

The Pavilion

Structural Calculations

For

Winterbourne Parish Council

Date: 12/02/2025

Project Reference: M2-3168 Document Reference: SE-01_A1

> Web: m2structural.co.uk Phone: 01225 285073

	Project		Sheet no./rev.	
M2	The P	The Pavilion		
	Job Ref.	Calc. by	Date	
	M2-3168	MC	05/02/2025	
	Doc. Ref	Chk'd by	Date	
· · · · · · · · · · · · · · · · · · ·	SE-01_A1	MD	12/02/2025	

Document Issue History and Status

	Prepa	red By	Check	ked By	Appro	ved By
Revision	Name	Date	Name	Date	Name	Date
A1	Matthieu Crosnier	03.02.25	Max Day	12.02.25	Matthieu Crosnier	12.02.25

General Notes:

Calculations to be checked by Building Control Authority before work commences. Client to ensure all of contractors' works on site comply with and meet Approval of the relevant British Standards and the Local Authority including Building Control and Planning Departments. All temporary works to be the responsibility of the contractor and should be in accordance with BS 5975 to ensure temporary stability during the course of the works.

Dimensions: Note that all dimensions shown on the calculations are indicative and have been used for calculation purposes only. All dimensions should be checked prior to start of the works on site. It is the responsibility of the client to notify the Engineer of any discrepancies. The same applies to the alignment of walls and general layouts. All existing foundations and lintels to be exposed to verify suitability and to be checked for adequacy and/or replaced or surrounded in 150mm concrete cover if necessary. Prior to commencement a trial hole and /or soil report/investigation and an inspection of any trees in the areas may be required.

Disclaimer

This document has been prepared in accordance with the scope of M² Civil and Structural Ltd.'s appointment with its client and is subject to the terms of that appointment. It is confidential, addressed to and for the sole use and reliance of M² Civil and Structural Ltd.'s client. M² Civil and Structural Ltd. Accepts no liability for any use of this document other than by its client and only for the purposes, stated in the document, for which it was prepared and provided. No person other than the client may copy (in whole or in part) use or rely on the contents of this document, without the prior written permission of a Director of M² Civil and Structural Ltd. Any advice, opinions or recommendations within this document should be read and relied upon only in the context of the document as a whole. The contents of this document are not to be construed as providing legal, business or tax advice or opinion.

	Project		Sheet no./rev.	
M ²	The P	The Pavilion		
	Job Ref.	Calc. by	Date	
	M2-3168	MC	05/02/2025	
	Doc. Ref	Chk'd by	Date	
	SE-01_A1	MD	12/02/2025	

Introduction:

The following design calculations are for the single storey extension at the sport Pavilion in Winterbourne, Bristol.

Design Codes - Eurocodes:

BS EN 1990:	Eurocode 0:	"Basis of Structural Design"
BS EN 1991:	Eurocode 1:	"Actions on Structures"
BS EN 1992:	Eurocode 2:	"Design of Concrete Structures"
BS EN 1993:	Eurocode 3:	"Design of Steel Structures"
BS EN 1994:	Eurocode 4:	"Design of Composite Steel and Concrete Structures"
BS EN 1995:	Eurocode 5:	"Design of Timber Structures"
BS EN 1996:	Eurocode 6:	"Design of Masonry Structures"
BS EN 1997:	Eurocode 7:	"Geotechnical Design"
BS EN 1998:	Eurocode 8:	"Design of Structures for Earthquake Resistance"
BS EN 1999:	Eurocode 9:	"Design of Aluminium Structures"

	Project		Sheet no./rev.
M2	The Pavil	3	
	Job Ref.	Calc. by	Date
	M2-3168	MC	05/02/2025
	Doc. Ref	Chk'd by	Date
	SE-01_A1	MD	12/02/2025

<u>Loadings</u>

Roof Loading (Pitched Roof)

Roof slope;			A = 5 °
Dead Load			
Metal sheeting;	Roof _{D1}	=	0.15 kN/m ²
Felt & Boarding;	Roof _{D2}	=	0.05 kN/m ²
Rafters;	Roof _{D3}	=	0.12 kN/m ²
Insulation;	Roof _{D4}	=	0.05 kN/m ²
Services;	Roof _{D5}	=	0.05 kN/m ²
Plasterboard & Skim;	Roof _{D6}	=	0.15 kN/m ²
Dead Load on slope;	$Roof_{DL_{sroof}} = sum(Roof_{D1}, Roof_{D2}, Roof_{D3}, Roof_{D4}, Roof_{D5}, Roof_{D6})$	=	0.570 kN/m ²
Total Dead Load (on plan);	$Roof_{DL} = Roof_{DL_{sroof}} / cos(A)$	=	0.572 kN/m ²
Imposed Load			
Roof Imposed Load (on plan);	Roof _{IL1}	=	0.60 kN/m ²
Cavity Wall Loading			
Dead Load			
Masonry (Outer Leaf);	CW _{D1}	=	2.20 kN/m ²
Insulation;	CW _{D2}	=	0.05 kN/m ²
Masonry (Inner Leaf);	CW _{D3}	=	1.80 kN/m ²
Plasterboard & Skim;	CW _{D4}	=	0.15 kN/m ²
Total Dead Load;	$CW_{DL} = sum(CW_{D1}, CW_{D2}, CW_{D3}, CW_{D4})$	=	4.20 kN/m ²
Internal Blockwork Wall Loading			
Dead Load			
Masonry;	IW _{D1}	=	1.80 kN/m ²
Plasterboard & Skim (both sides);	IW _{D2}	=	0.30 kN/m ²
Total Dead Load;	$IW_{DL} = sum(IW_{D1}, IW_{D2})$	=	2.10 kN/m ²
Stud Wall Loading			
Dead Load			
Stud;	SW _{D1}	=	0.20 kN/m ²
Plasterboard & Skim (both sides);	SW _{D2}	=	0.30 kN/m ²

 $SW_{DL} = sum(SW_{D1}, SW_{D2})$

0.50 kN/m²

=

Total Dead Load;

		Project			Sheet no./rev.
		The Pavilion			
		Job Ref.	Calc. by		Date
	M2-3	168	MC	05/02/2025	
		Doc. Ref	Chk'd by		Date
	1.	SE-01	_A1	MD	12/02/2025

Beam B1 Design:

Loadings

UDL from Pitched Roof

Width of roof being carried;	x ₁ = 3.7 m		
Dead Load;	$DL_1 = 0.572 \text{ kN/m}^2 \times x_1$	=	2.116 kN/m
Imposed Load;	$IL_1 = 0.60 \text{ kN/m}^2 \times x_1$	=	2.220 kN/m

B1 STEEL MASONRY SUPPORT (EN1993)

STEEL MASONRY SUPPORT

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Tedds calculation version 1.0.05

<u>Design summary</u>

Overall design status;PASSOverall design utilisation;0.763

Description	Unit	Allowable	Applied	Utilisation	Result
Heel moment	kNm/m	2.933	0.680	0.232	PASS
Deflection	mm	1.8	0.9	0.486	PASS
Weld capacity	kN/m	803.4	296.7	0.369	PASS
Shear force (major axis)	kN	695.9	38.1	0.055	PASS
Bending (major axis)	kNm	150.1	49.5	0.330	PASS
Bending (minor axis)	kNm	67.5	0.1	0.001	PASS
Torsion resistance	kNm	61.4	2.3	0.038	PASS
Plastic interaction				0.159	PASS
Torsion beam rotation	deg	3.00	0.05	0.017	PASS
Torsion beam deflection	mm	10.0	7.6	0.763	PASS

	Project		Sheet no./rev.
	The F	Pavilion	5
	Job Ref.	Calc. by	Date
	M2-3168	MC	05/02/202
	Doc. Ref	Chk'd by	Date
·	SE-01_A1	MD	12/02/202
	k 120 k 50		
<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	, <i>x</i> −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−		
<u>/</u> −50_ /	180/	8	
Partial factors - Section 6.1			
Resistance of cross-sections:	γ _{M0} = 1		
Resist. of members to instability;	γ _{M1} = 1		
Resistance of joints;	γ _{M2} = 1.25		
Partial factor for permanent action	vc = 1 35		
Partial factor for variable action:	yo = 1.55		
Steel heam section details	/u = 1.50		
Torsion beam section type:	RHS 300x100x8.0		
	- 375 N/mm ²		
Nominal ultimate tensile strength	f ₀ = f _{0.16} = Δ10 N/mm	2	
Masonry support section details			
Section type;	Plate 330x8(230)		
Steel grade;	User defined		
Nominal thickness;	t _{nom,sb} = t _{plate} = 8 mn	n	
Nominal yield strength;	f _{y,sb} = 275 N/mm ²		
Nominal ultimate tensile strength;	f _{u,sb} = 410 N/mm ²		
Modulus of elasticity;	E _{sb} = 210000 N/mm	2	
Total length of plate; $I_{\text{plate}} = 330 \text{ mm}$			
Length of plate beyond outer edge of tor Supported materials detail	rsion beam; I _h = 230 mm		
Density of masonry on torsion beam:	D _{m,tb} = 20.0 kN/m ³		
Density of masonry on torsion beam; Width of masonry on torsion beam:	D _{m,tb} = 20.0 kN/m ³ D _{m.tb} = 100 mm		

	Project		Sheet no./rev.
M^2	The Pavil	6	
	Job Ref.	Calc. by	Date
	M2-3168	MC	05/02/2025
	Doc. Ref	Chk'd by	Date
	SE-01_A1	MD	12/02/2025

