JOB NUMBER 19223

PHASE 1 PROPOSED REDEVELOPMENT OF LISKEARD CATTLE MARKET LISKEARD **CORNWALL**

STRATEGY FOR SURFACE WATER DRAINAGE INCLUDING FOUL DRAINAGE ASSESSMENT **REVISION** A

FOR CORNWALL COUNCIL

FEBRUARY 2020

Boscawen House, Chapel Hill Tel: 01872 260962 Truro, Cornwall TR1 3BN Fax: 01872 260963

CONTENTS

1.0	Introduction	01
2.0	Site location and description	02
3.0	Surface water drainage design	03
4.0	Foul water drainage assessment	05
5.0	Conclusions	06

Appendix A

• JTP Drg 01623_SK039 Phase 1 with workshop and Topo Overlay

Appendix B

• Liskeard Critical Drainage Area

Appendix C

- Equivalent Greenfield runoff calculation
- Urban runoff Calculation
- Initial attenuation calculation

Appendix D

• South West Water record of services

<u>Appendix E</u>

• Suggested details to be subject to planning condition

1.0 INTRODUCTION

- 1.1 Cornwall Council are currently proposing to redevelop the site of the former Cattle Market in Liskeard, Cornwall (please refer to Appendix A for a plan showing the site location).
- 1.2 The proposed development site has is being submitted for detailed planning consent for a development including creative workshops, market facilities and car parking
- 1.3 The Planning Policy Guidance to the National Planning Policy Framework dated March 2012 states that a Flood Risk Assessment (FRA) is required where a proposed development is greater than 1 ha in size or in an area where the Environment Agency (EA) have indicated there may be drainage problems, ie Critical Drainage Areas.
- 1.4 The proposed site is smaller than 1Ha but within a Critical Drainage Area. Accordingly, a Flood Risk Assessment (FRA) has been prepared by Cormac in support of the planning application. MBA Consulting have been commissioned to prepare a Surface Water Strategy to support the planning application for the proposed development.
- 1.5 This report therefore details broad proposals for the disposal of surface water from the site.
- 1.6 The report includes an initial assessment of the foul drainage of the site.
- 1.7 The report also outlines suggested design details to be subject to planning conditions.

2.0 SITE LOCATION AND DESCRIPTION

- 2.1 The site lies within the centre of Liskeard in Cornwall Ordnance Survey Grid Reference (OSGR) SX 25040 64390.
- 2.2 The site is a brownfield site whose uses currently comprise redundant cattle market and car parking.
- 2.3 The proposed development site slopes gradually to the north and east.
- 2.4 The site area is 0.5153 Ha overall.

3.0 SURFACE WATER DRAINAGE DESIGN STRATEGY

- 3.1 The design of the surface water drainage is required to follow the 'Drainage Guidance for Cornwall' issued by the Environment Agency (EA) published as part of the Cornwall Council Strategic Flood Risk Assessment (SFRA). These both comply with the Planning Policy Guidance for the National Planning Policy Framework dated March 2012. Compliance is deemed to satisfy the Environment Agency in controlling the risk of flooding of and from the proposed development.
- 3.2 The site is in an area designated as being inside the Liskeard Critical Drainage Area in the Cornwall Council SFRA (see appendix B).
- 3.3 This follows the principle of drainage to infiltration where possible, but otherwise restricting flows from the site to the 1 in 10 year greenfield run-off rate. This is required up to and including for the 1 in 100 year storm and making allowance for a 40% increase in rainfall intensity.
- 3.4 The site is currently drained unattenuated to the public sewer system and/or highway drainage system via a series of storm drains and sewers.
- 3.5 The site has not been the subject of an intrusive site investigation but is within an area where soils are likely to suit the use of soakaways. The proposed development contains sufficient open space to allow the use of soakaways should infiltration rates prove adequate.
- 3.6 Verification of whether infiltration techniques are suitable for the site will be required once intrusive site investigation has been undertaken. This will require investigation of groundwater levels and quality as well as contamination of soils due to past uses of the site.
- 3.7 Alternatively, and only if infiltration should prove insufficient to allow the use of soakaways, it will be necessary to attenuate the surface water on site and discharge via control device to the adjacent combined sewers.
- 3.8 The critical drainage area guidance requires the flows from the site to be limited to the 1 in 10 year greenfield runoff rate (GFR). Although fully developed appendix C contains a calculation of the equivalent greenfield runoff rates. The 1 in 10 year GFR is 2.674 lt/s. In order to minimise the risk of blockage to is necessary to provide a 100mm diameter orifice in the control device which will require the flow to be increased to 5lt/s.
- 3.9 The current site has no means of limiting flows from the site and appendix C also includes an assessment of the urban runoff from the site. this shows the current unrestricted 1 in 100m year urban runoff to be 14.031lt/s. as such the proposed attenuation would provide a 64% reduction if flows from the site.
- 3.10 Appendix C, therefore, also includes an initial attenuation calculation showing the size of attenuation tank that would be required it attenuation is needed. There is sufficient space to accommodate this within the development site.

