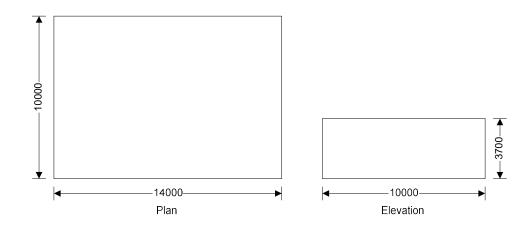
Tedds calculation version 3.0.28

Basic values	
Location;	Lutterworth
Wind speed velocity (FigureNA.1);	v _{b,map} = 21.7 m/s
Distance to shore;	L _{shore} = 100.00 km
Altitude above sea level;	A _{alt} = 126.0 m
Altitude factor;	c _{alt} = A _{alt} /1m × 0.001 + 1 = 1.126
Fundamental basic wind velocity;	$v_{b,0} = v_{b,map} \times c_{alt} = 24.4 \text{ m/s}$
Direction factor;	c _{dir} = 1.00
Season factor;	c _{season} = 1.00
Shape parameter K;	K = 0.2
Exponent n;	n = 0.5
Air density;	ρ = 1.226 kg/m³
Probability factor;	$c_{prob} = [(1 - K \times In(-In(1-p)))/(1 - K \times In(-In(0.98)))]^n = 1.00$
Basic wind velocity (Exp. 4.1);	$v_b = c_{dir} \times c_{season} \times v_{b,0} \times c_{prob} = 24.4 \text{ m/s}$
Reference mean velocity pressure;	$q_b = 0.5 \times \rho \times v_b^2 = \textbf{0.366} \text{ kN/m}^2$
Orography	
Orography factor not significant;	c _o = 1.0
Terrain category;	Country
Displacement height (sheltering effect excluded);	h _{dis} = 0mm
Reference height (at which q is sought);	z = 3700 mm
Displacement height (sheltering effects excluded);	h _{dis} = 0 mm
Exposure factor (Figure NA.7);	c _e = 1.73
Peak velocity pressure;	$a_{\rm p} = c_{\rm e} \times q_{\rm b} = 0.63 \text{ kN/m}^2$
	0 1

Table 7.6 — cp,net and cf values for monopitch canopies

Wind acting on the canopy will create an uplift on the roof due to the blockage from the front elevation.

Uplift pressure = -1.3×0.63 KN/m² = -0.82KN/m²


Lightest green roof dead load(not saturated) approximately taken as same dead load as a standard flat roof. Therefore max. net uplift = 0.82-0.66 = 0.16KN/m²

Connections required to resist uplift but design of joists and beams critical for combined snow and saturated green roof loadings.

Total potential uplift load acting on 6x2 canopy = 0.16KN/m² x 6m x 2m = 2KN

By: **MF** Chk'd: MET

Building data

Type of roof;	Flat
Length of building;	L = 14000 mm
Width of building;	W = 10000 mm
Height to eaves;	H = 3700 mm
Eaves type;	Sharp
Total height;	h = 3700 mm

The velocity pressure for the windward face of the building with a 0 degree wind is to be considered as 1 part as the height h is less than b (cl.7.2.2)

The velocity pressure for the windward face of the building with a 90 degree wind is to be considered as 1 part as the height h is less than b (cl.7.2.2)

Peak velocity pressure - windward wall - Wind 0 deg and roof

Structural factor	
Structural damping;	δs = 0.100
Height of element;	h _{part} = 3700 mm
Size factor (Table NA.3);	c _s = 0.917
Dynamic factor (Figure NA.9);	c _d = 1.003
Structural factor;	$c_{sCd} = c_s \times c_d = 0.920$
Peak velocity pressure - windward wall - Wind	90 deg and roof
Reference height (at which q is sought);	z = 3700 mm
Displacement height (sheltering effects excluded);	h _{dis} = 0 mm
Exposure factor (Figure NA.7);	c _e = 1.73
Peak velocity pressure;	q_p = $c_e \times q_b$ = 0.63 kN/m ²
Structural factor	
Structural damping;	δs = 0.100
Height of element;	h _{part} = 3700 mm
Size factor (Table NA.3);	c _s = 0.929
Dynamic factor (Figure NA.9);	c _d = 1.009
Structural factor;	$c_{sCd} = c_s \times c_d = \textbf{0.937}$
Peak velocity pressure for internal pressure	
Peak velocity pressure – internal (as roof press.);	q _{p,i} = 0.63 kN/m ²
Pressures and forces	
Net pressure;	$p = c_{sCd} \times q_p \times c_{pe} - q_{p,i} \times c_{pi};$
Net force;	$F_w = p_w \times A_{ref};$
Roof load case 1 - Wind 0, c_{pi} 0.20, - c_{pe}	

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P , (kN/m²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
F (-ve)	-2.00	0.63	-1.30	2.74	-3.55
G (-ve)	-1.40	0.63	-0.94	7.62	-7.20
H (-ve)	-0.70	0.63	-0.54	41.44	-22.20
l (-ve)	-0.20	0.63	-0.24	88.20	-21.50

Total vertical net force; Total horizontal net force;

F_{w,v} = **-54.45** kN

```
F<sub>w,h</sub> = 0.00 kN
```

Walls load case 1 - Wind 0, cpi 0.20, -cpe

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P , (kN/m²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
А	-1.20	0.63	-0.83	5.48	-4.53
В	-0.80	0.63	-0.59	21.90	-13.02
С	-0.50	0.63	-0.42	9.62	-4.03
D	0.72	0.63	0.29	51.80	15.08
E	-0.33	0.63	-0.32	51.80	-16.62

Overall loading

Equiv leeward net force for overall section; Net windward force for overall section; Lack of correlation (cl.7.2.2(3) – Note); Overall loading overall section;
$$\begin{split} F_{I} &= F_{w,wE} = \textbf{-16.6 kN} \\ F_{w} &= F_{w,wD} = \textbf{15.1 kN} \\ f_{corr} &= \textbf{0.85}; \text{ as h/W is 0.370} \\ F_{w,D} &= f_{corr} \times (F_{w} - F_{I} + F_{w,h}) = \textbf{27.0 kN} \end{split}$$

Roof load case 2 - Wind 0, cpi -0.3, +cpe

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P , (kN/m²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
F (+ve)	-2.00	0.63	-0.98	2.74	-2.68
G (+ve)	-1.40	0.63	-0.63	7.62	-4.78
H (+ve)	-0.70	0.63	-0.22	41.44	-9.05
l (+ve)	0.20	0.63	0.31	88.20	27.10
Total ve	Total vertical net force;		F _{w,v} = 10.60 kN		<u>. </u>

Total horizontal net force;

F_{w,h} = **0.00** kN

Walls load case 2 - Wind 0, c_{pi} -0.3, + c_{pe}

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P , (kN/m²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
А	-1.20	0.63	-0.51	5.48	-2.79
В	-0.80	0.63	-0.28	21.90	-6.06
С	-0.50	0.63	-0.10	9.62	-0.98
D	0.72	0.63	0.61	51.80	31.53
E	-0.33	0.63	0.00	51.80	-0.18

Overall loading

Equiv leeward net force for overall section; Net windward force for overall section; Lack of correlation (cl.7.2.2(3) – Note); Overall loading overall section;
$$\begin{split} F_{I} &= F_{w,wE} = \textbf{-0.2 kN} \\ F_{w} &= F_{w,wD} = \textbf{31.5 kN} \\ f_{corr} &= \textbf{0.85}; \text{ as h/W is 0.370} \\ F_{w,D} &= f_{corr} \times (F_{w} - F_{I} + F_{w,h}) = \textbf{27.0 kN} \end{split}$$

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P , (kN/m²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
F (-ve)	-2.00	0.63	-1.32	2.74	-3.60
G (-ve)	-1.40	0.63	-0.96	4.66	-4.47
H (-ve)	-0.70	0.63	-0.54	29.60	-16.08
l (-ve)	-0.20	0.63	-0.25	103.00	-25.33
Total ve	ertical net force;		F _{w,v} = -49.50 kN		

Roof load case 3 - Wind 90, cpi 0.20, -cpe

Total horizontal net force;

F_{w,h} = **0.00** kN

Walls load case 3 - Wind 90, cpi 0.20, -cpe

Zone	Ext pressure coefficient _{Cpe}	Peak velocity pressure q _P , (kN/m²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
А	-1.20	0.63	-0.84	5.48	-4.60
В	-0.80	0.63	-0.60	21.90	-13.20
С	-0.50	0.63	-0.42	24.42	-10.36
D	0.70	0.63	0.29	37.00	10.75
E	-0.30	0.63	-0.31	37.00	-11.38

Overall loading

Equiv leeward net force for overall section; Net windward force for overall section; Lack of correlation (cl.7.2.2(3) – Note); Overall loading overall section;

FI = Fw,wE = -11.4 kN F_w = F_{w,wD} = **10.7** kN fcorr = 0.85; as h/L is 0.264 $F_{w,D} = f_{corr} \times (F_w - F_l + F_{w,h}) = \textbf{18.8 kN}$