Eccentricity of torsion beam masonry; $e_{load,tb} = 50 \text{ mm}$ Eccentricity of torsion beam material; $e_{tb} = 0 \text{ mm}$ Add perm. force torsion beam (not masonry); $G_{k,add,tb} = 2.1 \text{ kN/m}$ Add var. force torsion beam (not masonry); $Q_{k,add,tb} = 2.2 \text{ kN/m}$ Density of masonry on support beam; $\rho_{m,sb} = 20.0 \text{ kN/m}^3$ Width of masonry on support beam; $b_{m,sb} = 100 \text{ mm}$ Height of masonry on support beam; $h_{m,sb} = 1400 \text{ mm}$ Eccentricity of support beam masonry; $e_{load,sb} = 180 \text{ mm}$ **Geometry** Cavity width; $b_{cavity} = 130 \text{ mm}$ Supported width of masonry; $d_m = l_h + t_{shim} + e_{tb} - b_{cavity} = 100 \text{ mm}$

Maximum overall bending moment; $M_{y,Ed} = 49.5 \text{ kNm}$ Dist to NA combined section (CoG torsion beam); $z_{na,all} = (h_{tb} + t_{plate}) \times A_{pl} / (2 \times (A_{tb} + A_{pl})) = 47 \text{ mm}$ Second moment of area of combined section; $I_{y,all} = (I_{ytb} + A_{tb} \times z_{na,all}^2) + A_{pl} \times (h_{tb} / 2 + t_{plate} / 2 - z_{na,all})^2 = 10670 \text{ cm}^4$ Elastic section modulus of combined section; $Z_{y,all} = I_{y,all} / (h_{tb} / 2 + t_{plate} - z_{na,all}) = 958.21 \text{ cm}^3$ Section modulus of plate; $Z_{y,plate} = 1m \times t_{plate}^2 / (6 \times 1m) = 10.67 \text{ cm}^3/m$

Force of masonry on support plate; $F_1 = (b_{m,sb} \times h_{m,sb} \times \rho_{m,sb} + G_{k,add,sb}) \times \gamma_G + Q_{k,add,sb} \times \gamma_Q = 3.8 \text{ kN/m}$

Bending at heel; $M_{y,Ed,plate} = F_1 \times e_{load,sb} = 0.7 \text{ kNm/m}$

Moment capacity of plate; $M_{y,Rd,plate} = Z_{y,plate} \times f_{y,sb} / \gamma_{M0} = 2.9 \text{ kNm/m}$

PASS - Moment capacity of plate exceeds applied moment

 $\begin{array}{ll} \mbox{Longitudinal stress due to overall bending;} & \sigma_1 = M_{y,Ed} \, / \, Z_{y,all} = {\bf 51.7} \ N/mm^2 \\ \mbox{Constant relating to Von Mises curve;} & c_{fp} = (4 \times f_{y,sb}^2 - 3 \times \sigma_1^2)^{0.5} = {\bf 542.7} \ N/mm^2 \\ \mbox{Transverse bending stress ratio limit;} & \alpha_{ts} = (c_{fp}^2 - \sigma_1^2) \, / \, (2 \times c_{fp} \times f_{y,sb}) = {\bf 0.978} \\ \mbox{Transverse bending stress ratio;} & \alpha_{ls} = M_{y,Ed,plate} \, / \, M_{y,Rd,plate} = {\bf 0.232} \\ \end{array}$

PASS - Transverse bending stress ratio less than allowable limit

Deflection of plate

Unfactored force on support angle; $F_{1ser} = (b_{m,sb} \times h_{m,sb} \times \rho_{m,sb} + G_{k,add,sb}) + Q_{k,add,sb} = 2.8 \text{ kN/m}$ Distance from weld to load position; $a_m = e_{load,sb} = 180 \text{ mm}$ Length of load resultant to edge of plate; $b_m = l_h - e_{load,sb} = 50 \text{ mm}$ Dist from weld to load position as ratio of length; $a_l = a_m / (a_m + b_m) = 0.783$ Effective second moment of area; $l_{eff_def} = t_{plate}^3 / 12 = 42667 \text{ mm}^4/\text{m}$ Deflection at end of plate; $\delta = (a_l^2 \times (3 - a_l) / 6) \times (F_{1ser} \times (a_m + b_m)^3) / (E_{sb} \times l_{eff_def}) = 0.86 \text{ mm}$ Deflection limit; $\delta_{lim} = min((1 + d_m / b_{cavity}) \times 1mm, 2mm) = 1.77 \text{ mm}$

PASS - Deflection is within specified criteria

Weld details - assume a full length weld and that the plate acts as a propped cantilever with the prop at the weld position and the fixed end at the centre of the torsion beam

 $\begin{aligned} \text{Shear force at weld position;} \quad F_A = F_1 \times \max((1 + (3 \times e_{\mathsf{load},\mathsf{sb}}) / (2 \times b_{\mathsf{tb}} / 2)), \ 1.4) = \textbf{24.2 kN/m} \\ \text{Maximum possible force in plate;} \qquad F_p = (I_h + \min(b_{\mathsf{tb}}, I_{\mathsf{plate}} - I_h)) \times t_{\mathsf{plate}} \times f_{\mathsf{y},\mathsf{sb}} = \textbf{726.0 kN} \end{aligned}$

	Project			Sheet no./rev.
M2		The Pavil	7	
	Job Ref.		Calc. by	Date
		M2-3168	MC	05/02/2025
	Doc. Ref		Chk'd by	Date
		SE-01_A1	MD	12/02/2025

PASS - weld capacity exceeds applied force

Tedds calculation version 1.0.05

Longitudinal shear between beam and plate; $F_I = 2 \times F_p / L = 279.2 \text{ kN/m}$ Horizontal shear between beam and plate; $F_h = F_1 \times e_{\text{load,sb}} / (s_{\text{weld}} / 2 + t_{\text{plate}} / 2) = 97.2 \text{ kN/m}$ Resultant weld force; $F_{w,Ed} = (F_A^2 + F_I^2 + F_h^2)^{0.5} = 296.7 \text{ kN/m}$ Leg length of weld; $s_{\text{weld}} = 6.00 \text{ mm}$ Throat thickness of weld; $a_{\text{weld}} = 1 / \sqrt{2} \times s_{\text{weld}} = 4.24 \text{ mm}$ Length of weld per metre run; $l_{\text{weld}} = 1000 \text{ mm/m}$ Ultimate tensile strength used for weld; $f_{u,\text{weld}} = \min(f_{u,\text{sb}}, f_{u,\text{tb}}) = 410.0 \text{ N/mm}^2$ Correlation factor (table 4.1); $\beta_w = 1.00$ Design shear strength; $f_{vw,d} = f_{u,\text{weld}} / (\sqrt{3} \times \beta_w \times \gamma_{M2}) = 189.4 \text{ N/mm}^2$

Eccentricities

Distance to shear centre of torsion beam; $e_{0,tb} = 0 \text{ mm}$

Eccentricity of support beam masonry; $e_{m,sb} = e_{load,sb} + b_{tb} / 2 = 230 \text{ mm}$

Eccentricity of torsion beam masonry; $e_{m,tb} = b_{tb} / 2 - e_{load,tb} = 0 \text{ mm}$

Eccentricity of support beam; $e_{b,sb} = c_{zsb} + b_{tb} / 2 = 115 \text{ mm}$

Eccentricity of torsion beam; $e_{b,tb} = 0 \text{ mm}$

Torsional loading ULS

Self weight of support beam; $w_{sw,sb} = A_{pl} \times \rho_{SEC3} \times g_{acc} \times \gamma_G = 0.27 \text{ kN/m}$

Self weight of torsion beam; $w_{sw,tb} = A_{tb} \times \rho_{SEC3} \times g_{acc} \times \gamma_G = 0.63 \text{ kN/m}$

Torsional loading SLS

Loading of support beam masonry; $w_{sb,ser} = h_{m,sb} \times b_{m,sb} \times \rho_{m,sb} = 2.80 \text{ kN/m}$

 $\label{eq:loading} \text{Loading of torsion beam masonry;} \qquad w_{\text{tb,ser}} = h_{\text{m,tb}} \times b_{\text{m,tb}} \times \rho_{\text{m,tb}} + G_{\text{k,add,tb}} + Q_{\text{k,add,tb}} = \textbf{7.14 kN/m}$

Self weight of support beam; $w_{sw,sb,ser} = A_{pl} \times \rho_{SEC3} \times g_{acc} = 0.20 \text{ kN/m}$

Self weight of torsion beam; $w_{sw,tb,ser} = A_{tb} \times \rho_{SEC3} \times g_{acc} = 0.47 \text{ kN/m}$

Torsional effects

Applied torque (ULS); $T_{d,w} = abs(w_{sb} \times e_{m,sb} + w_{tb} \times e_{m,tb} + w_{sw,sb} \times e_{b,sb} + w_{sw,tb} \times e_{b,tb}) = 0.90 \text{ kNm/m}$ Total torque (ULS); $T_d = T_{d,w} \times L = 4.68 \text{ kNm}$ Applied torque (SLS); $T_{d,w,ser} = abs(w_{sb,ser} \times e_{m,sb} + w_{tb,ser} \times e_{m,tb} + w_{sw,sb,ser} \times e_{b,sb} + w_{sw,tb,ser} \times e_{b,tb}) = 0.67 \text{ kNm/m}$

Total torque (SLS); $T_{d,ser} = T_{d,w,ser} \times L = 3.47 \text{ kNm}$

STEEL BEAM TORSION DESIGN (EN1993)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Partial factors - Section 6.1

Resistance of cross-sections;	γмо = 1
Resistance of members to instability;	γ _{M1} = 1