- 3.11 Appendix D contains South West water record of the sewers in the vicinity. This shows combined sewers in both Fairpark Road and Market Approach to which connection can be made should it be required.
- 3.12 Appendix E includes details of the design information which is suggested should be subject to planning conditions.

4.0 FOUL DRAINAGE ASSESSMENT

- 4.1 There are two combined sewers available for connection within or adjacent to the site subject to detailed design. These are shown in the SWW record plan included in Appendix D.
- 4.2 Given the proposed site levels a connection to the combined sewer in Market Approach will be required to serve the development. The proposed use of the development does not generate significant foul flows and initial assessments suggest that this combined sewer should be adequate to receive these flows.

- 5.1 It is concluded that the design of a surface water drainage system using the principles of SUDS and compliant with the requirements of the Cornwall Strategic Flood Risk Assessment is achievable within the confines of the site.
- 5.2 The foul drainage capacity has been assessed and it is concluded that, subject to detailed design, the proposed development can be accommodated within the foul sewer network.

Dated: February 2020

Signed..... DAVID FERGUSSON BSc., C.Eng., MICE FOR AND ON BEHALF OF MBA CONSULTING APPENDIX A

APPENDIX B

May 2015

Critical Drainage Area (CDA)

Cornwall – Liskeard

Catchment Drainage / Flooding Issues

Moorswater has historically suffered from flooding due to inadequately sized culverts and bridges being unable to pass flood flows effectively. The small, steep catchment around Liskeard is identified for possible future growth. Any increase in surface water runoff to this catchment area will further increase flood risks to properties.

The Addington area has been identified for development. Historically flooding occurred to properties in Trembraze from surface water flowing down the highway and from a perched watercourse in the area. Properties at Hendra Bridge are low lying and also at risk from flooding. Any increase in surface water runoff will increase the frequency and depth of flooding to these locations.

Minimum Drainage Standards Required

All new developments will have to play their part in reducing current rainfall runoff rates. This requirement also applies to brownfield sites that will have to match the same standards. The surface water drainage hierarchy should be followed by using infiltration as far as is practicable. Further guidance on such systems can be found in the CIRIA SuDS Manual and in Lead Local Flood Authority guidance.

All off-site surface water discharges from developments should mimic greenfield performance up to a maximum 1 in 10 year discharge rate. On site all surface water should be safely managed up to the 1 in 100 plus climate change conditions. This will require additional water storage areas to be created thereby contributing to a reduction in flooding downstream.