Roof load case 4 - Wind 90, cpi -0.3, +cpe

Zone	Ext pressure coefficient _{Cpe}	Peak velocity pressure q _P , (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)	
F (+ve)	-2.00	0.63	-1.00	2.74	-2.74
G (+ve)	-1.40	0.63	-0.64	4.66	-2.99
H (+ve)	-0.70	0.63	-0.23	29.60	-6.69
l (+ve)	0.20	0.63	0.31	103.00	31.87
Total ve	ertical net force;		F _{w,v} = 19.46 kN	·	

Total vertical net force;

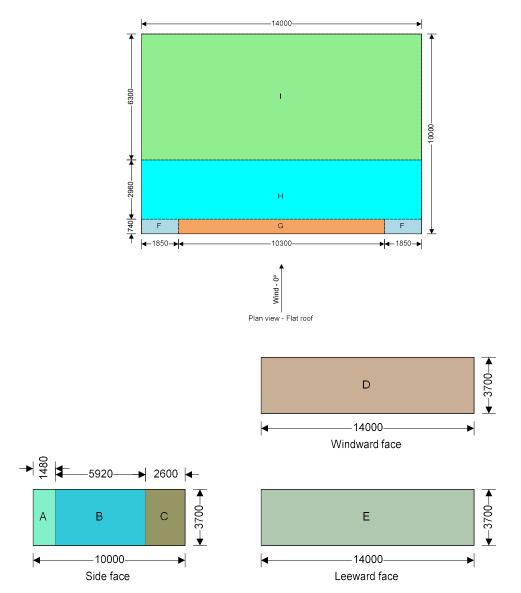
Total horizontal net force;

F_{w,h} = **0.00** kN

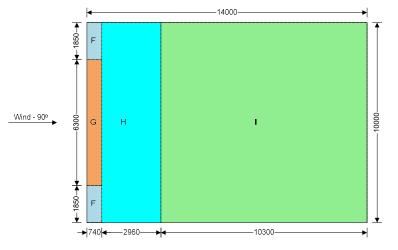
Walls load case 4	- Wind	90, Cpi	-0.3, +c _{pe}
-------------------	--------	---------	------------------------

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P , (kN/m²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
А	-1.20	-1.20 0.63 -0.52		5.48	-2.87
В	-0.80	0.63	-0.29	21.90	-6.25
С	-0.50	0.63	-0.11	24.42	-2.61
D	0.70	0.63	0.61	37.00	22.50
E	-0.30	0.63	0.01	37.00	0.36

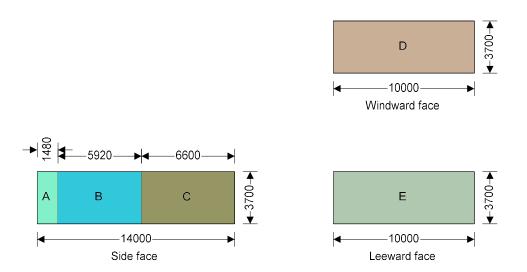
Overall loading


Equiv leeward net force for overall section; Net windward force for overall section; Lack of correlation (cl.7.2.2(3) - Note);

 $F_{I} = F_{w,wE} = 0.4 \text{ kN}$ F_w = F_{w,wD} = **22.5** kN fcorr = 0.85; as h/L is 0.264



Overall loading overall section;


 $F_{w,D} = f_{corr} \times (F_w - F_l + F_{w,h}) = \textbf{18.8 kN}$

Plan view - Flat roof

Critical North facing front panel will require checking for out of plane wind loadings

Max pressure on North facing panel = MAX [$0.61KN/m^2 \times 0.78(N-dir factor)$, $av(0.6|0.42) \times 0.74(E-dir factor)$] = $0.48KN/m^2$

Sorth facing front panel will require checking for out of plane wind loadings

Max pressure on South facing panel = MAX [$0.61KN/m^2 \times 0.85(S-dir factor)$, $av(0.6|0.42) \times 0.74(E-dir factor)$] = $0.52KN/m^2$

Timber analysis and design

Timber flat roof joists

Flat roof joists span across the new extended roof and across the canopy. Design joists to equivalent sizes across the site.

Try 400mm c/c for joists.

Check joists spanning 3.4m over proposed Clerk's office:

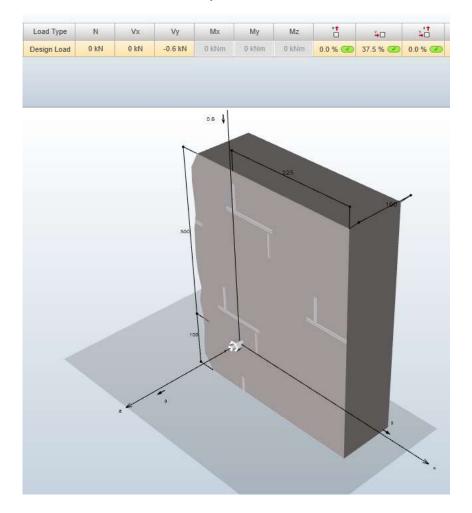
		001	TPUT
	Timber beam design - in accordance with BS EN 1995-1-1 and NA		
	$L = \frac{3.4}{3.4}$ m $\gamma g = \frac{1.35}{1.35}$ $\gamma q = \frac{1.50}{1.50}$		
	Dead Vari. LW $G_{lk} Q_k$		
	Flat roof 0.66 0.6 0.4 m 0.90 0.82		
	Floor M M GOOD		
	walls m		
	kN 0.90 0.82		
Tables NA1,	Load-duration class Service class Ym		
NA2 & NA3	Short-term 2 1.30		
	Timber properties		
BS EN 338 &	b 47 mm h 175 mm Grade C16		
Equation 3.1	$f_{m,k}$ 16 N/mm ² k _h 1.00 W _{yy} 239.9 x10 ³ mm ³ f _{v,k} 3.2 N/mm ²		
	$E_{0,mean}$ 8 x10 ³ N/mm ² A 8.23 x10 ³ mm ² I ₄₄ 21.0 x10 ⁶ mm ⁴		
Table 3.1	k _{imod} = 0.9		
	Design bending strength fm.d = 0.9 x 1.00 x 1.6 / 1.30 =	11.1	N/mm ²
	Ultimate moment of resistance $M_{wlt} = 11.1 \times 239.9 \times 10^3 =$	2.66	
			FUN WI
	Ultimate load = 1.35 x 0.90 + 1.50 x 0.82 =	2.44	
	Ultimate load = 1.35 x 0.90 + 1.50 x 0.82 = M = 2.44 x 3.4 / 8 =		kN
		2.44 1.04	kN
	M = 2.44 x 3.4 / 8 = M is less then M_{alt} Instantaneous deflections:	2.44 1.04	kN
	M = 2.44 x 3.4 / 8 = M is less then M_{alt} Instantaneous deflections:	2.44 1.04	kN
	$M = 2.44 \times 3.4 / 8 =$ M is less then M_{ult}	2.44 1.04	kn knm
	$M = 2.44 \times 3.4 / 8 = M \text{ is less then } M_{ult}$ Instantaneous deflections: $W_{\text{inst},G} = \frac{5 \times 0.90 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6} + \frac{19.2 \times 0.38 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$	2.44 1.04 OK 2.85	kn knm mm
	$M = 2.44 \times 3.4 / 8 = M \text{ is less then } M_{ult}$ Instantaneous deflections: $W_{\text{inst},G} = \frac{5 \times 0.90 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6} + \frac{19.2 \times 0.38 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$	2.44 1.04 OK 2.85	kn knm mm
	$M = 2.44 \times 3.4 / 8 =$ $M \text{ is less then } M_{ult}$ $Instantaneous deflections:$ $W_{inst.G} = \frac{5 \times 0.40 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6} + \frac{19.2 \times 0.38 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$ $W_{inst.Q} = \frac{5 \times 0.82 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$	2.44 1.04 OK 2.85 2.59	kN kNm mm
ECO Table NA	$M = 2.44 \times 3.4 / 8 = M \text{ is less then } M_{ult}$ Instantaneous deflections: $W_{\text{inst},G} = \frac{5 \times 0.90 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6} + \frac{19.2 \times 0.38 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$	2.44 1.04 OK 2.85 2.59	kN kNm mm
ECO Table NA A1.1 & Cl.	$M = 2.44 \times 3.4 / 8 =$ $M \text{ is less then } M_{alt}$ $Instantaneous deflections:$ $W_{inst,G} = 5 \times 0.40 \times 10^3 \times 3400^3$ $384 \times 8 \times 10^3 \times 21 \times 10^6$ $+ \frac{19.2 \times 0.38 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$ $W_{inst,Q} = \frac{5 \times 0.82 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6}$ $+ \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$ $+ \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$ $Total$	2.44 1.04 OK 2.85 2.59	kN kNm mm
ECO Table NA A1.1 & Cl. 2 2 6:	$M = 2.44 \times 3.4 / 8 =$ $M \text{ is less then } M_{alt}$ $Instantaneous deflections:$ $W_{inst,G} = 5 \times 0.40 \times 10^3 \times 3400^3$ $384 \times 8 \times 10^3 \times 21 \times 10^6$ $+ \frac{19.2 \times 0.38 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$ $W_{inst,Q} = \frac{5 \times 0.82 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6}$ $+ \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$ $+ \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$ $Total$	2.44 1.04 OK 2.85 2.59	kN kNm mm mm
ECO Table NA A1.1 & Cl. 2.2.6; Table 3.2	$M = 2.44 \times 3.4 / 8 =$ $Instantaneous deflections:$ $W_{inst,G} = \frac{5 \times 0.40 \times 10^{3} \times 3400^{3}}{384 \times 8 \times 10^{3} \times 21 \times 10^{6}} + \frac{19.2 \times 0.38 \times 10^{6}}{8 \times 10^{3} \times 8.23 \times 10^{3}}$ $W_{inst,Q} = \frac{5 \times 0.82 \times 10^{3} \times 3400^{3}}{384 \times 8 \times 10^{3} \times 21 \times 10^{6}} + \frac{19.2 \times 0.35 \times 10^{6}}{8 \times 10^{3} \times 8.23 \times 10^{3}}$ $\Psi_{2} = 0.3 k_{def} = 0.8$	2.44 1.04 0K 2.85 <u>2.59</u> 5.4	kn knm mm mm mm
ECO Table NA A1.1 & Cl. 2.2.6; Table 3.2	$M = 2.44 \times 3.4 / 8 =$ $Instantaneous deflections:$ $W_{inst.G} = \frac{5 \times 0.40 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6} + \frac{19.2 \times 0.38 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$ $W_{inst.Q} = \frac{5 \times 0.82 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$ $U_2 = 0.3 k_{def} = 0.8$ $W_{fin.Q} = 2.85 \times (1 + 0.8)$ $W_{fin.Q} = 2.59 \times (1 + 0.3 \times 0.8)$	2.44 1.04 OK 2.85 <u>2.59</u> 5.4 5.12	kn knm mm mm mm
ECO Table NA A1.1 & Cl. 2.2.&; Table 3.2	$M = 2.44 \times 3.4 / 8 =$ $Instantaneous deflections:$ $W_{inst.G} = \frac{5 \times 0.40 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6} + \frac{19.2 \times 0.38 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$ $W_{inst.Q} = \frac{5 \times 0.82 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$ $U_2 = 0.3 k_{def} = 0.8$ $W_{fin.Q} = 2.85 \times (1 + 0.8)$ $W_{fin.Q} = 2.59 \times (1 + 0.3 \times 0.8)$	2.44 1.04 OK 2.85 5.4 5.12 3.21 8.3	kn knm mm mm mm
ECO Table NA A1.1 & Cl. 2.2.6; Table 3.2 Table NA4	$M = 2.44 \times 3.4 / 8 =$ $Instantaneous deflections:$ $W_{inst,G} = \frac{5 \times 0.40 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6} + \frac{19.2 \times 0.38 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$ $W_{inst,Q} = \frac{5 \times 0.82 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$ $U_2 = 0.3 k_{def} = 0.8$ $W_{fin,Q} = 2.85 \times (1 + 0.8)$ $W_{fin,Q} = 2.59 \times (1 + 0.3 \times 0.8)$ $Total$	2.44 1.04 OK 2.85 5.4 5.12 3.21 8.3	kn knm mm mm mm
ECO Table NA A1.1 & Cl. 2.2.6; Table 3.2 Table NA4	$M = 2.44 \times 3.4 / 8 =$ $Instantaneous deflections:$ $W_{inst.G} = \frac{5 \times 0.40 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6} + \frac{19.2 \times 0.38 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} + \frac{19.2 \times 10^6}{8 \times 10^3 \times 10^3} + 19.2 \times 10$	2.44 1.04 OK 2.85 2.59 5.4 5.12 3.21 8.3 OK 1.22	kn knm mm mm mm mm kn
ECO Table NA A1.1 & Cl. 2.2.6; Table 3.2 Table NA4	$\begin{split} M &= 2.44 \times 3.4 / 8 = \\ & M \text{ is less then } M_{alt} \\ & Instantaneous deflections: \\ & W_{inst,G} &= \frac{5 \times 0.40 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6} + \frac{19.2 \times 0.38 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} \\ & W_{inst,Q} &= \frac{5 \times 0.82 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} \\ & W_{inst,Q} &= \frac{5 \times 0.82 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3} \\ & W_{finst,Q} &= 2.85 \times (1 + 0.8) \\ & W_{fin,Q} &= 2.59 \times (1 + 0.3 \times 0.8) \\ & W_{fin,Q} &= 2.59 \times (1 + 0.3 \times 0.8) \\ & Deflection \ limit = \ \mathsf{span/250 = \ 13.6 \ mm} \\ & Bearings: kcr &= \ 0.67 \end{split}$	2.44 1.04 OK 2.85 2.59 5.4 5.12 3.21 8.3 OK 1.22	kN kNm mm mm mm mm
ECO Table NA A1.1 & Cl. 2.2.6; Table 3.2 Table NA4	$M = 2.44 \times 3.4 / 8 =$ $Instantaneous deflections:$ $W_{inst.G} = \frac{5 \times 0.40 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6} + \frac{19.2 \times 0.38 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$ $W_{inst.Q} = \frac{5 \times 0.82 \times 10^3 \times 3400^3}{384 \times 8 \times 10^3 \times 21 \times 10^6} + \frac{19.2 \times 0.35 \times 10^6}{8 \times 10^3 \times 8.23 \times 10^3}$ $\Psi_2 = 0.3 k_{def} = 0.8$ $W_{fin.Q} = 2.65 \times (1 + 0.8)$ $W_{fin.Q} = 2.59 \times (1 + 0.8)$ $W_{fin.Q} = 2.59 \times (1 + 0.3 \times 0.8)$ $Total$ Bearings: $kcr = 0.67$ $V = 2.44 / 2$	2.44 1.04 OK 2.85 2.59 5.4 5.12 3.21 8.3 OK 1.22	kN kNm mm mm mm mm kN N/mm ²