		Project			Sheet no./	′rev.
AA2			The Pa	vilion		8
		Job Ref.		Calc. by	Date	
		M2	-3168	M	C 05/0	02/2025
		Doc. Ref		Chk'd by	Date	
		SE-	01_A1	MI	D 12/0	02/2025
Section d	letails					
Section type		RHS 3	00x100x8 0 (Ta	ta Steel Celsius ((Gr355 Gr420 Gr460))
Steel grade:		User o	lefined		(0.000 00 000)	,
Nominal thick	ness of element:	t _{nom} =	t = 8 mm			
Nominal vield	strength;	f _v = 2 7	'5 N/mm ²			
, Nominal ultim	nate tensile strengtl	h; f _u = 4 1	0 N/mm ²			
Modulus of el	asticity;	E = 21	0000 N/mm ²			
Shoar cou	ntro					
Distance botu	veen flange shoar o	antras h h - t - 707 0 .	nm			
Shear centro	(ahove bottom fland	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	/) = 1/6 0 mm			
Torsional	section modulus	Be centroluj, es,bt – Ils	r ∠ - 140.0 IIIIII	I Contraction of the second seco		
Derimeter les	ath : $n = 2 \times 1/h$	_ +) _ (b _ +))	× (1 - 7) - 751	mm		
Aroa oncloses	$g_{(1)}, \mu = 2 \times ((n))$	- (j + (v) - (j) - 2 × 1.23 × 1 vr. A = (h +) \ /h +	$(4 - \pi) = 751$	······· (Λ	nm ²	
Taraianal aast	i by mean perimete	$A_{p} = (\Pi - I) \times (D - I)$) - (1.25 × l) ⁻ ×	(4 - 11) = 20778 m	11111-	
Analvsis	results	$t = It / (t + 2 \times Ap / p) - 3c$				
Design bendir	ng moment - major	axis; M _{v,Ed} =	= 49.5 kNm			
Design shear	force - major axis;	V _{y,Ed} =	38.1 kN			
Classifica	tion					
Internal	compression parts	subiect to bending - Tab	e 5.2 (sheet 1 (of 3)		
Width of sect	ion:	c = h -	3 × t = 276 mm	n		
		c/t=	34 5 = 37 3 × ε	<=72 x ε Cl	ass 1	
P #		.,				
	compression parts	subject to compression -	Table 5.2 (she	et 1 of 3)		
whath of section	ion;	c = b -	3×t=/6mm		1	
		c / t =	9.5 = 10.3 × ε <	<= 33 × ε; Cl	ass 1	
					Section	is class
Torsional	loads					
					UDL 4.7	
A					UDL 4.7	
↓		5200			UDL 4.7	
▲ ⊁			ding		UDL 4.7	
↓ Load No.	Load type	Torsional load	ding Distance a	long beam	UDL 4.7	
↓ Load No.	Load type	Torsional load	ding Distance a (mm)	long beam	UDL 4.7	

Design torque at LHS support; $T_A = T_{d_1} / 2 = 2.34 \text{ kNm}$

Design torque at RHS support; $T_B = T_{d_1}/2 = 2.34$ kNm

Average torque over haf the beam; $T_{av,t,Ed} = -T_{d_1}/4 = -1.17$ kNm

		F	Project			Sheet no./rev.
		The Pavilion			9	
		l	lob Ref.		Calc. by	Date
				M2-3168	MC	05/02/2025
		ſ	Doc. Ref		Chk'd by	Date
				SE-01_A1	MD	12/02/2025

Maximum St Venant torsion design moment; $T_{t,Ed} = max(abs(T_A), abs(T_B)) = 2.34$ kNm

Rotation at mid-span; ϕ = abs(T_{avt,Ed}) × L / (2 × G_{SEC3} × I_t) = **0.00123**

Additional minor axis moment; $M_{z,add,Ed} = \phi \times M_{y,Ed} = 0.06 \text{ kNm}$

Check shear - Section 6.2.6

Height of web; $h_w = h - 2 \times t = 284 \text{ mm}$

 η = 1.000 $h_w \ / \ t = 35.5 = 38.4 \times \epsilon \ / \ \eta < 72 \times \epsilon \ / \ \eta$

Shear buckling resistance can be ignored

Design shear force; $V_{y,Ed} = 38.10 \text{ kN}$ Shear area - cl 6.2.6(3); $A_v = A \times h / (b + h) = 4556 \text{ mm}^2$ Design shear resistance - cl 6.2.6(2); $V_{pl,y,Rd} = A_v \times (f_y / \sqrt{(3)}) / \gamma_{M0} = 723.4 \text{ kN}$ Shear stress due to St Venant torsion; $\tau_{t,Ed} = T_{t,Ed} / W_t = 6.06 \text{ N/mm}^2$ Reduced shear resistance due to torsion - eq 6.26; $V_{c,y,Rd} = V_{pl,T,y,Rd} = (1 - \tau_{t,Ed} / ((f_y / \sqrt{(3)}) / \gamma_{M0})) \times V_{pl,y,Rd} = 695.9 \text{ kN}$ $V_{y,Ed} / V_{pl,T,y,Rd} = 0.055$

PASS - Design shear resistance exceeds design shear force

Check bending moment - Section 6.2.5

Design bending moment; M_{y,Ed} = **49.5** kNm

Design bending resistance moment - eq 6.13; $M_{c,y,Rd} = M_{pl,y,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 150.1 \text{ kNm}$

M_{y,Ed} / M_{pl,y,Rd} = 0.33

PASS - Design bending resistance moment exceeds design bending moment

Check bending moment - Section 6.2.5

 $\begin{array}{ll} \text{Design bending moment;} & M_{z,\text{Ed},\text{total}} = M_{z,\text{Ed}} + M_{z,\text{add},\text{Ed}} = \textbf{0.1} \text{ kNm} \\ \text{Design bending resistance moment - eq 6.13;} & M_{c,z,\text{Rd}} = M_{pl,z,\text{Rd}} = W_{pl,z} \times f_y \ / \ \gamma_{M0} = \textbf{67.5} \text{ kNm} \\ \end{array}$

 $M_{z,Ed,total} / M_{pl,z,Rd} = 0.001$

PASS - Design bending resistance moment exceeds design bending moment

Torsional resistance

Design resistance to St. Venant torsion; $T_{Rd} = C \times f_y / (\sqrt{3} \times \gamma_{M0}) = 61.42$ kNm

$$T_{t,Ed} / T_{Rd} = 0.038$$

PASS - Design torsional resistance exceeds applied St Venants torsion

Plastic verification - cl.6.2.9.1(6)

```
αbi = 1.66
```

```
βbi = 1.66
```

 $[\mathsf{M}_{\text{y,Ed}} / \mathsf{M}_{\text{pl,y,Rd}}]^{\alpha b i} + [\mathsf{M}_{\text{z,Ed,total}} / \mathsf{M}_{\text{pl,z,Rd}}]^{\beta b i} = \textbf{0.159}$

PASS - Plastic interaction criterion is less than 1.0

Serviceability limit checks

Rotation limit; $\phi_{ser,lim} = 3.00 \text{ deg}$

Rotation of torsion beam; $\phi_{ser} = M_{z,add,Ed} \times 180 / (M_{y,Ed} \times \gamma_G \times \pi) = 0.05 \text{ deg}$

PASS - Rotation limit exceeds rotation in torsion beam

		Project				Sheet no./rev.
			The Pavilion			10
	M^2			Calc. by		Date
			M2-3168		MC	05/02/202
			ef	Chk'd by		Date
			SE-01_A1		MD	12/02/202
Vertical deflect SLS loading on	tion limit; δ_v beam; $f_{d,ser} = w_{sb,s}$	$u_{\rm lim} = 10.0 \text{ mm}$ Her + Wtb,ser + Wsw,sb	$_{\rm ser}$ + W _{sw,tb,ser} = 1	0.61 kN/m		
vertical defiect	LION OF LOISION DEA	$IIII; O_V = 5 \times I_d$,ser × L / (384 × 1	$s_{sb} \times I_{ytb} = 7.0$ IIII		
MASONRY B MASONRY	EARING DESIGI	<u>N (EN1996)</u> N				
MASONRY B MASONRY In accordance National Anne Summary table	EARING DESIGI <u>BEARING DESIGN</u> with EN1996-1-1: x.	<u>N (EN1996)</u> <u>N</u> 2005 + A1:2012, i	incorporating Co	orrigenda Februar	ry 2006 and July 2 Tedds (2009 and the UI
MASONRY B MASONRY In accordance National Anne Summary table Load	EARING DESIGN BEARING DESIGN with EN1996-1-1:2 x. e Local con	<u>N (EN1996)</u> <u>N</u> 2005 + A1:2012, i centration	incorporating Co	orrigenda Februar eader	Ty 2006 and July 2 Tedds of Utilisation	2009 and the UI
MASONRY B MASONRY In accordance National Anne Summary table Load	EARING DESIGN (BEARING DESIGN with EN1996-1-1: x. e Local con Design force	N (EN1996) 2005 + A1:2012, i centration Resistance	incorporating Co Spr Design	orrigenda Februar eader Resistance	Ty 2006 and July 2 Tedds o Utilisation	2009 and the U
MASONRY B MASONRY In accordance National Anne Summary table Load	EARING DESIGN (BEARING DESIGN with EN1996-1-1: x. e Local con Design force	N (EN1996) N 2005 + A1:2012, i centration Resistance	incorporating Co Spr Design stress	orrigenda Februar eader Resistance	Tedds of Utilisation	2009 and the UI
MASONRY B MASONRY In accordance National Anne Summary table Load	EARING DESIGN WITH EN1996-1-1:2 x. E Local con Design force 35.7 kN	N (EN1996) 2005 + A1:2012, i centration Resistance 35.8 kN	incorporating Co Spr Design stress N/A	eader Resistance	Tedds of Utilisation	2009 and the UI
MASONRY B MASONRY In accordance National Anne Summary table Load 1 1 Masonry pane	EARING DESIGN (BEARING DESIGN with EN1996-1-1: x. e Local con Design force 35.7 kN I details	N (EN1996) 2005 + A1:2012, i centration Resistance 35.8 kN	incorporating Co Spr Design stress N/A	eader Resistance	Tedds of Utilisation	2009 and the UI
MASONRY B MASONRY In accordance National Anne Summary table Load 1 Masonry pane Panel length;	EARING DESIGN (BEARING DESIGN with EN1996-1-1:2 x. e Local con Design force 35.7 kN I details	N (EN1996) 2005 + A1:2012, i centration Resistance 35.8 kN	incorporating Co Spr Design stress N/A L = 1500 mm	eader Resistance	Tedds of Utilisation	2009 and the UI
MASONRY B MASONRY In accordance National Anne Summary table Load 1 1 Masonry pane Panel length; Panel height;	EARING DESIGN With EN1996-1-1:2 x. E Local con Design force 35.7 kN I details	N (EN1996) 2005 + A1:2012, i centration Resistance 35.8 kN	incorporating Co Spr Design stress N/A L = 1500 mm h = 2500 mm	eader Resistance	Tedds of Utilisation	2009 and the UI

h_{ef} = **2500** mm t_{ef} = **100** mm

Effective height;