APPENDIX C

ΜΒΑ
Consulting
www.mbatruro.co.uk

Structural, Civil & Project Management Engineers Boscawen House, Chapel Hill, Truro TR1 3BN Tel: 01872 260962 Fax: 01872 260963 e-mail admin@mbatruro.co.uk Job No

MasterDrain HY 10.11

Title equivalent greenfield run off

Project Phase 1 Liskeard cattle Market

Hydrological Data:-FSR Hydrology:-

	•		
Location	= LISKEARD	Grid reference	= SX2564
M5-60 (mm)	= 18	r	= 0.24
Soil runoff	= 0.30	SAAR (mm/yr)	= 1310
WRAP	= 2	Area = England	& Wales
Hydrological	area = 8	Hydrological zo	ne = 3

Soil classification for WRAP type 2

i) Very permeable soils with shallow ground water;

 ii) Permeable soils over rock or fragipan, commonly on slopes in western Britain associated with smaller areas of less permeable wet soils; (fragipan - a natural subsurface horizon having a higher bulk density than the solum above. Seemingly cemented when dry but showing moderate to weak brittleness when moist. The layer is low in organic matter, mottled and slowly or very slowly permeable to water. It is found in profiles of either cultivated or virgin soils but not in calcareous material).
iii) Moderately permeable soils, some with slowly permeable subsoils.

Design data:-

Area = 0.00473 Km^2 - 0.473 Ha - 4730 m^2

Calculation method:-

Runoff is calculated from:-

 $Q_{BAR(rural)} = 0.00108 \text{ AREA}^{0.89} \text{ . SAAR}^{1.17} \text{ . SOIL}^{2.17}$

where

 $Q_{BAR(rural)}$ is then multiplied by a growth factor - GC(T) - for different storm return periods derived from EA publication W5-074/A.

Calculated data: -

For areas less than 50Ha, a modified calculation which multiplies the 50Ha runoff value by the ratio of the site area to 50Ha is used Reducing factor used for these calculations is 0.009

Mean Annual Peak Flow $Q_{BAR(rural)} = 1.79 \text{ l/s}$

	MBA		Structural, Civil & Project Management Engineers Boscawen House, Chapel Hill, Truro TR1 3BN					Job No. 19223			
	Consulting Tel: 01872 260962 Fax: 01872 260963							Sheet no. 2			
	www.mbatruro.co	D.UK	e-mail admin@	mbatruro.co.uk					Date	19/02/20	
MasterDrain	Project Phase 1 Liskeard cattle	e Market							Ву	Checked	Reviewed
	Title equivalent greenfield re	un off									
Values for	Q _{BAR(rural)}										
	Ret. per.	m³/hr	1/s	l/s/ha		Ret. per.	m³/hr	1/s	1/s/1	na	
	lyr	5.491	1.525	3.225		100yr+20%	18.606	5.168	10.927		
	2yr	5.685	1.579	3.339		100yr+30%	20.157	5.599	11.837		
	5yr	8.076	2.243	4.743		100yr+40%	21.707	6.030	12.748		
	10yr	9.626	2.674	5.653		200yr	19.381	5.384	11.382		
	30yr	12.016	3.338	7.057		200yr + 30%	25.196	6.999	14.797		
	50yr	13.696	3.804	8.043		500yr	22.030	6.119	12.938		
	100yr	15.505	4.307	9.106		1000yr	25.260	7.017	14.835		
Growth facto	ors -										
	lyr	2yr	5yr	10yr	30yr	50yr	100yr	200yr	500yr	1000yr	
	0.85	0.88	1.25	1.49	1.86	2.12	2.40	3.00	3.41	3.91	

The above is based on the Institute of Hydrology Report 124

to which you are referred for further details (see Sect 7).

Note that the 200 and above year growth curves were taken from W5-074.