SECTION	-timbre have destructioned and the second	1005 1 1				OUT	
	<u>Timber beam design - in accordance with BS EN</u>	1995-1-1	<u>ana NA</u>				
	$L = 2.0$ m $\gamma g =$	1.35	γq=	= 1.	50		
	Dead Vari. Lw G Roof						
	Floor m Walls m kN 1.6	2 0.48					
Tables NA1,	Load-duration class Service class	V					
NA2 & NA3	Medium-term 3	γm 1.30					
	Timlean sus antice						
BS EN 338 &	Timber properties b 47 mm h 175 mm Grade C1	6					
Equation 3.1	fm,k 16 N/mm ² kn 1.00 Wyy 239.9 E _{0,mcan} 8 x10 ³ N/mm ² A 8.23 x10 ³ mm	$x10^3 \text{mm}^3$	f v,k				
	O, Mean O KTO KIMIN 71 OLD KTO MIN	<u> </u>	21.0				
Table 3.1	$k_{mod} = 0.65$						
	Design bending strength fm.d = 0.65 x 1.00						N/mm ²
	Design bending strength fm.d = 0.65 x 1.00 Ultimate moment of resistance M _{ult} = 8 x 2.30					1.92	kNm
	Ultimate moment of resistance $M_{ult} = 8 \times 230$ Ultimate load = 1.35 × 1.62 + 1.50 ×	7.9 x 1					kNm
	Ultimate moment of resistance $M_{ult} = 8 \times 230$	7.9 x 1	0 ³ =			1.92 2.91 0.73	knm kn
	Ultimate moment of resistance $M_{ult} = 8 \times 230$ Ultimate load = 1.35 × 1.62 + 1.50 × $M = 2.91 \times 2 / 8 =$	7.9 x 1	0 ³ =		en M _{ult}	1.92 2.91 0.73	knm kn
	Ultimate moment of resistance $M_{wlt} = 8 \times 230$ Ultimate load = 1.35 x 1.62 + 1.50 x $M = 2.91 \times 2 / 8 =$ Instantaneous deflections:	9.9 x 11 0.48 =	0 ³ = M is la	ess th	en M _{ult}	1.92 2.91 0.73 OK	knm kn knm
	Ultimate moment of resistance $M_{ult} = 8 \times 230$ Ultimate load = 1.35 × 1.62 + 1.50 × $M = 2.91 \times 2 / 8 =$	9.9 x 11 0.48 =	0 ³ = M is la	ess th	en M _{ult}	1.92 2.91 0.73 OK	knm kn knm
	Ultimate moment of resistance $M_{ult} = 8 \times 230$ Ultimate load = 1.35 x 1.62 + 1.50 x M = 2.91 x 2 / 8 = Instantaneous deflections:	1.9 x 1 0.48 = + <u>19.2</u> 8 x	$D^3 =$ M is I_1 $\frac{x 0.4}{10^3 \ x}$	ess th 41 x 8.23	en M _{ult} 10 ⁶ ×10 ³	1.92 2.91 0.73 OK 1.13	knm kn knm mm
	Ultimate moment of resistance $M_{wlt} = 8 \times 230$ Ultimate load = 1.35 x 1.62 + 1.50 x $M = 2.91 \times 2 / 8 =$ Instantaneous deflections:	1.9 x 1 0.48 = + <u>19.2</u> 8 x	$D^3 =$ M is I_1 $\frac{x 0.4}{10^3 \ x}$	ess th 41 x 8.23	en M _{ult} 10 ⁶ ×10 ³	1.92 2.91 0.73 OK 1.13	knm kn knm mm
	Ultimate moment of resistance $M_{ult} = 8 \times 230$ Ultimate load = 1.35 x 1.62 + 1.50 x $M = 2.91 \times 2 / 8 =$ Instantaneous deflections: $W_{inst,G} = 5 \times 1.62 \times 10^3 \times 2000^3$ $384 \times 8 \times 10^3 \times 21 \times 10^6$ $W_{inst,Q} = 5 \times 0.48 \times 10^3 \times 2000^3$ $384 \times 8 \times 10^3 \times 21 \times 10^6$ $W_{inst,Q} = 0.3 k_{def} = 3$	1.9 x 1 0.48 = + <u>19.2</u> 8 x	$D^3 =$ M is I_1 $\frac{x 0.4}{10^3 \ x}$	ess th 41 x 8.23	en M _{ult} 10 ⁶ ×10 ³	1.92 2.91 0.73 OK 1.13	knm kn knm mm
A1.1 & Cl.	Ultimate moment of resistance $M_{ult} = 8 \times 230$ Ultimate load = 1.35 x 1.62 + 1.50 x $M = 2.91 \times 2 / 8 =$ Instantaneous deflections: $W_{inst,G} = 5 \times 1.62 \times 10^3 \times 2000^3$ $384 \times 8 \times 10^3 \times 21 \times 10^6$ $W_{inst,Q} = 5 \times 0.48 \times 10^3 \times 2000^3$ $384 \times 8 \times 10^3 \times 21 \times 10^6$ $W_{inst,Q} = 0.3 k_{def} = 3$	1.9 x 1 0.48 = + <u>19.2</u> 8 x	$D^3 =$ M is I_1 $\frac{x 0.4}{10^3 \ x}$	ess th 41 x 8.23	en M_{ult} <u>10⁶</u> × 10 ³ <u>10⁶</u> × 10 ³	1.92 2.91 0.73 OK 1.13	knm kn knm mm
A1.1 & Cl.	Ultimate moment of resistance $M_{ult} = 8 \times 230$ Ultimate load = 1.35 x 1.62 + 1.50 x $M = 2.91 \times 2 / 8 =$ Instantaneous deflections: $W_{inst,G} = 5 \times 1.62 \times 10^3 \times 2000^3$ $384 \times 8 \times 10^3 \times 21 \times 10^6$ $W_{inst,Q} = 5 \times 0.48 \times 10^3 \times 2000^3$ $384 \times 8 \times 10^3 \times 21 \times 10^6$ $W_{inst,Q} = 0.3 k_{def} = 3$	1.9 x 1 0.48 = + <u>19.2</u> 8 x	$D^3 =$ M is I_1 $\frac{x 0.4}{10^3 \ x}$	ess th 41 x 8.23	en M _{ult} 10 ⁶ × 10 ³ 10 ⁶ × 10 ³ Total	1.92 2.91 0.73 OK 1.13 0.33 1.5 4.5 0.63	kNm kN kNm mm mm mm
A1.1 & Cl. 2.2.6; Table 3.2	Ultimate moment of resistance $M_{ult} = 8 \times 230$ Ultimate load = 1.35 x 1.62 + 1.50 x $M = 2.91 \times 2 / 8 =$ Instantaneous deflections: $W_{inst,Q} = \frac{5 \times 1.62 \times 10^3 \times 2000^3}{384 \times 8 \times 10^3 \times 21 \times 10^6}$ $W_{inst,Q} = \frac{5 \times 0.48 \times 10^3 \times 2000^3}{384 \times 8 \times 10^3 \times 21 \times 10^6}$ $\Psi_2 = 0.3 \qquad k_{def} = 3$ $W_{fin,Q} = 1.13 \times (1 + 3)$	1.9 x 1 0.48 = + <u>19.2</u> 8 x	$D^3 =$ M is L^3 $\frac{x \ 0.4}{10^3 \ x}$ $\frac{x \ 0.1}{10^3 \ x}$	ess th 8.23 12 x 8.23	en M_{ult} <u>10⁶</u> × 10 ³ <u>10⁶</u> × 10 ³	1.92 2.91 0.73 OK 1.13 0.33 1.5 4.5	kNm kN kNm mm mm mm
A1.1 & Cl. 2.2.6; Table 3.2	Ultimate moment of resistance $M_{ult} = 8 \times 236$ Ultimate load = 1.35 x 1.62 + 1.50 x M = 2.91 x 2 / 8 = Instantaneous deflections: Wmst.G = $5 \times 1.62 \times 10^3 \times 2000^3$ 384 x 8 x $10^3 \times 2100^3$ 384 x 8 x $10^3 \times 2000^3$ 384 x 8 x $10^3 \times 2000^3$ 384 x 8 x $10^3 \times 2000^3$ $W_{inst.Q} =$ $5 \times 0.48 \times 10^3 \times 21 \times 10^6$ $\Psi_2 =$ $0.3 \times 4_{dof} =$ 3 $\Psi_2 =$ $0.3 \times 4_{dof} =$ 3 $W_{fin.Q} =$ $0.33 \times (1 + 0.3 \times 3)$ $)$ Deflection limit = span/250 = $8 \mod 10^{3} \times 3$ Bearings: kcr = 0.67	1.9 x 1 0.48 = + <u>19.2</u> 8 x	$D^3 =$ M is L^3 $\frac{x \ 0.4}{10^3 \ x}$ $\frac{x \ 0.1}{10^3 \ x}$	ess th 8.23 12 x 8.23	en Mul+ <u>10⁶</u> × 10 ³ <u>10⁶</u> × 10 ³ Total	1.92 2.91 0.73 OK 1.13 0.33 1.5 4.5 0.63 5.1 OK	kNm kN kNm mm mm mm mm
A1.1 & Cl. 2.2.6; Table 3.2	Ultimate moment of resistance $M_{ult} = 8 \times 230$ Ultimate load = 1.35 x 1.62 + 1.50 x M = 2.91 x 2 / 8 = Instantaneous deflections: W_{inst,G} = $5 \times 1.62 \times 10^3 \times 2000^3$ 384 x 8 x $10^3 \times 2000^3$ 384 x 8 x $10^3 \times 2000^3$ $W_{inst,Q} =$ $5 \times 0.48 \times 10^3 \times 2100^3$ $W_{inst,Q} =$ $0.3 \times 10^3 \times 21 \times 10^6$ $\Psi_2 =$ $0.3 \times 4_{def} =$ $W_{fin,Q} =$ $0.33 \times (1 + 3)$ $W_{fin,Q} =$ $0.33 \times (1 + 0.3 \times 3)$ Deflection limit = span/250 = 8 mm Bearings: kzr = 0.67 $V =$ $2.91 / 2$	$\begin{array}{r} 3.9 x 1 \\ 0.48 = \\ + 19.2 \\ 8 x \\ + 19.2 \\ 8 x \end{array}$	$D^3 =$ M is L^3 $\frac{x \ 0.4}{10^3 \ x}$ $\frac{x \ 0.1}{10^3 \ x}$	ess th 8.23 12 x 8.23	en Mul+ <u>10⁶</u> × 10 ³ <u>10⁶</u> × 10 ³ Total	1.92 2.91 0.73 OK 1.13 0.33 1.5 4.5 0.63 5.1 OK 1.46	kNm kN kNm mm mm mm mm
A1.1 & Cl. 2.2.6; Table 3.2	Ultimate moment of resistance $W_{ult} = 8 \times 230$ Ultimate load = 1.35 x 1.62 + 1.50 x $M = 2.91 \times 2 / 8 =$ Instantaneous deflections: $W_{INSt,GI} = 5 \times 1.62 \times 10^3 \times 2000^3$ $384 \times 8 \times 10^3 \times 21 \times 10^6$ $W_{INSt,GI} = 5 \times 0.48 \times 10^3 \times 2100^3$ $384 \times 8 \times 10^3 \times 21 \times 10^6$ $\Psi_2 = 0.3 k_{def} = 3$ $W_{fin,GI} = 1.13 \times (1 + 3)$ $W_{fin,QI} = 0.33 \times (1 + 0.3 \times 3)$ Deflection limit = span/250 = 8 mm Bearings: $kcr = 0.67$ V = 2.91 / 2 Design shear strength $f_{v,d} = 0.65 \times 3.2$ /	$\begin{array}{r} 3.9 x 1 \\ 0.48 = \\ + 19.2 \\ 8 x \\ + 19.2 \\ 8 x \end{array}$	$D^{3} =$ M is I_{0} $\frac{x 0.4}{10^{3} \text{ x}}$ $\frac{x 0.1}{10^{3} \text{ x}}$ 5.	ess th 8.23 12 x 8.23	en Mul+ <u>10⁶</u> × 10 ³ <u>10⁶</u> × 10 ³ Total	1.92 2.91 0.73 OK 1.13 0.33 1.5 4.5 0.63 5.1 OK	kNm kN kNm mm mm mm mm mm kN N/mm ²

Line working load from canopy on wall plate = [1.62KN + 0.48KN / 2] / 0.4m = 2.63KN/m

Fix wall plate into brickwork \gtrsim 225mm horizontal centres staggered.