Masonry material details	
Unit type;	Aggregate concrete - Group 1
Compressive strength of masonry unit;	f _c = 7.3 N/mm ²
Height of unit;	h _u = 215 mm
Width of unit;	w _u = 100 mm
Conditioning factor;	k = 1.0
- Conditioning to the air dry condition in accordan	ce with cl.7.3.2
Shape factor - Table A.1;	d _{sf} = 1.38
Mean compressive strength of masonry unit;	$f_b = f_c \times k \times d_{sf} = 10.07 \text{ N/mm}^2$
Specific weight of units;	γ = 18 kN/m³
Mortar type;	M4 - General Purpose
Compressive strength of mortar;	f _m = 4.0 N/mm ²
Compressive strength factor - Tbl. NA 4;	K = 0.75
Characteristic compressive strength - eq. 3.1;	$f_k = K \times f_b^{0.7} \times f_m^{0.3} = 5.73 \text{ N/mm}^2$
Short term secant modulus of elasticity factor;	K _E = 1000
Modulus of elasticity - cl.3.7.2;	E _w = K _E × f _k = 5727 N/mm ²

Project		Sheet no./rev.	
The	The Pavilion		
Job Ref.	Calc. by	Date	
M2-3168	MC	05/02/2025	
Doc. Ref	Chk'd by	Date	
SE-01_A1	MD	12/02/2025	

Design compressive strength of masonry			
Category of manufacturing control;	Category II		
Class of execution control;	Class 2		
Partial factor for compressive strength;	γ _M = 3.00		
Cross-sectional area of wall;	A = L × t = 0.15 m ² ;		
Design compressive strength of masonry;	$f_d = f_k / \gamma_M = 1.91 \text{ N/mm}^2$		
Partial safety factors for design loads			
Partial safety factor for permanent load;	γ _{fG} = 1.35		
Partial safety factor for variable load;	γ _{fQ} = 1.50		
Superimposed vertical loading details			
Permanent UDL at top of wall;	g _k = 0.00 kN/m		
Variable UDL at top of wall;	q _k = 0.00 kN/m		
Eccentricity of permanent UDL load;	e _{gu} = 0 mm		
Eccentricity of variable UDL load;	e _{qu} = 0 mm		
Slenderness ratio of masonry wall - Section 5.5.1.4			
Slenderness ratio limit;	λ _{lim} = 27		
Slenderness ratio;	λ = h _{ef} / t _{ef} = 25.0		

PASS - Slenderness ratio is less than slenderness limit

Concentrated Load 1 details - B1 point load

Permanent concentrated load; Variable concentrated load; Eccentricity of concentrated load;

 $G_{kc1} = 20.00 \text{ kN}$ $Q_{kc1} = 5.80 \text{ kN}$ $e_{c1} = 0 \text{ mm}$

Project		Sheet no./rev.
The Pavil	12	
Job Ref.	Calc. by	Date
M2-3168	MC	05/02/2025
Doc. Ref	Chk'd by	Date
SE-01_A1	MD	12/02/2025

Length of concentrated load;	L _{c1} = 150 mm
Width of concentrated load;	w _{c1} = 100 mm
Height of concentrated load;	h _{c1} = 2500 mm
Distance of load to right vertical edge;	r ₁₁ = 0 mm
Distance of load to nearest vertical edge;	a ₁₁ = 0 mm

Walls subjected to concentrated loads - Section 6.1.3

Eccentricity	check;
--------------	--------

 $e_{c1} \le t / 4$

PASS - Eccentricity of load is less than t/4 $A_{b1} = L_{c1} \times w_{c1} = 15000 \text{ mm}^2$ Area of bearing; $I_{efm1} = L_{c1} + h_{c1} / 2 \times tan(30) + r_{11} = 872 \text{ mm}$ Effective length of bearing at mid-height; $A_{ef1} = I_{efm1} \times t = 87169 \text{ mm}^2$ Effective bearing area; Bearing area ratio check; Aratio1 = Min(Ab1 / Aef1, 0.45) = 0.17 Initial enhancement factor; $\beta_{\text{init1}} = Max((1 + 0.3 \times a_{11} / h_{c1}) \times (1.5 - 1.1 \times A_{\text{ratio1}}), 1.0) = 1.31$ $\beta_{max1} = Min(1.25 + a_{11} / (2 \times h_{c1}), 1.5) = 1.25$ Maximum enhancement factor; Enhancement factor for concentrated loads; $\beta_1 = Min(\beta_{init1}, \beta_{max1}) = 1.25$ Design value of the concentrated load; $N_{Edc1} = G_{kc1} \times \gamma_{fG} + Q_{kc1} \times \gamma_{fQ} = 35.70 \text{ kN}$ $N_{Rdc1} = \beta_1 \times A_{b1} \times f_d = 35.79 \text{ kN}$ Design value concentrated load resistance;

PASS - Design resistance exceeds applied concentrated load

Walls subjected to mainly vertical loading - Section6.1.2

Eccentricity of permanent UDL at mid-height below concentrated load

$$e_{gmu1} = e_{gu} \times h_{c1} / (2 \times h) = 0.0 mm$$

Eccentricity of variable UDL at mid-height below concentrated load

	$e_{qmu1} = e_{qu} \times h_{c1} / (2 \times h) = 0.0 \text{ mm}$
Eccentricity of concentrated load at mid-height;	$e_{mc1} = e_{c1} / 2 = 0.0 \text{ mm}$
Initial eccentricity - cl.5.5.1.1(4);	e _{init} = h _{ef} / 450 = 5.6 mm
Concentrated load at mid-height as UDL;	$N_{mc1} = N_{Edc1} / I_{efm1} = 40.96 \text{ kN/m}$
Vertical load at mid-height;	$N_{\text{Ed1}} = (g_k + \gamma \times t \times (h - h_{\text{c1}} / 2)) \times \gamma_{fG} + q_k \times \gamma_{fQ} + N_{\text{mc1}} = \textbf{43.99} \text{ kN/m}$
Design moment at mid-height;	$M_{Ed1} = g_k \times \gamma_{fG} \times e_{gmu1} + q_k \times \gamma_{fQ} \times e_{qmu1} + N_{mc1} \times e_{mc1} = \textbf{0.00} \text{ kNm/m}$
Eccentricities due to loads - eq. 6.7;	e _{m1} = Abs(M _{Ed1}) / N _{Ed1} + e _{init} = 5.6 mm
Slenderness ratio limit for creep eccentricity;	$\lambda_c = 27$
Eccentricity due to creep;	e _{k1} = 0.0 mm
Eccentricity at mid-height - eq. 6.6;	$e_{mk1} = Max(e_{m1} + e_{k1}, 0.05 \times t) = 5.6 mm$
From eq. G2;	$A_{11} = 1 - 2 \times e_{mk1} / t = 0.89$
From eq. G3;	$u_1 = (h_{ef} / t_{ef} \times (1 / K_E)^{1/2} - 0.063) / (0.73 - 1.17 \times e_{mk1} / t) = 1.09$
Capacity reduction factor - eq. G1;	$\Phi_{m1} = A_{11} \times exp(-(u_1^2) / 2) = 0.49$
Design vertical resistance of panel - eq.6.2;	$N_{Rd1} = \Phi_{m1} \times t \times f_d = 93.26 \text{ kN/m}$
PAS	S - Design value of vertical resistance exceeds applied vertical load

	Project		Sheet no./rev.
M2	The Pavilion		13
	Job Ref.	Calc. by	Date
	M2-3168	MC	05/02/2025
	Doc. Ref	Chk'd by	Date
	SE-01_A1	MD	12/02/2025

Provide 300x100x8.0 RHS S.355 with 8mm thick plate welded to underside. 150mm bearing length on 215lg x 215dp x 100thk concrete padstone.

	Project		Sheet no./rev.
M2	The Pavil	14	
	Job Ref.	Calc. by	Date
	M2-3168	MC	05/02/2025
	Doc. Ref	Chk'd by	Date
	SE-01_A1	MD	12/02/2025

Beam B2 Design:

Loadings

UDL from Pitched Roof

Width of roof being carried;	x ₁ = 4.9 m		
Dead Load;	$DL_1 = 0.572 \text{ kN/m}^2 \times x_1$	=	2.803 kN/m
Imposed Load;	$IL_1 = 0.60 \text{ kN/m}^2 \times x_1$	=	2.940 kN/m

STEEL BEAM B2 ANALYSIS & DESIGN (EN1993)