	MRA	Structural, Civi	I & Project Management Engineers	Job No.						
	Consulting	Tel: 01872 260	use, Chapel Hill, Truro TR1 3BN 1962	Sheet no. 2						
	Consulting	Fax: 01872 26	0963	J Data						
	www.mbatruro.co.uk	e-mail admin@	Dmbatruro.co.uk	Date	19/02/20					
MasterDrain HY 10.11	Project Phase 1 Liskeard cattle N	larket		By DF	Checked	Reviewed				
	Title IoH 124 (Qbar(urban))Run	off calcs for LISKEARD								
Hydrological	Data:-									
FSR Hydrol	.ogy:-		$- \alpha x \partial f (A)$							
Location	= LISKEARD = 19	Grid refe	rence = $5x2564$							
MS-00 (mm)	-10	L SAAD (mm/	-0.24							
WRAD	= 2	$\Delta rea = En$	gland & Wales							
Hvdrologic	al area = 8	Hvdrologi	cal zone = 3							
1		1 9-								
Soil class	ification for WRAP ty	pe 2								
i) Very	permeable soils with	shallow ground wate	er;							
ii) Perme	able soils over rock o	or fragipan, commor	nly on slopes in west	ern Br	itain					
associated	l with smaller areas o	f less permeable we	et soils; (fragipan –	- a nat	ural					
subsurface	horizon having a hig	her bulk density th	nan the solum above.	Seemin	gly					
cemented w	when dry but showing ma	oderate to weak bri	ittleness when moist.	The la	ayer is	low				
in organic	matter, mottled and	slowly or very slow	vly permeable to wate	er. It :	is foun	d in				
profiles o	of either cultivated of	r virgin soils but	not in calcareous ma	terial).					
111) Moder	cately permeable soils	, some with slowly	permeable subsoils.							
Docign data:	_									
Area = 0.0	- 0.473 Km ² - 0.47	3 42 - 1730 7	² ⁹ Urbanicati	n = 1	00 008					
Alea - 0.0	0.473 Km = 0.47	5 па – 4730 I		.011 – 11	00.00%					
Calculation	method:-									
Runoff is	calculated from:-									
Q _{BAR(}	$urban); = Q_{BAR(rural)}$ (1 + URBA	$(21)^{2NC} [1 + URBAN { (21)})^{2NC} [1 + $	/CIND) -0.3}]							
where:-										
NC	varies with the value	of SAAR:-								
	for 500 <saar<11< td=""><td>00 mm then $NC = 0$.</td><td>.92 - 0.00024SAAR</td><td></td><td></td><td></td></saar<11<>	00 mm then $NC = 0$.	.92 - 0.00024SAAR							
	for 1100 <saar<3< td=""><td>000 mm then NC = 0.</td><td>.74 - 0.000082SAAR</td><td></td><td></td><td></td></saar<3<>	000 mm then NC = 0.	.74 - 0.000082SAAR							
CTN	D = 102 4 SOTT + 0.28 (0)	CWT - 125) CWT	= Catchment Wetness	Index						
011	b = 102.45011 + 0.20(0)		- catchinent wethess	THUCK						
so										
CIN	ID =32.040	CWI =129.715	NC =0.633							
	For areas less than	50Ha, a modified ca	alculation which mult	iplies						
the 50Ha runoff value by the ratio of the site area to 50Ha is used										
	Reducing facto	or used for these c	alculations is 0.009							
-										
Q _{BAI}	$R_{(rural)} = 1.795 (1/s)$									
0	-5846(1/2)									
Q _{BAI}	R(urban) — 5.646 (1/8)									
0	is then multiplie	d by a growth fact	or - GC(T) - for dif	ferent	storm					
×BAI r≏t	R(urban) chief muterprie	rom EA publication	W5-074/A.		2 00 L III					
200			,							

MD	MBA Consulting www.mbatruro.co.uk	Structural, Civil & Project Management Engineers Boscawen House, Chapel Hill, Truro TR1 3BN Tel: 01872 260962 Fax: 01872 260963 e-mail admin@mbatruro.co.uk	Job No. 19223 Sheet no. Date	4 19/02/20	
MasterDrain	Project Phase 1 Liskeard cattle Market		By	Checked	Reviewed
Calculated data:-	Title IoH 124 (Qbar(urban))Runoff calcs for	DF			

Mean Annual Peak Flow $Q_{BAR(urban)} = 5.85$ 1/s

Values for $Q_{BAR(urban)}$

Ret. per. 1yr	m³/hr 17.890	1/s 4.969	l/s/ha 10.506	Ret. per. 100yr+20%	m³/hr 60.615	1/s 16.838	1/s/ha 35.597
2yr	18.521	5.145	10.877	100 yr+30 %	65.666	18.241	38.564
5yr	26.309	7.308	15.450	100 yr+40 %	70.718	19.644	41.530
10yr	31.360	8.711	18.417	200yr	63.141	17.539	37.081
30yr	39.147	10.874	22.990	200yr + 30%	82.083	22.801	48.205
50yr	44.619	12.394	26.204	500yr	71.770	19.936	42.148
100yr	50.513	14.031	29.664	1000yr	82.293	22.859	48.328