Therefore load per fixing into face of wall = 2.63KN/m x 0.225 = 0.6KN


Specification Data

RAWLBOLT® Shield Anchor Loose Bolt Performance Data

				Brickwork = 20.5 N/mm ²						
SIZE		TIC RESISTANCE N)		ESISTANCE d) (kN)		NDED LOAD red) (kN)	2011100107000000000000000	CEDGE DISTANCE	CHARACTERISTIC SPACING (mm)	RECOMMENDED LOAD (Unfactored) (kN)
	TENSION (N _{Rk})	SHEAR (V _{Rk})	TENSION (N _{Rd})	SHEAR (V _{Rd})	TENSION (N _{rec})	SHEAR (V _{rec)}	TENSION (C _{cr,N})	SHEAR (C _{CT, V)}	TENSION & SHEAR (S _{cr} , N) (S _{cr} , V)	TENSION & SHEAR (N _{rec}) (V _{rec})
M6	9.6	8.2	4.5	4.5	3.8	3.8	80	100	120	1.8
M8	12.1	12.8	5.6	7.1	4.7	5.9	100	120	150	2.3
M10	16.7	20.9	7.7	11.6	6.4	9.7	120	160	180	2.9
M12	24.6	30.5	11.4	16.9	9.5	14.1	160	180	250	4.3
M16	57.4	55.3	26.6	30.7	22.2	25.6	190	260	290	Bolts above M12 are not recommended in brickwork.
M20	79.4	88.1	36.8	48.9	30.7	40.8	250	300	330	When calculating loads in brickwork, apply the published
M24	99.0	122.8	45.8	68.2	38.2	56.8	280	350	420	edge distance and spacing for concrete and assume these figure to be the absolute minimums. Concrete reduction factors must NOT be applied.

C1

Try a M10 rawl fixing into the centre of a block unit, min. provided shear capacity of rawlbolt = 7.7KN

Shear		
Steel failure without lever arm	Ċ	
Utilisation	βV,s	5.00 %
Considered anchors		1
VRk,s	kN	15.00
YMsV	2	1.25
VRd,s	kN	12.00
V ^h Sd	kN	0.60
Local brick failure single anchor	[
Utilisation	βV,bh	37.50 %
Considered anchors		1
VRk,b	kN	4.00
⊐j,V	-	1.00
γMm	-	2.50
VRd,b	kN	1.60
/ ^h Sd	kN	0.60
Brick edge failure single anchor		- dp
Utilisation	βv,c,h	7.16 %
Considered anchors		1
VRk,c,I	kN	20.95
VRk,c,⊥	kN	11.64
oj,V	2	1.00
/Mm	2	2.50
√Rd,c,ll	kN	8.38
VRd,c,⊥	kN	4.66
VSd,c,I	kN	0.60
VSd,c,⊥	kN	0.00

Steel analysis and design

Steel canopy beam: SB01

Design length of beam = 5.2m

Assume beam is tortionally unrestrained throughout length of beam.

Lw of canopy roof = 2m/2 = 1m

SECTION									<u> </u>														OUT	TPUT	
<u>SB01</u>	Ste	eel	bea	m d	esia	<u>3</u> n -	in	acci	ordan	ce wi	th ·	BS	€Ν	199	3										
	L =	5	.2	т										γØ =	:	1.3	35		γØ =	1.	50				
				De	ad	V۵	ari.		L	-W				G	k	C	\hat{k}_k								
		T	200f								т														
	F	lati	roof	2.	03	D	.6			1	т			10.	56	3.	12								
		F	loor								т														
		W	Ialls								т														
	Sus	pen	sion								т														
			SW	D	.2	kΝ,	/m						kΝ	11	.6	3	.1					F =	21	D.3	k
	W =	=	20	0.3	х	5	.2	18)	=	13	3.2	kNI	m			В	eam	type						
SCI P360	Efl	fecti	ive l	engt	hk	=	1	.2L	+2h	=	6	.6	т					UT	3						
Ch. 3.3	C1	=	1.	13																					
Tata 'Blue				178	x 10	D2.X	19 (ΙB]															
300k' & Table		Мb	,Rd	17	F.2	kΝ	т											M is	less	thai	n М _{Ь,Ra}	OK			
7 BS EN 10025-2		Av	9	.9	cm²	2	t _w		4.8	mm	fy	2	.75	N/m	m²	Ių	1	360	cm	4					
10025-2																Ð	21	IDDDI	р м/	mm²	2				
	VEd	=	20	0.3	1	2	=	1	D.17	kΝ															
	V _{₽l,1}	2d	=	D.5	577	χ	2	75	х	9.	9	x 1	0 ²	=	1	569	36	N				=	1	57	k
																	V	' _{Ed} is	less	tha	n V _{PI,Ra}	OK			
	wG	k =	5	х	11	.6	χ 1	10 ³	х	52	DD	3													
		38	34	χ	2	10	χ 1	10 ³	χ	130	φD	X 1	0 ⁴									7	.4	mw	١
	wQ	k =	5	χ	3	.1	χ 1	10 ³	х	52	DD	3													
		38	34	χ	2:	10	χ 1	10 ³	х	130	φD	x 1	0 ⁴									2	D	mw	٨
																			Total	def	lection	9	.4	mn	n
Cl. NA.2.23	Def	1ect	ion l	limit	- =	sp	an/3	56D	=	14	.4	mп	n	(Live	e lo <i>o</i>	nding	only)		2.0	<	14.4	OK			

Steel canopy column: SC01

Design length of column = 2.5m

Column is partially restrained in position by incoming beams and unrestrained against rotation, therefore Leff = $1.5H = 1.5 \times 2.5m = 3.8m$

Factored vertical load acting on column = 10.2 KN

Factored uplift = $1.5 \times 2 \text{KN}/4 = 0.75 \text{KN}$

Tying load, $T_P = 0.4(gk + \psi qk)$ s L or 75 kN, whichever is the greater. In the event of a accidental failure of the masonry, the beam-column connection should be designed for 75KN of tensile loading.

Vertical load from beam will be supported via a capping plate,


Check stability of 80 x 80 x 5 SHS column :

Eccentricity taken as 0.1 + d/2 = 0.1 + 0.08/2 = 0.14m

Therefore, eccentric moment applied to column = 10.2KN x 0.14m = 1.5KNm

10.2 KN / 128 KN + 1.5 KNM / 14.1 KNM = 0.2 < 1, therefore ok.

Beam – column connection design:

Check shear and tensile capacity of bolts: Tensile resistance> Shear resistance of $4No M16 8.8 bolts = 4 \times 60.3 KN = 241 KN > 75 KN$

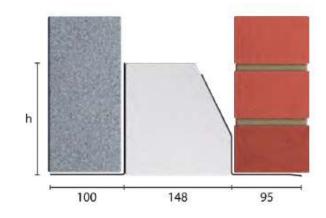
Version: A02 Sheet No. 24 By: MF Chk'd: MET

Lintel Analysis & Design

External wall lintels

Max clear span = 3.1m, Design span = $1.1 \times 3.1m = 3.4m$

Critical lintel supports a small amount of flat roof loading and cavity wall over


No arching of the masonry over the lintel

 $W(sls) = 1.26KN/m^2 \times 1m/2 + 3.9KN/m^2 \times 1.1m = 4.9KN/m$

Total load = 4.9KN/m x 3.4m = 16.7KN

Ratio of loads = 1.26KN/m² x 1m/2 + 1.7KN/m² x 1.1m / 2.2KN/m² x 1.1m = 1 < 3

Standard lengths are available in 150mm increments up to 3000mm, 300mm at lengths from 3000mm to 3600mm.

TS150/100							
Standard lengths (mm)	750- 1500	1650- 1800	1950- 2100	2250- 2400	2550- 2700	2850- 3600	
SWL 1:1/3:1 (kN)	15	18	20	22	26	26	
Weight (kg/m)	8.1	12.0	12.0	16.0	16.0	17.0	
Nominal height 'h' (mm)	153	202	202	233	233	229**	

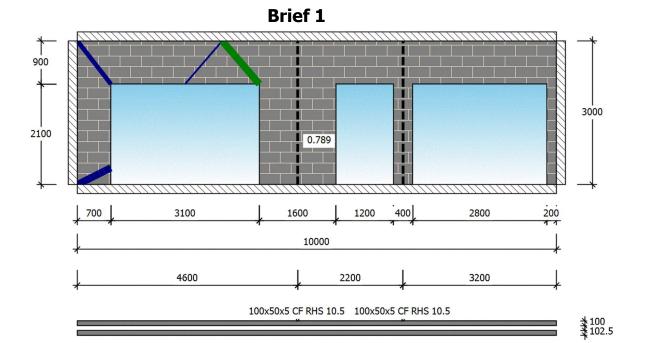
Therefore, standard duty lintels are suitable across the entire site.