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.14

Rotationally free

	The	The Pavilion		
	Job Ref.	Calc. by	Date	
	M2-3168	MC	05/02/202	
	Doc. Ref	Chk'd by	Date	
		MD	12/02/20.	
Applied loading				
Beam loads Permanent self weight	: of beam $ imes$ 1			
Permanent full UDL 2.8	8 kN/m			
Variable full UDL 2.94	kN/m			
Load combinations				
Load combination 1	Support A	Permane	nt × 1.35	
		Variable	× 1.50	
		Permane	nt × 1.35	
		Variable	× 1.50	
	Support B	Permane	anent $ imes$ 1.35	
		Variable	× 1.50	
Analysis results				
Maximum moment;	M _{max} = 102.5 kNm;	; M _{min} = 0	kNm	
Maximum shear;	V _{max} = 43.1 kN;	V _{min} = -43	8.1 kN	
Deflection;	δ_{max} = 13.2 mm;	δ _{min} = 0 n	nm	
Maximum reaction at support A;	R _{A_max} = 43.1 kN;	R _{A_min} = 4	3.1 kN	
Unfactored permanent load reaction	n at support A; RA_Permanent = 16.4 k	٢N		
Unfactored variable load reaction at	t support A; R _{A_Variable} = 14 kN			
Maximum reaction at support B;	R _{B_max} = 43.1 kN;	R _{B_min} = 4	3.1 kN	
Unfactored permanent load reaction	n at support B; R _{B_Permanent} = 16.4 k	٢N		
Unfactored variable load reaction at	t support B; R _{B_Variable} = 14 kN			
Section details				
Section type;	UB 406x178x67 (E	British Steel Section Ran	ge 2022 (BS4-1))	
Steel grade;	S275			
EN 10025-2:2004 - Hot rolled produ	ucts of structural steels			
Nominal thickness of element;	t = max(t _f , t _w) = 14 .	.3 mm		
Nominal viold strongth.	f _y = 275 N/mm ²			
Nominal yield strength;	f _u = 410 N/mm ²			
Nominal ultimate tensile strength;				

	Project				Sheet no./rev.
		The Pa	vilion		16
	Job Ref.		Calc. by		Date
		M2-3168		MC	05/02/2025
	Doc. Re	f	Chk'd by		Date
		SE-01_A1		MD	12/02/2025
	1 4.3				
	\uparrow \uparrow				
	-409.4	→ ←8.8			
	14.3				
	\downarrow $\frac{\downarrow}{\star}$				
	Ť	↓ 178.8 ▶			
Partial factors - Section 6.1					
Resistance of cross-sections;		γ _{M0} = 1.00			
Resistance of members to instability;		γ _{M1} = 1.00			
Resistance of tensile members to fractu	re;	γ _{M2} = 1.10			
Lateral restraint					
		Span 1 has lateral res	straint at sup	ports only	
Effective length factors					
Effective length factor in major axis;		K _y = 1.000			
Effective length factor in minor axis;		K _z = 1.000			
Effective length factor for torsion;		K _{LT.A} = 1.000 ;			
		K _{LT.B} = 1.000 ;			
Classification of cross sections - Section	5.5				
		$\varepsilon = \sqrt{235} \text{ N/mm}^2 / f_y$] = 0.92		
Internal compression parts subject to b	ending - T	able 5.2 (sheet 1 of 3)			
width of section;		c = d = 355.4 mm			
		c / t _w = 43. / × ε <= 72	2 × ε;	ciass 1	
Outstand flanges - Table 5.2 (sheet 2 of	f 3)				
Width of section;		$c = (b - t_w - 2 \times r) / 2 =$	= 72.3 mm		
		$c / t_f = 5.5 \times \varepsilon \le 9 \times \varepsilon$	ε;	Class 1	Section is class 1
Check shear - Section 6.2.6					
Height of web:		h _w = h - 2 × t⊧ = 380 8	mm		
Shear area factor:		n = 1.000			
		h _w / t _w < 72 × ε / n			
		, = ,	Shear bu	ckling resis	tance can be ignored
Design shear force;		V _{Ed} = max(abs(V _{max}), a	abs(V _{min})) = 4	3.1 kN	-

M^2	The Job Ref.	Pavilion	17
M^2	Job Ref.		
		Calc. by	Date
	M2-3168	MC	05/02/2025
	Doc. Ref	Chk'd by	Date
	SE-01_A1	MD	12/02/2025
Shear area - cl 6 2 6(3)	$A_{v} = \max(A - 2 \times h)$	× te + (tw + 2 × r) × te n × h	1× t) = 3979 mm²
Design shear resistance - $cl = 6.2.6(2)$:	$V_{c Rd} = V_{pl Rd} = A_{v} \times ($	$(f_v / \sqrt{[3]}) / \gamma_{M0} = 631.7 \text{ kN}$	
	PASS - Desi	ian shear resistance exce	eds desian shear force
Check bonding moment major (y, y) axis	Soction 6.2 E	,	,
Design bending moment.	$M_{rd} = max(abs(M_{rd}))$	$(M_{11}, m_{12}) = 102 I$	5 kNm
Design benuing moment,		max/, abs(ivisimin/) = 102	
Design bending resistance moment - eq 6.	13; $M_{c,Rd} = M_{pl,Rd} = W_{pl,y} \times$	f _y / γ _{M0} = 372.7 kNm	
Sienderness ratio for lateral torsional buc	ckling		
Correction factor - Table 6.6;	$k_c = 0.94$		
	$C_1 = 1 / k_c^2 = 1.132$		
Curvature factor;	$g = \sqrt{[1 - (I_z / I_y)]} = 0$).972	
Poissons ratio;	v = 0.3		
Shear modulus;	$G = E / [2 \times (1 + v)]$	= 80769 N/mm ²	
Unrestrained length;	L = 1.0 × L _{s1} = 9500	mm	
Elastic critical buckling moment; M	$_{cr} = C_1 \times \pi^2 \times E \times I_z / (L^2 \times g) \times kNm$	$<\sqrt{[I_w / I_z + L^2 \times G \times I_t / (\pi^2)]}$	$\times E \times I_z)$] = 147.2
Slenderness ratio for lateral torsional buck	cling; $\overline{\lambda}_{LT} = \sqrt{W_{pl.y} \times f_y} / M_{ol}$	_{cr}) = 1.591	
Limiting slenderness ratio;	$\overline{\lambda}_{LT,0} = 0.4$		
	$\overline{\lambda}_{LT} > \overline{\lambda}_{LT}$	o - Lateral torsional buckl	ling cannot be ignored
Design resistance for buckling - Section 6	.3.2.1		
Buckling curve - Table 6.5;	С		
Imperfection factor - Table 6.3;	$\alpha_{LT} = 0.49$		
Correction factor for rolled sections;	β = 0.75		
LTB reduction determination factor;	$\phi_{\text{LT}} = 0.5 \times [1 + \alpha_{\text{LT}}$	× ($\overline{\lambda}_{LT}$ - $\overline{\lambda}_{LT,0}$) + $\beta \times \overline{\lambda}_{LT}^2$]	= 1.742
LTB reduction factor - eq 6.57;	χ _{LT} = min(1 / [φ _{LT} +	$\sqrt{(\phi_{LT}^2 - \beta \times \overline{\lambda}_{LT}^2)}$, 1, 1 / 2	$\bar{\lambda}_{LT}^2$) = 0.356
Modification factor;	f = min(1 - 0.5 \times (1	- k _c)× $[1 - 2 \times (\overline{\lambda}_{LT} - 0.8)^2]$], 1) = 1.000
Modified LTB reduction factor - eq 6.58;	$\chi_{LT,mod} = min(\chi_{LT} / f)$, 1) = 0.356	
Design buckling resistance moment - eq 6.	.55; $M_{b,Rd} = \chi_{LT,mod} \times W_{pl,y}$	× f _y / γ _{M1} = 132.8 kNm	
P	ASS - Design buckling resist	ance moment exceeds de	sign bending moment
Check vertical deflection - Section 7.2.1			
Consider deflection due to permanent and	d variable loads		
Limiting deflection;	$\delta_{\text{lim}} = L_{s1} / 360 = 26$.4 mm	
Maximum deflection span 1;	$\delta = \max(abs(\delta_{max}), ds)$	abs(δ _{min})) = 13.196 mm	
	PASS - Maxin	num deflection does not e	exceed deflection limit

	Project		Sheet no./rev.
M2	The Pavilion		18
	Job Ref.	Calc. by	Date
	M2-3168	MC	05/02/2025
	Doc. Ref	Chk'd by	Date
	SE-01_A1	MD	12/02/2025

B2 MASONRY BEARING DESIGN (EN1996)

MASONRY BEARING DESIGN

In accordance with EN1996-1-1:2005 + A1:2012, incorporating Corrigenda February 2006 and July 2009 and the UK National Annex.

Tedds calculation version 1.0.14

Summary table

Load	L	local	Spreader		Utilisation			
	conce	entration						
	Design	Resistance	Design Resistance		ce Design Resistance			
	force		stress					
1	43.1	26.6 kN	1.31	1.48	0.885	Pass		
	kN		N/mm ²	N/mm ²				

Masonry panel details	
Panel length;	L = 4000 mm
Panel height;	h = 2500 mm
Thickness of load bearing leaf;	t = 100 mm
Effective height;	h _{ef} = 2500 mm
Effective thickness;	t _{ef} = 100 mm
Masonry material details	
Unit type;	Aggregate concrete - Group 1
Compressive strength of masonry unit;	f _c = 3.6 N/mm ²
Height of unit;	h _u = 215 mm
Width of unit;	w _u = 100 mm
Conditioning factor;	k = 1.0
- Conditioning to the air dry condition in accordan	ce with cl.7.3.2
Shape factor - Table A.1;	d _{sf} = 1.38
Mean compressive strength of masonry unit;	$f_b = f_c \times k \times d_{sf} = 4.97 \text{ N/mm}^2$
Specific weight of units;	γ = 18 kN/m³
Mortar type;	M4 - General Purpose
Compressive strength of mortar;	f _m = 4.0 N/mm ²
Compressive strength factor - Tbl. NA 4;	K = 0.75
Characteristic compressive strength - eq. 3.1;	f_k = K × $f_b^{0.7}$ × $f_m^{0.3}$ = 3.49 N/mm ²
Short term secant modulus of elasticity factor;	K _E = 1000
Modulus of elasticity - cl.3.7.2;	E _w = K _E × f _k = 3491 N/mm ²

	Project		Sheet no./rev.	
M2	The P	The Pavilion		
	Job Ref.	Calc. by	Date	
	M2-3168	MC	05/02/2025	
	Doc. Ref	Chk'd by	Date	
	SE-01_A1	MD	12/02/2025	