Growth factors -

lyr	2yr	5yr	10yr	30yr	50yr	100yr	200yr	500yr	1000yr
0.85	0.88	1.25	1.49	1.86	2.12	2.40	3.00	3.41	3.91

The above is based on the Institute of Hydrology Report 124 to which you are referred for further details (see Sect 7). Note that the 200 year growth curve was taken from W5-074/A.

For WRAP type 1 soils, CIND can become negative for lower values of SAAR. In this case the CIND value is multiplied by -1 to return a positive value (CIND is very small at this point).

Attenuation Design	1	with rainfall intensities c	alculated using full wallingford procedure manual method			
_		based upon the Flood S	Studies Report.	Wallingford procedure	M5-60	18.00
19223 Liskeard Cat	tle Market	Phase 1		Climate Change allowance		40%
				Adjusted M5-60)	25.20 mm
drainage area	Ad	4730.00 m2		Volume 3 Maps	r	0.24
				Z1 taken from Figure 6.3a		
Permitted outflow	Qp	5.00 l/s	minimum flow to prevent blockage of control	Z2 taken from Table 6.2		

Trench Soakaway 1:1 storm return period

			M5						
storm duration, d		Z1	Rainfall	Z2 for	l intensity, l	`	Volume ir	Volume Out	Storage required
storm duration, d	hours		mm	M100	mm/hr	m/hr	m3	m3	m3
5.00	0.08	0.31	7.81	1.86	174.13	0.1741	68.64	1.50	67.14
10.00	0.17	0.46	11.59	1.94	134.62	0.1346	106.12	3.00	103.12
15.00	0.25	0.56	14.11	1.98	111.53	0.1115	131.88	4.50	127.38
30.00	0.50	0.75	18.90	2.02	76.40	0.0764	180.69	9.00	171.69
60.00	1.00	1.00	25.20	2.01	50.61	0.0506	239.39	18.00	221.39
120.00	2.00	1.30	32.76	1.95	31.91	0.0319	301.84	36.00	265.84
240.00	4.00	1.71	43.09	1.87	20.09	0.0201	380.19	72.00	308.19
360.00	6.00	2.00	50.40	1.81	15.18	0.0152	430.84	108.00	322.84
600.00	10.00	2.40	60.48	1.74	10.52	0.0105	497.40	180.00	317.40
1440.00	24.00	3.35	84.42	1.60	5.64	0.0056	639.82	432.00	207.82
2880.00	48.00	4.46	112.39	1.52	3.55	0.0036	806.83	864.00	-57.17

Volume required 322.84 m3

Provide 27m x 10m x1.3m deep = 324 m3

APPENDIX D

<u>APPENDIX E</u>

Liskeard Cattle Market Phase 1 – details to be subject to planning condition

The following items are suggested to be the subject of a planning condition to be submitted once detailed design is completed.

- 1. A description of the foul and surface water drainage systems including:
 - a) Layout plans
 - b) Results of an intrusive site investigation including infiltration testing
 - c) Supporting calculations for soakaways or attenuation tanks as appropriate
 - d) Measures to deal with water quality of surface water runoff
 - e) Typical construction details and specifications
 - f) Permission from South West Water to communicate with the public sewers
 - g) A plan indicating the provisions for exceedance pathways, overland flow routes and any proposed detention features
- 2. Construction phase drainage proposals including
 - a) Construction water management plan
 - b) Construction quality control procedure
 - c) Construction timetable
- 3. Confirmation of who will maintain the drainage systems and a plan for the future maintenance and management, including responsibilities for the drainage systems and overland flow routes.

The detailed design of the drainage should follow the parameters identified in the drainage strategy or any other parameters agreed with the Lead local Flood Authority