Masonry Analysis & Design

In the absence of any provided data of the proposed masonry: Block strengths assumed to be a minimum of 3.6 N/mm² strength with a density of 900 kg/m³ or 1800 kg/m³ whichever is unfavourable.

Facing bricks are assumed to have a 20N/mm² strength.

All masonry classed as category 11 and execution class 2. Mortar strength assumed to be M4.


Front panel check

Applied vertical loadings from flat roof loading: W(Gk) = 0.66KN/m² X 1m/2 = 0.3KN/m

Applied wind loading = 0.48 KN/m²

Consider all masonry lateral restraints to be a pinned support. Total height of panel to roof diaphragm restraint taken as 3m (TBC). It is assumed that both masonry leaves will be constructed in blockwork as the external face is rendered.

REINFORCED TWO WAY SPANNING, VERTICALLY AND LATERALLY LOADED, CAVITY WALL

DESIGN TO BS EN 1996-1-1:2005+A1:2012

Summary of Design Data

100

gk.u 0.3

EuroCode National Annex Wall Dimensions Wind Post L reduction Support Conditions Using UK valuesA1 2012 h=3.000 m, hef=2.105 m (Eqn. 5.8), L=10.000 m, Lef=10.000 m Wind post assumed to act as stiffener, L = 4.600 m, Lef = 4.600 m Bottom Simple, Top Simple, Left Simple, Right Simple

102.5

0.48 kN/m²

on: **A02** Sheet No. **27**

By: **MF** Chk'd: **MET**

Lateral Loads	$Wx=0.48 \text{ kN/m}^2$		
Opening load span direction	opening at X = 0.7, Y = 0 - Two way spanning opening at X = 5.4, Y = 0 - Two way spanning		
	opening at $X = 7$, $Y = 0$ - Two way spanning		
Cavity Wall (mm)	t1=100, t2=102.5, tef=127.6		
Limiting Dimensions	$\lambda = 16.5 <= \lambda_{\text{lim}} = 27$, L.h<=2400 tef ² , L<=60 tef, h<=60	0.611	OK
Reinforcement Design	(BS PD 6697 6.6.2.3) BS PD 6697 6.6.5 Method 3		
-	2312 0097 0.0.3 Healog 3		
Outer-Leaf Design Partial Safety Factor (ymc/ymf)	Construction Class 2. Unit Manufacture II	ד רו כ	Table NA.1
Unit Material	Construction Class 2, Unit Manufacture II Concrete Blocks, Group 1, y=8.83 kN/m ³	3/2.7	Table NA.1
one naterial	Normalised mean compressive strengfb = 3.6 N/mm^2		
Mortar Material	M4 fm =4 N/mm ²		
Unit Ratio	Unit height=215, Least horizontal dimensions=100	2.15	
Compressive Strength (fk)	$k = 0.75$, $a = 0.7$, $\beta = 0.3$	2.7 N/mm ²	Table NA.4
Section Properties Flexural Strength f _{xk2} (Perpendicular)	Area=1025 cm ² /m, Zp=1751 cm ³ /m	0.447 N/mm ²	Table NA.6
Flexural Strength f_{xk1} (Parallel)	f _{xk1} =0.248, gd=0.014 N/mm ²	0.117 Nyimin	Table NA.0
·······	$f_{xk1} = f_{xk1} + min(gd, 0.15 \cdot f_k/\gamma mc)\gamma mf$	0.287 N/mm ²	Table NA.6
Critical axial compressive case	1.35(γ.tk.h)		
Max local stress @	X=9.8 m,Y=1.05 m < fk•0.76(small area red.)/ γ_{mc}	0.1 N/mm ²	OK
Critical axial buckling case Max axial buckling force @	1.35(γ.tk.h) X=9.9 m, Y=1.5 m averaged over width of 0.2 m	10 66kN/m	
Moments from Lateral Load	$M_{wx,top}$ =0.000 kN.m, $M_{wx,mid}$ =0.000 kN.m	10.66kN/m	
Capacity reduction factor top, ~F	ex=0.0 mm, hef=300 mm, tef=127.6 mm, t=102.5 mm	0.900	
Capacity reduction factor mid, ~F _m	$hm = 0.000 mm, h_{ef} = 0.300$	0.900	
Fr=~F.f _k .tk/γmc	0.900x2.06x102.5/3	63.2 kN/m	
Fd/Fr	10.7/63.2	0.169	OK
Mro=f _{xk2} .Zp/γmf Mro=f _{xk1} .Zb/γmf	0.447x1751/2.7 0.287x1751/2.7	0.290 kN.m/m 0.186 kN.m/m	
Bed Reinforcement	Proprietary product - Ancon AMR D3.0/W50	0.100 KN.III/III	
	Product available in stainless steel or galvinised steel.		
	Width 50 mm, No. Bars 2, fy 500 N/mm ² , E 200 kN/mm ²		
Discoment	https://www.ancon.co.uk/products/masonry-reinforcement/	amr-masonry-reinford	cement
Placement Minimum % Bed Reinforcement	Vertically spaced at 450 mm, centred on leaf 0.015% per face, As/tk = 0.1x15.71/102.5	0.0153	ОК
$z = d(1 - 0.5 \cdot As \cdot fy \cdot \gamma mf/(b \cdot d \cdot fk \cdot \gamma ms))$	76.3(1-0.5•15.71•500•2.7/(1000•76.3•2.1•1.15))<0.95d	71.8 mm	OIX
Mr=As.fy.z/yms	15.71x500x71.8/1.15	0.490 kN.m/m	
$Md_{Limit}=0.4f_k.b.d^2/\gamma mf$	0.4x2.1x1000x76.3 ² /2.7	1.771 kN.m/m	
$Md = Min(Mr, Md_{Limit})$	min(0.490, 1.771)	0.490 kN.m/m	
Inner-Leaf Design			
Partial Safety Factor (ymc/ymf)	Construction Class 2, Unit Manufacture II	3/2.7	Table NA.1
Unit Material	Concrete Blocks, Group 1, γ =8.83 kN/m ³ Normalised mean compressive strengfb =3.6 N/mm ²		
Mortar Material	M4 fm =4 N/mm ²		
Unit Ratio	Unit height=215, Least horizontal dimensions=100	2.15	
Compressive Strength (f _k)	k = 0.75, a = 0.7, β = 0.3	2.7 N/mm ²	Table NA.4
Loads from above	Dead Load=0.3 kN/m		
Section Properties	Area=1000 cm ² /m, Zp=1667 cm ³ /m	0.45 N/mm2	
Flexural Strength f _{xk2} (Perpendicular) Flexural Strength f _{xk1} (Parallel)	f _{xk1} =0.25, gd=0.018 N/mm ²	0.45 N/mm ²	Table NA.6
	$f_{xk1}=f_{xk1}+min(qd, 0.15•f_k/ymc)ymf$	0.298 N/mm ²	Table NA.6
Critical axial compressive case	1.35(γ.tk.h+gku)	,	
Max local stress @	X=9.8 m,Y=1.05 m < fk•0.76(small area red.)/ γ_{mc}	0.13 N/mm ²	OK
Critical axial buckling case	1.35(γ .tk.h+gku)	12.201.01/m	
Max axial buckling force @ Moments from Lateral Load	X=9.9 m, Y=1.5 m averaged over width of 0.2 m $M_{wx,top}$ =0.000 kN.m, $M_{wx,mid}$ =0.000 kN.m	13.39kN/m	
Capacity reduction factor top, ~F	ex=0.0 mm, hef=300 mm, tef=127.6 mm, t=100.0 mm	0.900	
Capacity reduction factor mid, ~Fm	$hm = 0.000 mm, h_{ef} = 0.300$	0.900	
Fr=~F.f _k .tk/γmc	0.900x2.05x100/3	61.6 kN/m	
Fd/Fr	13.4/61.6	0.217	OK
Mri=f _{xk2} .Zp/γmf Mri=f _{xk1} .Zb/γmf	0.45x1667/2.7 0.298x1667/2.7	0.278 kN.m/m 0.184 kN.m/m	
Bed Reinforcement	Proprietary product - Ancon AMR D3.0/W50	0.101 KN.III/III	
	Product available in stainless steel or galvinised steel.		
	Width 50 mm, No. Bars 2, fy 500 N/mm ² , E 200 kN/mm ²		
Discoment	https://www.ancon.co.uk/products/masonry-reinforcement/	amr-masonry-reinford	cement
Placement Minimum % Bed Reinforcement	Vertically spaced at 450 mm, centred on leaf 0.015% per face, As/tk = $0.1x15.71/100$	0.0157	ОК
$z = d(1 - 0.5 \cdot As \cdot fy \cdot \gamma mf/(b \cdot d \cdot fk \cdot \gamma ms))$	75.0(1-0.5•15.71•500•2.7/(1000•75.0•2.1•1.15))<0.95d	70.5 mm	UK
Mr=As.fy.z/yms	15.71x500x70.5/1.15	0.482 kN.m/m	
$Md_{Limit}=0.4f_{k}.b.d^{2}/\gamma mf$	0.4x2.1x1000x75.0 ² /2.7	1.710 kN.m/m	