Design compressive strength of masonry					
Category of manufacturing control;	Category II				
Class of execution control;	Class 2				
Partial factor for compressive strength;	γ _M = 3.00				
Cross-sectional area of wall;	A = L × t = 0.40 m ² ;				
Design compressive strength of masonry;	$f_d = f_k / \gamma_M = 1.16 \text{ N/mm}^2$				
Partial safety factors for design loads					
Partial safety factor for permanent load;	γ _{fG} = 1.35				
Partial safety factor for variable load;	γ _{fQ} = 1.50				
Superimposed vertical loading details					
Permanent UDL at top of wall;	g _k = 0.00 kN/m				
Variable UDL at top of wall;	q _k = 0.00 kN/m				
Eccentricity of permanent UDL load;	e _{gu} = 0 mm				
Eccentricity of variable UDL load;	e _{qu} = 0 mm				
Slenderness ratio of masonry wall - Section 5.5.1.4					
Slenderness ratio limit;	λ _{lim} = 27				
Slenderness ratio;	λ = h _{ef} / t _{ef} = 25.0				

PASS - Slenderness ratio is less than slenderness limit

Concentrated Load 1 details - B2 point load

Permanent concentrated load; Variable concentrated load; Eccentricity of concentrated load; Length of concentrated load; Width of concentrated load; Height of concentrated load; G_{kc1} = **16.40** kN Q_{kc1} = **14.00** kN e_{c1} = **0** mm L_{c1} = **180** mm w_{c1} = **100** mm h_{c1} = **2500** mm

	Project			Sheet no./rev.
		The Pav	vilion	20
	Job Ref.		Calc. by	Date
		M2-3168	MC	05/02/2025
	Doc. Ref		Chk'd by	Date
		SE-01_A1	MD	12/02/2025
Distance of load to right vertical edge;	r _{1:}	1 = 110 mm		
Distance of load to nearest vertical edge;	a ₁	₁ = 110 mm		
Walls subjected to concentrated loads - S	ection 6.1.3	3		
Eccentricity check;	ec	1 <= t / 4		
			PASS - Eccentricity o	f load is less than t/4
Area of bearing;	At	$h_{01} = L_{c1} \times w_{c1} = 18000$) mm ²	
Effective length of bearing at mid-height;	lef	$_{m1} = L_{c1} + h_{c1} / 2 \times ta$	n(30) + r ₁₁ = 1012 mm	
Effective bearing area;	Ae	_{ef1} = I _{efm1} × t = 10116	9 mm ²	
Bearing area ratio check;	Ar	_{atio1} = Min(A _{b1} / A _{ef1} ,	0.45) = 0.18	
Initial enhancement factor;	βi	$_{nit1} = Max((1 + 0.3 \times$	a11 / hc1) × (1.5 - 1.1 × A	_{ratio1}), 1.0) = 1.32
Maximum enhancement factor;	β_{max1} = Min(1.25 + a ₁₁ / (2 × h _{c1}), 1.5) = 1.27			
Enhancement factor for concentrated load	d loads; $\beta_1 = Min(\beta_{init1}, \beta_{max1}) = 1.27$			
Design value of the concentrated load;	N	$E_{dc1} = G_{kc1} \times \gamma_{fG} + Q_{kc1}$	ι × γ _{fQ} = 43.14 kN	
Design value concentrated load resistance	; Nr	$R_{dc1} = \beta_1 \times A_{b1} \times f_d = 2$	26.65 kN	
	Applied c	oncentrated load e	xceeds design resistance	e, spreader required!

Design of spreader beam

Type of spreader; Type of bearing onto spreader;

Point load

	Project		Sheet no./rev.
M2	The Pavil	21	
	Job Ref.	Calc. by	Date
	M2-3168	MC	05/02/2025
	Doc. Ref	Chk'd by	Date
	SE-01_A1	MD	12/02/2025

Location of load from RHS of spreader;	P ₁₁ = 165 mm
Length of spreader;	L _{sp1} = 330 mm
Height of spreader;	h _{sp1} = 215 mm
Width of spreader;	w _{sp1} = 100 mm
Eccentricity of load on spreader;	$e_{sp1} = 0 mm$
Modulus of elasticity;	E _{sp1} = 29962 N/mm ²
Second moment of area;	$I_{sp1} = 1/12 \times w_{sp1} \times h_{sp1}^3 = 82819792 \text{ mm}^4$
Modulus of the wall;	k ₀ = E _w / h = 1.40 N/mm ² /mm
Winkler's constant;	$K_{c1} = k_0 \times w_{sp1} = 139.66 \text{ N/mm/mm}$
Characteristic of the system;	$\alpha_1 = (K_{c1} / (4 \times E_{sp1} \times I_{sp1}))^{1/4} = 0.00194 \text{ mm}^{-1}$
Classification of spreader;	$\alpha L_1 = \alpha_1 \times L_{sp1} = 0.64$; Medium
Krilov's functions for the spreader length;	$B_{\alpha l1} = 1/2 \times (cosh(\alpha L_1) \times sin(180 \times \alpha L_1 / \pi) + sinh(\alpha L_1) \times cos(180 \times$
	$\alpha L_1 / \pi$)) = 0.64
	$C_{\alpha l1} = 1/2 \times sinh(\alpha L_1) \times sin(180 \times \alpha L_1 / \pi) = 0.20$
	$D_{\alpha l1} = 1/4 \times (\cosh(\alpha L_1) \times \sin(180 \times \alpha L_1 / \pi) - \sinh(\alpha L_1) \times \cos(180 \times \pi L_1 / \pi))$
	$\alpha L_1 / \pi$)) = 0.04
Krilov's functions at the point load;	$A_{\alpha P11} = cosh(\alpha_1 \times P_{11}) \times cos(180 \times \alpha_1 \times P_{11} / \pi) = 1.00$
	$B_{\alphaP11} = 1/2 \times (cosh(\alpha_1 \times P_{11}) \times sin(180 \times \alpha_1 \times P_{11} / \pi) + sinh(\alpha_1 \times P_{11} / \pi) + $
	$P_{11}) \times \cos(180 \times \alpha_1 \times P_{11} / \pi)) = \textbf{0.32}$
Using method of initial conditions	
Initial moment of LH edge;	M ₀₁ = 0 kNm
Initial shear of LH edge;	V ₀₁ = 0 kN
Which gives;	$(4 \times \alpha_1{}^2 \times C_{\alpha l1} \times \delta_{01} + 4 \times \alpha_1 \times D_{\alpha l1} \times \Phi_{01}) \times E_{sp1} \times I_{sp1} - B_{\alpha P11} / \alpha_1 \times$
	N _{Edc1} = 0.00 kNm
and;	$(4 \times \alpha_1{}^3 \times B_{\alpha l1} \times \delta_{01} + 4 \times \alpha_1{}^2 \times C_{\alpha l1} \times \Phi_{01}) \times E_{sp1} \times I_{sp1} - A_{\alpha P11} \times N_{Edc1}$
	= 0.00 kN
Therefore,	
Initial deflection of LH edge:	
	δ ₀₁ = 0.93313 mm
Initial rotationof LH edge;	δ_{01} = 0.93313 mm Φ_{01} = 0.000039
Initial rotationof LH edge;	δ_{01} = 0.93313 mm Φ_{01} = 0.000039
Initial rotation of LH edge;	$\delta_{01} = 0.93313 \text{ mm}$ $\Phi_{01} = 0.000039$ $x_{def1} = 165 \text{ mm}$
Initial rotationof LH edge; Location of maximum deflection; Krilov's functions at the spreader length;	$δ_{01} = 0.93313 \text{ mm}$ $Φ_{01} = 0.000039$ $x_{def1} = 165 \text{ mm}$ $A_{\alpha x def1} = cosh(α_1 × x_{def1}) × cos(180 × α_1 × x_{def1} / π) = 1.00$
Initial rotationof LH edge; Location of maximum deflection; Krilov's functions at the spreader length;	$δ_{01} = 0.93313 \text{ mm}$ $Φ_{01} = 0.000039$ $x_{def1} = 165 \text{ mm}$ $A_{\alpha x def1} = \cosh(\alpha_1 \times x_{def1}) \times \cos(180 \times \alpha_1 \times x_{def1} / \pi) = 1.00$ $B_{\alpha x def1} = 1/2 \times (\cosh(\alpha_1 \times x_{def1}) \times \sin(180 \times \alpha_1 \times x_{def1} / \pi) + \sinh(\alpha_1 + \sin(\alpha_1 + \pi) + \sin(\alpha_1 + \pi))$
Initial rotationof LH edge; Location of maximum deflection; Krilov's functions at the spreader length;	$\begin{split} \delta_{01} &= \textbf{0.93313} \text{ mm} \\ \Phi_{01} &= \textbf{0.000039} \\ \\ \mathbf{x}_{def1} &= \textbf{165} \text{ mm} \\ A_{\alpha x def1} &= \cosh(\alpha_1 \times \mathbf{x}_{def1}) \times \cos(180 \times \alpha_1 \times \mathbf{x}_{def1} / \pi) = \textbf{1.00} \\ \\ B_{\alpha x def1} &= 1/2 \times (\cosh(\alpha_1 \times \mathbf{x}_{def1}) \times \sin(180 \times \alpha_1 \times \mathbf{x}_{def1} / \pi) + \sinh(\alpha_1 \times \mathbf{x}_{def1}) \times \cos(180 \times \alpha_1 \times \mathbf{x}_{def1} / \pi)) = \textbf{0.32} \end{split}$
Initial rotationof LH edge; Location of maximum deflection; Krilov's functions at the spreader length; Distance of point load right of loaction;	$\delta_{01} = 0.93313 \text{ mm}$ $\Phi_{01} = 0.000039$ $x_{def1} = 165 \text{ mm}$ $A_{\alpha x def1} = \cosh(\alpha_1 \times x_{def1}) \times \cos(180 \times \alpha_1 \times x_{def1} / \pi) = 1.00$ $B_{\alpha x def1} = 1/2 \times (\cosh(\alpha_1 \times x_{def1}) \times \sin(180 \times \alpha_1 \times x_{def1} / \pi) + \sinh(\alpha_1 \times x_{def1}) \times \cos(180 \times \alpha_1 \times x_{def1} / \pi)) = 0.32$ $p_{1def1} = 0 \text{ mm}$
Initial rotationof LH edge; Location of maximum deflection; Krilov's functions at the spreader length; Distance of point load right of loaction; Krilov's functions at the spreader length;	$\delta_{01} = 0.93313 \text{ mm}$ $\Phi_{01} = 0.000039$ $x_{def1} = 165 \text{ mm}$ $A_{\alpha x def1} = \cosh(\alpha_1 \times x_{def1}) \times \cos(180 \times \alpha_1 \times x_{def1} / \pi) = 1.00$ $B_{\alpha x def1} = 1/2 \times (\cosh(\alpha_1 \times x_{def1}) \times \sin(180 \times \alpha_1 \times x_{def1} / \pi) + \sinh(\alpha_1 \times x_{def1}) \times \cos(180 \times \alpha_1 \times x_{def1} / \pi)) = 0.32$ $p_{1def1} = 0 \text{ mm}$ $D_{\alpha p 1 def1} = 1/4 \times (\cosh(\alpha_1 \times p_{1def1}) \times \sin(180 \times \alpha_1 \times p_{1def1} / \pi) - \cos(180 \times \alpha_1 \times p_{1def1} / \pi) -$
Initial rotationof LH edge; Location of maximum deflection; Krilov's functions at the spreader length; Distance of point load right of loaction; Krilov's functions at the spreader length;	$\begin{split} \delta_{01} &= \textbf{0.93313} \text{ mm} \\ \Phi_{01} &= \textbf{0.000039} \\ \\ \mathbf{x}_{def1} &= \textbf{165} \text{ mm} \\ A_{\alpha x def1} &= \cosh(\alpha_1 \times \mathbf{x}_{def1}) \times \cos(180 \times \alpha_1 \times \mathbf{x}_{def1} / \pi) = \textbf{1.00} \\ B_{\alpha x def1} &= 1/2 \times (\cosh(\alpha_1 \times \mathbf{x}_{def1}) \times \sin(180 \times \alpha_1 \times \mathbf{x}_{def1} / \pi) + \sinh(\alpha_1 \times \mathbf{x}_{def1}) \times \cos(180 \times \alpha_1 \times \mathbf{x}_{def1} / \pi)) = \textbf{0.32} \\ p_{1def1} &= \textbf{0} \text{ mm} \\ D_{\alpha p 1 def1} &= 1/4 \times (\cosh(\alpha_1 \times p_{1def1}) \times \sin(180 \times \alpha_1 \times p_{1def1} / \pi) - \\ &= \sinh(\alpha_1 \times p_{1def1}) \times \cos(180 \times \alpha_1 \times p_{1def1} / \pi)) = \textbf{0.00} \end{split}$
Initial rotationof LH edge; Location of maximum deflection; Krilov's functions at the spreader length; Distance of point load right of loaction; Krilov's functions at the spreader length; Particular integral due to load;	$\begin{split} \delta_{01} &= \textbf{0.93313} \text{ mm} \\ \Phi_{01} &= \textbf{0.000039} \\ \\ &\textbf{x}_{def1} &= \textbf{165} \text{ mm} \\ &A_{\alpha x def1} &= \cosh(\alpha_1 \times x_{def1}) \times \cos(180 \times \alpha_1 \times x_{def1} / \pi) = \textbf{1.00} \\ &B_{\alpha x def1} &= 1/2 \times (\cosh(\alpha_1 \times x_{def1}) \times \sin(180 \times \alpha_1 \times x_{def1} / \pi) + \sinh(\alpha_1 \times x_{def1}) \times \cos(180 \times \alpha_1 \times x_{def1} / \pi)) = \textbf{0.32} \\ &p_{1def1} &= \textbf{0} \text{ mm} \\ &D_{\alpha p 1 def1} &= 1/4 \times (\cosh(\alpha_1 \times p_{1def1}) \times \sin(180 \times \alpha_1 \times p_{1def1} / \pi) - \\ &\sinh(\alpha_1 \times p_{1def1}) \times \cos(180 \times \alpha_1 \times p_{1def1} / \pi)) = \textbf{0.00} \\ &\delta'_1 &= D_{\alpha p 1 def1} / \alpha_1^3 \times N_{Edc1} / (I_{sp1} \times E_{sp1}) = \textbf{0.000} \text{ mm} \end{split}$

