Our Ref C2267/21/E/3510 29th March 2022 Environmental Geotechnical Specialists

Consilium Academies 5th Floor One City Approach Albert Street Eccles Salford M30 0BL

Via email: Suzie.McNicholas@consilium-at.com (cc: mark@sycamoresquaregroup.co.uk)

For the attention of Suzie McNicholas (Estates Project Manager).

<u>Ref: Armthorpe Academy, Doncaster– Supplementary Ground Investigation and Waste</u> <u>Acceptance Criteria.</u>

We thank you for your request to undertake further ground investigation and Waste Acceptance Criteria (WAC) testing on the samples taken from the above site. This letter describes the work undertaken and presents the data obtained, and supplements the data presented in the following report:

• Report on a Phase 2 Geo-environmental Investigation, produced by RGS, dated February 2022 (reference: C2267/21/E/3510).

Fieldworks

Further to your instructions, the site was visited on the 14th March 2022. Trialpits were excavated using hand-held digging tools in order to reveal natural ground and acquire suitable samples. The soils were logged in general accordance with BS5930: 2015+A1: 2020, and full descriptions are given on the logs appended to this letter.

Samples were derived from ground which is likely to be taken from the site for disposal, at the positions specified by yourself. The locations of these sampling points are shown on the attached site plan. The chemical test specimens were retained in the appropriate air tight containers within cool boxes for onward transition to the chemical laboratory.

Chemical Samples

QMS

OMS

ISO 9001

REGISTERED

OMS

OHSAS 18001

REGISTERED

ISO 14001

REGISTERED

Subsequent to inspection, the samples obtained for WAC Testing were found to include the following:

Table 1: Sum	Table 1: Summary of Soil Samples						
Location	Sample Depth (m)	Soil Description					
TP04	0.35 – 0.4	MADE GROUND (Cream and brown very sandy subangular fine to coarse GRAVEL of dolostone brick rare pottery and ash).	CAL				
TP05	0.1 – 0.25	MADE GROUND (Dark grey clayey very sandy subrounded to angular fine to coarse GRAVEL of brick sandstone and clinker).	NH				

Rogers Geotechnical Services Ltd Office 1 & 2 Barncliffe Business Park, Near Bank, Shelley, Huddersfield, HD8 8LU Telephone0843 50 666 87Fax0843 51 599 30Company No:5130864

Waste Acceptance Criteria

Analysis of the samples were undertaken to assess the suitability of the site material for use in a landfill. In order to achieve this, WAC testing has been undertaken to demonstrate compliance, the testing was undertaken by Eurofins Chemtest Ltd and the results of all of the chemical testing are attached. The WAC have been set as maximum limit values which must not be exceeded and should not be viewed as minimum treatment specifications for landfill. The following table has been extracted from the Environment Agency¹ and adapted to compare against the chemical test results attached to this letter.

Table 2: Landfill Wa	aste Acceptanc	e Criteria						
Determinend	Maximum	Landfill Wa	Landfill Waste Acceptance Criteria Limits					
Determinand	Concentration (mg/kg)	Inert	SNRHW*	Hazardous	Landfill Maximum			
Total Organic Carbon %	5.2	3	5	6	SNRHW			
Loss on Ignition %	2.4	-	-	10	Inert			
BTEX	< 0.010	6	-	-	Inert			
PCBs (7 Congeners)	< 0.10	1	-	-	Inert			
TPH (Mineral Oil)	1600	500	-	-	Exceeds Inert			
Total (of 17) PAHs	300	100	-	-	Exceeds Inert			
рН	8.7	-	>6	-	Inert			
Acid Neutralisation Capacity	0.022	-	To be evaluated	To be evaluated	-			
Limit values (mg/kg) for complianc	e leaching test	using BS EN 12457	- 3 at L/S 10 l/kg				
As	0.012	0.5	2	25	Inert			
Ва	0.13	20	100	300	Inert			
Cd	< 0.00011	0.04	1	5	Inert			
Cr	0.019	0.5	10	70	Inert			
Cu	0.012	2	50	100	Inert			
Hg	< 0.00005	0.01	0.2	2	Inert			
Мо	0.045	0.5	10	30	Inert			
Ni	< 0.0005	0.4	10	40	Inert			
Pb	< 0.0005	0.5	10	50	Inert			
Sb	<0.0011	0.06	0.7	5	Inert			
Se	0.0067	0.1	0.5	7	Inert			
Zn	< 0.003	4	50	200	Inert			
CI	100	800	15 000	25 000	Inert			
F	4.0	10	150	500	Inert			
SO ₄	30	1000	20 000	50 000	Inert			
Total Dissolved Solids (TDS)	880	4000	60000	100 000	Inert			

¹ Guidance on sampling and testing of wastes to meet landfill waste acceptance procedures, Version 1, April 2005.