Reference: 230646-TAA-CAL-001 Version: A02 Sheet No. 28

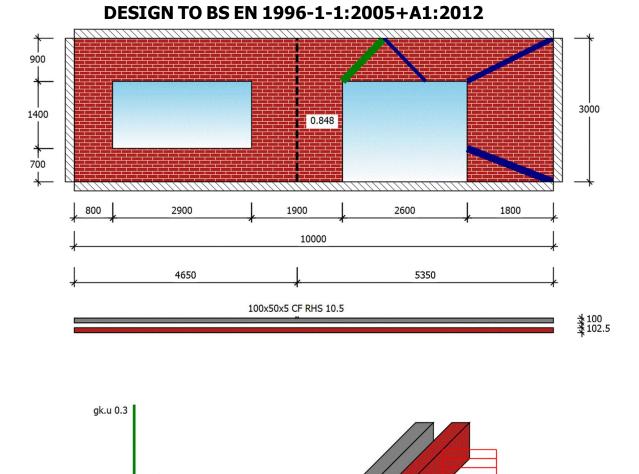
By: MF Chk'd: MET

$Md = Min(Mr, Md_{Limit})$	min(0.482, 1.710)	0.482 kN.m/m	
Design for Lateral Loa	ads		
Design Lateral Load Wd	1.5 Wx	0.720 kN/m ²	
Wind Post Data	Base pinned, Top pinned, Major axis bending		
Leaf Continuity at Wind Posts	Inner leaf continuous, outer leaf continuous		
Wind posts at 4.6m	100x50x5 CF RHS 10.5 (S 355), M _{el} 11.232 kN.m		
Wind posts at 6.8m	100x50x5 CF RHS 10.5 (S 355), M _{el} 11.232 kN.m		
Unreinforced Panel			
Yield Line Analysis	Load Factor, λ_{P}	0.895	
$Ut=1/\lambda_p$	1 / 0.895	1.118	=<1.5 OK
Reinforced Panel			
Yield Line Analysis	Load Factor, $\lambda_{\rm p}$	1.267	
$Ut=1/\lambda_p$	1 / 1.267	0.789	OK
Wind Post Design	Full restrained moment capacity implicitly checked in y	ield line analysis	

Therefore, additional strengthening of masonry panels is required:

2No wind posts and bed joint reinforcement.

Rear panel check


Applied vertical loadings from flat roof loading:

 $W(Gk) = 0.66KN/m^2 \times 1m/2 = 0.3KN/m$

Applied wind loading = $0.52 \text{KN}/\text{m}^2$

Consider all masonry lateral restraints to be a pinned support. Total height of panel to roof diaphragm restraint taken as 3m (TBC).

TWO WAY SPANNING, VERTICALLY AND LATERALLY LOADED, CAVITY WALL

 Summary of Design Data

 EuroCode National Annex
 Using UK valuesA1 2012

 Wall Dimensions
 h=3.000 m, hef=2.282 m (Eqn

 Wind Post L reduction
 Wind post assumed to act as st

102.5

Wind Post L reduction Support Conditions Lateral Loads Opening load span direction

100

Using OK ValueSA1 2012 h=3.000 m, hef=2.282 m (Eqn. 5.8), L=10.000 m, Lef=10.000 m Wind post assumed to act as stiffener, L = 5.350 m, Lef = 5.350 m Bottom Simple, Top Simple, Left Simple, Right Simple Wx=0.52 kN/m² opening at X = 5.6, Y = 0 - Two way spanning opening at X = 0.8, Y = 0.7 - Two way spanning

0.52 kN/m²

TKA

Version: A02 Sheet No. 30

t1=100, t2=102.5, tef=127.6 λ =17.9<= λ_{lim} =27, L/ter=41.9, H/ter=23.5, Hence H/ter<=49.5 Construction Class 2, Unit Manufacture II Clay water absorption7% to 12%, Group 1, Y=20 kN/m ³ Normalised mean compressive strengfb =20 N/mm ² M4 fm =4 N/mm ² k = 0.5, a = 0.7, β = 0.3 Area=1025 cm ² /m, Zp=1751 cm ³ /m f _{xkl} =0.4, gd=0.03 N/mm ² f _{kl} =6.4, gd=0.03 N/mm ²	0.662 3/2.7 6.17 N/mm ² 1.1 N/mm ²	Oł Table NA.: Table NA.4
$\begin{split} \lambda = 17.9 < = \lambda_{lim} = 27, \ L/t_{ef} = 41.9, \ H/t_{ef} = 23.5, \ Hence \\ H/t_{ef} < = 49.5 \end{split}$ Construction Class 2, Unit Manufacture II Clay water absorption7% to 12%, Group 1, $\gamma = 20 \ kN/m^3$ Normalised mean compressive strengfb = 20 N/mm ² M4 fm = 4 N/mm ² k = 0.5, a = 0.7, \beta = 0.3 Area=1025 cm ² /m, Zp=1751 cm ³ /m f_{xk1}=0.4, gd=0.03 N/mm ² \end{split}	3/2.7 6.17 N/mm²	Table NA.:
Construction Class 2, Unit Manufacture II Clay water absorption7% to 12%, Group 1, γ =20 kN/m ³ Normalised mean compressive strengfb =20 N/mm ² M4 fm =4 N/mm ² k = 0.5, a = 0.7, β = 0.3 Area=1025 cm ² /m, Zp=1751 cm ³ /m f _{xk1} =0.4, gd=0.03 N/mm ²	6.17 N/mm²	
Clay water absorption7% to 12%, Group 1, γ =20 kN/m ³ Normalised mean compressive strengfb =20 N/mm ² M4 fm =4 N/mm ² k = 0.5, a = 0.7, β = 0.3 Area=1025 cm ² /m, Zp=1751 cm ³ /m f _{xk1} =0.4, gd=0.03 N/mm ²	6.17 N/mm²	
Clay water absorption7% to 12%, Group 1, γ =20 kN/m ³ Normalised mean compressive strengfb =20 N/mm ² M4 fm =4 N/mm ² k = 0.5, a = 0.7, β = 0.3 Area=1025 cm ² /m, Zp=1751 cm ³ /m f _{xk1} =0.4, gd=0.03 N/mm ²	6.17 N/mm²	
Normalised mean compressive strengfb =20 N/mm ² M4 fm =4 N/mm ² k = 0.5, a = 0.7, β = 0.3 Area=1025 cm ² /m, Zp=1751 cm ³ /m f _{xk1} =0.4, gd=0.03 N/mm ²		Table NA
M4 fm =4 N/mm ² k = 0.5, a = 0.7, β = 0.3 Area=1025 cm ² /m, Zp=1751 cm ³ /m f _{xk1} =0.4, gd=0.03 N/mm ²		
		Table NA
Area=1025 cm ² /m, Zp=1751 cm ³ /m f _{xk1} =0.4, gd=0.03 N/mm ²		
f _{xk1} =0.4, gd=0.03 N/mm ²	1.1 N/mm ²	Table NA.
	111 14/11111	Table NA.
		10010101
	0.481 N/mm ²	Table NA.
1.35(y.tk.h)		
X=0.249 m,Y=1.5 m < fk•0.95(small area red.)/ γ_{mc}	0.14 N/mm ²	O
1.35(γ.tk.h)+0.75(Wx)		
	11.46kN/m	
,		
		0
		0
	0.012	
Construction Class 2 Unit Manufacture II	3/2 7	Table NA.
	5/2.7	
M4 fm =4 N/mm ²		
Unit height=215, Least horizontal dimensions=100	2.15	
k = 0.75, a = 0.7, β = 0.3	2.7 N/mm ²	Table NA.
Area=1000 cm ² /m, Zp=1667 cm ³ /m		
	0.45 N/mm ²	Table NA.
	0.204 N/mm ²	Table NA
	0.294 N/IIIII2	Table NA.
	0 08 N/mm2	0
	0.00 Nymm	0
	5.9kN/m	
	0.014.1/11	
ex=0.0 mm, hef=2292 mm, tef=127.6 mm, t=100.0 mm	0.898	
$hm = 0.250 mm, h_{ef} = 2.292$	0.671	
0.671x2.7x100/3	60.4 kN/m	
5.9/60.4	0.098	0
0.45x1667/2.7		
	0.181 kN.m/m	
1.5 Wx	0.780 kN/m ²	
•		
, ,		~
		Oł
	X=0.249 m,Y=1.5 m < fk•0.95(small area red.)/γmc 1.35(γ.tk.h)+0.75(Wx) X=9.487 m, Y=1.5 m averaged over width of 1.025 m M _{Wx,top} =0.000 kN.m, M _{wx,mld} =0.148 kN.m ex=0.0 mm, hef=2292 mm, tef=127.6 mm, t=102.5 mm ehm = 0.250 mm, h _{ef} = 2.292 0.674x6.17x102.5/3 11.5/142.0 1.1x1751/2.7 0.481x1751/2.7 Construction Class 2, Unit Manufacture II Concrete Blocks, Group 1, γ=8.83 kN/m ³ Normalised mean compressive strengfb = 3.6 N/mm ² M4 fm =4 N/mm ² Unit height=215, Least horizontal dimensions=100 k = 0.75, a = 0.7, β = 0.3 Dead Load=0.3 kN/m Area=1000 cm ² /m, Zp=1667 cm ³ /m f _{xk1} =0.25, gd=0.016 N/mm ² f _{xk1} =f _{xk1} +min(gd, 0.15•f _k /γmc)γmf 1.35(γ.tk.h+gku) X=0.254 m,Y=1.5 m < fk•0.94(small area red.)/γmc 1.35(γ.tk.h+gku)+0.75(Wx) X=9.499 m, Y=1.5 m averaged over width of 1 m M _{wx,top} =0.000 kN.m, M _{wx,mid} =0.060 kN.m ex=0.0 mm, hef=2292 mm, tef=127.6 mm, t=100.0 mm ehm = 0.250 mm, h _{ef} = 2.292 0.671x2.7x100/3 5.9/60.4 0.45x1667/2.7 0.294x1667/2.7 1.5 Wx Base pinned, Top pinned, Major axis bending Inner leaf continuous, outer leaf continuous 100x50x5 CF RHS 10.5 (S 355), M _{el} 11.232 kN.m Load Factor, λ _p 1 / 1.179	1.35(γ.tk.h) 0.14 N/mm² X=0.249 m,Y=1.5 m < fk•0.95(small area red.)/γmc