	Project			Sheet no./rev.
		The	Pavilion	22
	Job Ref.		Calc. by	Date
		M2-3168	MC	05/02/202
	Doc. Ref		Chk'd by	Date
		SE-01_A1	MD	12/02/202
Location of maximum moment;		x _{M1} = 165 mm		
Kriloy's functions at the spreader length:		$C_{\alpha \times M1} = 1/2 \times \sinh(\alpha$	$(\alpha_1 \times \mathbf{x}_{M1}) \times \sin(180 \times \alpha_1 \times \mathbf{x}_{M1})$	x _{M1} / π) = 0.05
······································		$D_{\alpha \times M1} = 1/4 \times (\cosh \theta)$	$(\alpha_1 \times \mathbf{x}_{M1}) \times \sin(180 \times \alpha_1)$	$\langle \mathbf{x}_{M1} / \pi \rangle$ - sinh($\alpha_1 \times$
		x_{M1} × cos(180 × α_1	$(\times 1 \times 1 \times 1 \times 1) = 0.01$	
Distance of point load right of loaction;		$p_{1M1} = 0 \text{ mm}$		
Krilov's functions at the spreader length;		$B_{\alpha p1M1} = 1/2 \times (\cos \theta)$	$h(\alpha_1 \times p_{1M1}) \times sin(180 \times \alpha_2)$	$_1 \times p_{1M1} / \pi$) + sinh(e
		× p _{1M1}) × cos(180 ×	$(\alpha_1 \times p_{1M1} / \pi)) = 0.00$,,,(
Particular integral due to load:		$M'_1 = -B_{\alpha n1M1} / \alpha_1 \times$	$N_{Edc1} = 0.00 \text{ kNm}$	
Maximum moment:		$M_{Edsp1} = (4 \times \alpha_1^2 \times \alpha_2)^2 \times \alpha_2^2 \times \alpha_$	$C_{\alpha \times M1} \times \delta_{01} + 4 \times \alpha_1 \times D_{\alpha \times M1}$	$_1 imes \Phi_{01}) imes (I_{sn1} imes F_{sn'})$
,		+ M' ₁ = 1.78 kNm		_ 51, (15p1 ·· = 5p1
Location of maximum shear;		x _{V1} = 165 mm		
Krilov's functions at the spreader length;		$B_{\alpha x V 1} = 1/2 \times (\cosh \theta)$	$(\alpha_1 \times \mathbf{x}_{V1}) \times \sin(180 \times \alpha_1 \times$	x_{v_1}/π) + sinh($\alpha_1 \times$
		x_{V1}) × cos(180 × α_1	$\times x_{V1} / \pi$)) = 0.32	
		$C_{\alpha x V 1} = 1/2 \times \sinh(\alpha$	$(x_1 \times x_{V1}) \times \sin(180 \times \alpha_1 \times x_1)$	v1 / π) = 0.05
Distance of point load right of loaction;		p _{1V1} = 0 mm		
Krilov's functions at the spreader length;		$A_{\alpha p1V1} = cosh(\alpha_1 \times \mu)$	p_{1V1}) × cos(180 × α_1 × p_{1V1}	/ π) = 1.00
Particular integral due to load;		$V'_1 = -A_{\alpha p1V1} \times N_{Edc1}$	= -43.14 kN	
Shear at concentrated point load;		$V_1 = (4 \times \alpha_1^3 \times B_{\alpha x V})$	$_{1} \times \delta_{01} + 4 \times \alpha_{1}^{2} \times C_{\alpha x V 1} \times 0$	$(I_{sp1} \times (I_{sp1} \times E_{sp1}) + V)$
		= -21.57 kN		
Maximum shear;		V _{Edsp1} = Max(Abs(V	1), N _{Edc1} - Abs(V ₁)) = 21.57	KN
Maximum allowable stress under spreader;		$\sigma_{\text{Rdsp1}} = \beta_1 \times f_d = 1.4$	48 N/mm ²	
Maximum reaction;		$N_{Edsp1} = K_{c1} \times \delta_{max1} =$	= 131.00 kN/m	
Design stress;		$\sigma_{Edsp1} = N_{Edsp1} / w_{sp2}$	1 = 1.31 N/mm ²	
PAS	SS - Des	sign stress under spi	reader is less than the allo	owable bearing stre
Walls subjected to mainly vertical loading	- Sectio	n6.1.2		
Eccentricity of permanent UDL at mid-heigh	nt belov	v concentrated load		
		$e_{gmu1} = e_{gu} \times h_{c1} / (2)$	2 × h) = 0.0 mm	
Eccentricity of variable UDL at mid-height b	elow co	oncentrated load		
		$e_{qmu1} = e_{qu} \times h_{c1} / (2)$	2 × h) = 0.0 mm	
Eccentricity of concentrated load at mid-he	ight;	$e_{mc1} = e_{c1} / 2 = 0.0$	mm	
Initial eccentricity - cl.5.5.1.1(4);		$e_{init} = h_{ef} / 450 = 5.6$	6 mm	
Concentrated load at mid-height as UDL;		$N_{mc1} = N_{Edc1} / I_{efm1} =$	42.64 kN/m	
Vertical load at mid-height;		$N_{Ed1} = (g_k + \gamma \times t \times ($	h - h _{c1} / 2)) × γ_{fG} + q _k × γ_{fQ}	+ N _{mc1} = 45.68 kN/r
Design moment at mid-height;		$M_{\text{Ed1}} = g_k \times \gamma_{\text{fG}} \times e_{\text{gr}}$	nu1 + $\mathbf{q}_{k} \times \gamma_{fQ} \times \mathbf{e}_{qmu1} + \mathbf{N}_{mc1}$	× e _{mc1} = 0.00 kNm/
Eccentricities due to loads - eq. 6.7;		$e_{m1} = Abs(M_{Ed1}) / N$	_{Ed1} + e _{init} = 5.6 mm	
Slenderness ratio limit for creep eccentricity	y;	$\lambda_{c} = 27$		
Eccentricity due to creep;		e _{k1} = 0.0 mm		
Eccentricity at mid-height - eq. 6.6;		$e_{mk1} = Max(e_{m1} + e_{k1})$	⊲, 0.05 × t) = 5.6 mm	

	Project		Sheet no./rev.	
M2	The	The Pavilion		
	Job Ref.	Calc. by	Date	
	M2-3168	MC	05/02/2025	
	Doc. Ref	Chk'd by	Date	
	SE-01_A1	MD	12/02/2025	

	PASS - Design value of vertical resistance exceeds applied vertical load
Design vertical resistance of panel - eq.6.2;	$N_{Rd1} = \Phi_{m1} \times t \times f_d$ = 56.86 kN/m
Capacity reduction factor - eq. G1;	$\Phi_{m1} = A_{11} \times exp(-(u_1^2) / 2) = 0.49$
From eq. G3;	$u_1 = (h_{ef} \ / \ t_{ef} \times (1 \ / \ K_E)^{1/2} - 0.063) \ / \ (0.73 - 1.17 \times e_{mk1} \ / \ t) = \textbf{1.09}$
From eq. G2;	$A_{11} = 1 - 2 \times e_{mk1} / t = 0.89$

Provide 406x178x67 UB S.275 on 330lg x 215dp x 100thk concrete padstones.

Project		Sheet no./rev.	
The	The Pavilion		
Job Ref.	Calc. by	Date	
M2-3168	MC	05/02/2025	
Doc. Ref	Chk'd by	Date	
SE-01_A1	MD	12/02/2025	

Beam TB1 Design:

Loadings

UDL from Pitched Roof

Width of roof being carried;	x ₁ = 2.85 m		
Dead Load;	$DL_1 = 0.572 \text{ kN/m}^2 \times x_1$	=	1.630 kN/m
Imposed Load;	$IL_1 = 0.60 \text{ kN/m}^2 \times x_1$	=	1.710 kN/m

TIMBER BEAM TB1 ANALYSIS & DESIGN (EN1995)

TIMBER BEAM ANALYSIS & DESIGN TO EN1995-1-1:2004

In accordance with EN1995-1-1:2004 + A2:2014 and Corrigendum No.1 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 1.7.05

Variable full UDL 1.710 kN/m

	Project				Sheet no./rev.
	The Pavilion				25
	Job Ref.		Calc. by		Date
		M2-3168	∿	1C	05/02/2025
	Doc. Ref		Chk'd by		Date
		SE-01_A1	N	1D	12/02/2025
Load combinations					
Load combination 1		Support A	F	ermanent × 1	L.35
			١	/ariable $ imes$ 1.50	0
		Span 1	F	ermanent × 1	L.35
			١	/ariable $ imes$ 1.50	0
		Support B	F	ermanent × 1	L.35
			١	/ariable $ imes$ 1.50	0
Analysis results					
Maximum moment;		M _{max} = 5.478 kNm;	Ν	∕I _{min} = 0.000 k	Nm
Design moment;		M = max(abs(M _{max}),abs	s(M _{min})) = 5.4	78 kNm	
Maximum shear;		F _{max} = 7.305 kN;	F	min = -7.305 kl	N
Design shear;		F = max(abs(F _{max}),abs(F	- min)) = 7.305	kN	
Total load on beam;		W _{tot} = 14.609 kN			
Reactions at support A;		R _{A_max} = 7.305 kN;	F	R _{A_min} = 7.305	kN
Unfactored permanent load reaction at sup	port A;	R _{A_Permanent} = 2.561 kN			
Unfactored variable load reaction at support	rt A;	RA_Variable = 2.565 kN			
Reactions at support B;		R _{B_max} = 7.305 kN;	F	R _{B_min} = 7.305	kN
Unfactored permanent load reaction at sup	port B;	$R_{B_Permanent} = 2.561 \text{ kN}$			
Unfactored variable load reaction at support	rt B;	R _{B_Variable} = 2.565 kN			
	-100 >				
Timber section details					
Breadth of timber sections;		b = 50 mm			

Breadth of timber sections;	b = 50 mm
Depth of timber sections;	h = 150 mm
Number of timber sections in member;	N = 3
Overall breadth of timber member;	b _b = N × b = 150 mm
Timber strength class - EN 338:2016 Table 1;	C24
Member details	
Load duration - cl.2.3.1.2;	Medium-term
Service class of timber - cl.2.3.1.3;	1
Length of span;	L _{s1} = 3000 mm
Length of bearing;	L _b = 100 mm
Section properties	
Cross sectional area of member;	A = N \times b \times h = 22500 mm ²
Section modulus;	$W_y = N \times b \times h^2 / 6 = 562500 \text{ mm}^3$
	$W_z = h \times (N \times b)^2 / 6 = 562500 \text{ mm}^3$

	Project			Sheet no./rev.
	The Pavilion		26	
	Job Ref.	Calc. by		Date
		M2-3168	MC	05/02/2025
	Doc. Ref		Chk'd by	Date
		SE-01_A1	MD	12/02/2025
Second moment of area:		$l_v = N \times b \times h^3 / 12$	= 42187500 mm ⁴	
		$l_{z} = h \times (N \times b)^{3} / 1$	2 = 42187500 mm ⁴	
Radius of gyration:		$r_v = \sqrt{(I_v / A)} = 43.3$	mm	
		$r_7 = \sqrt{(I_7 / A)} = 43.3$	mm	
Partial factor for material properties and re	esistano	.es		
Partial factor for material properties - Table	2.3;	γ _M = 1.300		
Modification factors				
Modification factor for load duration and mo	oisture	content - Table 3.1		
		k _{mod} = 0.800		
Deformation factor for service classes - Tabl	e 3.2;	k _{def} = 0.600		
Depth factor for bending - exp.3.1;		k _{h.m} = 1.000		
Depth factor for tension - exp.3.1;		k _{h.t} = 1.000		
Bending stress re-distribution factor - cl.6.1.	6(2);	k _m = 0.700		
Crack factor for shear resistance - cl.6.1.7(2)	;	k _{cr} = 0.670		
Load configuration factor - exp.6.4;		k _{c.90} = 1.000		
System strength factor - cl.6.6;	k _{sys} = 1.000			
Lateral buckling factor - cl.6.3.3(5);		k _{crit} = 1.000		
Compression perpendicular to the grain - cl	.6.1.5			
Design compressive stress;		$\sigma_{c.90.d}$ = RA_max / (N	× b × L _b) = 0.487 N/mm ²	
Design compressive strength;		$f_{c.90.d} = k_{mod} \times k_{sys} \times$	$k_{c.90} \times f_{c.90.k}$ / γ_{M} = 1.538 N	/mm²
		$\sigma_{c.90.d}$ / f _{c.90.d} = 0.31	17	
PASS - De	esign co	ompressive strengt	h exceeds design compres	sive stress at bearing
Bending - cl 6.1.6		- $ -$	$740 \text{ N}/mm^2$	
Design bending stress;		$G_{m,d} = IVI / VV_y = 9.7$	40 N/mm-	20 NJ /mage ²
Design bending strength;		$T_{m.d} = K_{h.m} \times K_{mod} \times$	$K_{sys} \times K_{crit} \times T_{m.k} / \gamma_M = 14.7C$	9 N/mm-
		$\sigma_{m.d} / f_{m.d} = 0.659$	anding strangth analysis	desing handing stures
		PASS - Design I	pending strength exceeds (design bending stress
Shear - cl.6.1.7				
Applied shear stress;		τ_{d} = 3 \times F / (2 \times k_{cr}	× A) = 0.727 N/mm ²	
Permissible shear stress;		$f_{v.d} = k_{mod} \times k_{sys} \times f_v$	_{ν.k} / γ _M = 2.462 N/mm ²	
		$\tau_d / f_{v.d} = 0.295$		
		PASS - De	sign shear strength exceed	ds design shear stress
Deflection - cl.7.2				
Deflection limit;		δ_{lim} = min(14 mm,	0.004 × L _{s1}) = 12.000 mm	
Instantaneous deflection due to permanent	load;	δ_{instG} = 4.029 mm		
Final deflection due to permanent load;		$\delta_{\text{finG}} = \delta_{\text{instG}} \times (1 + 1)$	k _{def}) = 6.446 mm	
Instantaneous deflection due to variable loa	d;	δ_{instQ} = 4.035 mm		

 ψ_2 = 0.3

Factor for quasi-permanent variable action;

	Project		Sheet no./rev.		
M2	The Pavi	The Pavilion			
	Job Ref.	Calc. by	Date		
	M2-3168	MC	05/02/2025		
	Doc. Ref	Chk'd by	Date		
	SE-01_A1	MD	12/02/2025		

Final deflection due to variable load;

Total final deflection;

 $\delta_{\text{finQ}} = \delta_{\text{instQ}} \times (1 + \psi_2 \times k_{\text{def}}) = \textbf{4.761} \text{ mm}$

 $\delta_{\text{fin}} = \delta_{\text{finG}} + \delta_{\text{finQ}} = \textbf{11.207} \text{ mm}$

 δ_{fin} / δ_{lim} = 0.934

PASS - Total final deflection is less than the deflection limit

Provide 3No. 50x150 C24 bolted together with M12 at 400c/c.