Therefore, additional strengthening of masonry panels is required:

1No wind post.

Foundations Analysis & Design

Ground parameters

No ground investigation work has been carried out and we have assumed a suitable net bearing capacity of the soil of at least 100KN/m² which is to be confirmed on site.

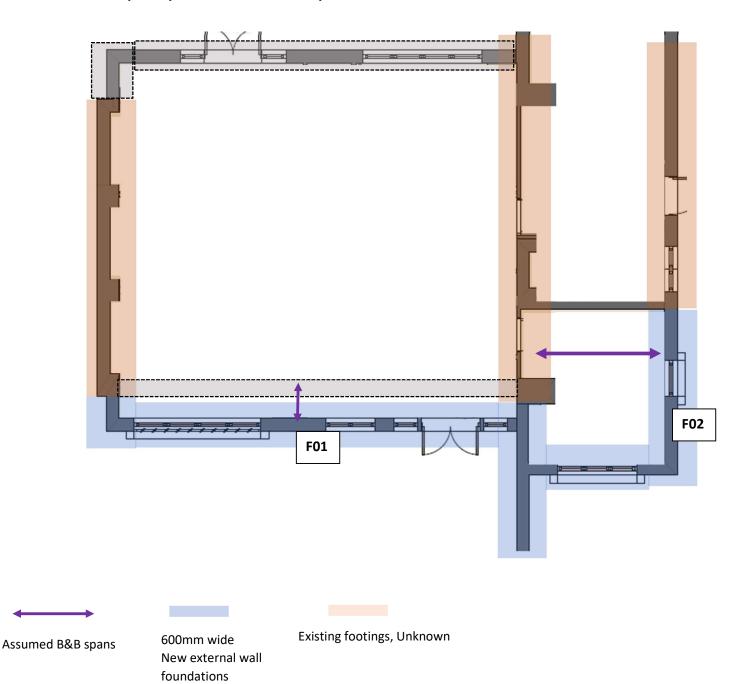
We shall assume with regard to concrete grade to be used will be based on the best case situation of a Design Sulphate Class of DS-1 and an aggressive chemical environment for concrete(ACEC) class of AC-1.

Concrete specification

The thickness of footings is such that the strip footings are assumed to be unreinforced, therefore Gen 3 concrete is deemed acceptable.

Pad footing under SC01

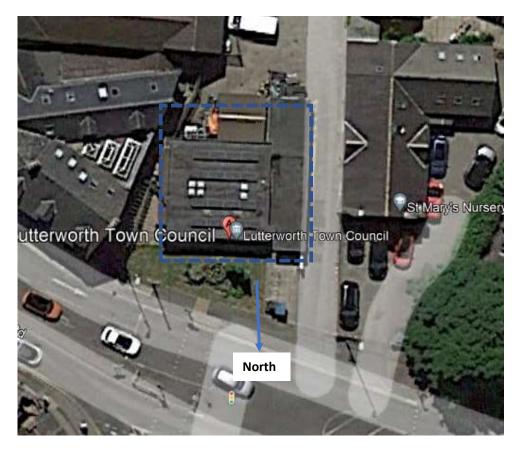
Unfactored vertical load acting at bottom of column = 7.4KN + [0.1KN/m x 2.5m] = 7.6KN


Applied pressure under 600 x 600 pad x 600 = $(24 \text{KN/m}^3 \times 0.6 \text{m}^3 + 7.6) / 0.6 \text{m}^2 = 36 \text{KN/m}^2$

New foundations under walls (not retaining)

For the new walls at the front, back and side a new footing will be required to support the new walls.

Depths to the bottom of footings are dependent upon found ground conditions, however, will likely match the existing footings. All walls are assumed to go 500mm below DPM level.



Chk'd: MET

Foundat							
Ref:	Front and	d rear wall,FC	1				
		Load	Cover	Dead(gk)	mposed(qk)		
Position		kN/m²	m	kN/m	kN/m		
Wall, In		1.70	4.00	6.80	Kity iii		
Wall, Ou		2.25	4.00	9.00			
Roof		0.66	1.00	0.66		Allows for 0.5m of	
	IL	0.60	1.00	0.00	0.60	below ground construction. Ground floor to be	
2 nd Floor		0.00	1.00	0.00	0.00		
2 11001				0.00	0.00	concrete B&B	
1 st Floor				0.00	0.00		
1.001				0.00	0.00		
Grd floo		3.65	1.00	3.65	0.00		
		2.00	1.00	5.05	2.00		
		2.00	1.00	20.11	2.60		
					2.00		
Tot	tal	22.71	kN/m	Strip width	450		
Require		0.2271	KN/ III		450		
Allowat		100	kN/m²				
ssures @		600	37.9	450	50.5		
		000	57.5	-30	50.5		
Ref:	Side wall	. F02					
		,					
		Load	Cover	Dead(gk)	mposed(qk)		
Position		kN/m²	m	kN/m	kN/m		
Wall, In		1.70	4.00	, 6.80	,		
Wall, Ou	- 1 1	2.25	4.00	9.00		Allows for 0.5m of	
Roof		0.66	1.80	1.19		below ground	
	IL	0.60	1.80		1.08	construction. Ground floor to be	
2 nd Floor						concrete B&B	
	IL						
1 st Floor				0.00			
	IL			-	0.00		
Grd floo		3.65	1.80	6.57			
	IL	2.00	1.80		3.60		
				23.56	4.68		
				<u> </u>			
Tot	tal	28.24	kN/m	Strip width	450		
Require		0.28238					
Allowat		100	kN/m²				
	x kN/m²	600	47.1	450	62.8		

Appendix A: Existing Site

Elv = 126m

Appendix B: Wind directional factors

NA.2.6 Directional factor, *c*_{dir} [BS EN 1991-1-4:2005, 4.2 (2)P Note 2]

The directional factor c_{dir} is given in Table NA.1.

Table NA.1 Directional factor c_{dir}

Direction	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°
c _{dir}	0,78	0,73	0,73	0,74	0,73	0,80	0,85	0,93	1,00	0,99	0,91	0,82

NOTE 2 The directions are defined by angles from due North in a clockwise direction.

NOTE 3 Where the wind loading on a building is assessed only for orthogonal load cases, the maximum value of the factor for the directions that lie $\pm 45^{\circ}$ either side of the normal to the face of the building is to be used.

NOTE 4 Conservatively, c_{dir} may be taken as 1,0 for all directions.

Appendix C : Green roof loadings

Table 2.1 Major types of green roofs and their characteristics (Hui, 2006)

Characteristics	Extensive	Semi-intensive	Intensive
Depth of material	150 mm or less	Above and below 150 mm	More than 150 mm
Accessibility	Often inaccessible	May be partially accessible	Usually accessible
Fully saturated weight	Low (70-170 kg/m ²)	Varies (170–290 kg/m ²)	High (290-970 kg/m ²)
Plant diversity	Low	Greater	Greatest
Plant communities	Moss-sedum-herbs and grasses	Grass-herbs and shrubs	Lawn or perennials, shrubs and trees
Use	Ecological protection layer	Designed green roof	Park-like garden
Cost	Low	Varies	Highest
Maintenance	Minimal	Varies	Highest