Constructionline

QMS

ISO 9001 OMS ISO 14001 OMS OHSAS 18001 REGISTERED

Rogers Geotechnical Services Ltd Office 1 & 2 Barncliffe Business Park, Near Bank, Shelley, Huddersfield, HD8 8LU
 Telephone
 0843
 50
 666
 87

 Fax
 0843
 51
 599
 30

 Company No:
 5130864

Phenol index	< 0.50	1	-	-	Inert
Dissolved Organic Carbon at own pH or pH 7.5-8.0	200	500	800	1000	Inert

*Stable non-reactive hazardous waste and non-hazardous waste co-disposed with SNRHW.

In this instance, it should be appreciated that whilst most determinants fell below the upper limits for inert WAC, total organic carbon, TPHs and Total PAHs exceeded inert levels. As such, materials to be removed from site would likely have to be taken to either a stable nonhazardous or hazardous landfill, depending on what waste code is assigned to the material. In that regard, discussions would need to be held with the landfill operator.

For further guidance, please refer to the following documents which are available on the *www.gov.uk* website:

- Environment Agency LIT 5234 Waste Acceptance at Landfills Guidance on waste acceptance procedures and criteria – November 2010.
- Environment Agency LIT 5902 *Treatment of waste for landfill* June 2014.
- Waste Classification: Guidance on the classification and assessment of waste (1st Edition v1.1) May 2018: Appendix A: How to use the list of waste.

We trust that this information is of interest and should you have any other requirements do not hesitate to contact us.

For Rogers Geotechnical Services Ltd, Yours Faithfully

Neron

Charlotte Mason BSc FGS Geo-environmental Engineer

Enc: Site Plan Trial Pit Records WAC Results

Rogers Geotechnical Services Ltd Office 1 & 2 Barncliffe Business Park, Near Bank, Shelley, Huddersfield, HD8 8LU

 Telephone
 0843
 50
 666
 87

 Fax
 0843
 51
 599
 30

 Company No:
 5130864
 30

Notes:

Investigation positions approximated from site operative's notes.

Rogers Geotechnical Services Ltd

Offices 1 & 2, Barncliffe Business Park, Near Bank, Shelley, Huddersfield, HD8 8LU

Telephone: 0843 50 66 87 www.rogersgeotech.co.uk

Client:

Consilium Academies

Job Number:

C2267/21/E/3867

Project Details:

Armthorpe Academy

Scale: Not to scale - reference only

								Trialpit No)
(RGS					Tri	ial Pit Log	TP04	
	-							Sheet 1 of	1
Projec Name	ct Armthor	pe Acade	emy	Projec	ct No. 7/21/E/35		Co-ords: - Level:	Date 14/03/2022	2
				02201	//2 // [/] (Dimensions	Scale	
Locati	ion: Armthor	pe, Donc	aster DN3 2DA				(m):	1:25	
Client	: Sycamo	re Squar	e Group	-1	1	1	Depth 0.80	Logged RAP	
Water Strike	Sample	es and li	n Situ Testing	Depth	Level	Legend	Stratum Description		
Wa Str	Depth	Туре	Results	(m) 0.10	(m)		MADE GROUND (Black top). MADE GROUND (Yellowish brown sandy sub-a	angular	
				0.35			fine to coarse GRAVEL of dolostone. Low cobb (Sub-base)).	le content	-
				0.52			MADE GROUND (Cream and brown very sand angular fine to coarse GRAVEL of dolostone bri pottery and ash).	ick rare	-
							Dark brown gravelly fine and medium SAND. G sub-rounded and rounded fine to coarse of vari lithologies.	ravel is ous	-
				0.80		<u></u>	End of pit at 0.80 m		-
									2
									-
									5 —
Rema	irks: Pit co	mpleted	with hand-held equi	pment.	1	1	1		
Stabili								AGS	S

Remarks: Pit completed with hand-held equipment.									Trialpit N	0
Project No. Co-ods: - Date Jama: Armthorpe Academy Project No. Co-ods: - Ideation: Location: Armthorpe Doncatter DN3 2DA Immediate monoparation monopa	(RGS					Tri	al Pit Log		
Name: Amthorpe Academy c2287721FE/3510 Level: 14/03/2022 Location: Amthorpe, Doncaster DN3 2DA 0.75 Control 128 September 2010 Control 128 Statutor Description 0.75 Control 128 Statuto		-			Dusia	4 1 1 -		Que en el se		i 1
Location: Armthorpa, Doncaster DN3 ZDA Dimensions mm 3 code Cilent: Sycamore Square Group 0.75 1.25 Image: Stratum Description 0.75 1.25 Image: Stratum Description 0.76 1.25 Image: Stratum Description 0.75 1.25 Image: Stratum Description 0.75 1.25 Image: Stratum Description 0.10 Image: Stratum Description Image: Stratum Description 0.28 0.40 Image: Stratum Description Image: Stratum Description 0.10 Image: Stratum Description Image: Stratum Description Image: Stratum Description 0.28 0.40 Image: Stratum Description Image: Stratum Description Image: Stratum Description 0.40 Image: Stratum Description Image: Stratum Description Image: Stratum Description 0.40 Image: Stratum Description Image: Stratum Description Image: Stratum Description 0.40 Image: Stratum Description Image: Stratum Description Image: Stratum Description 0.40 Image: Stratum Description Image: Stratum Description Image: Stratum Description 0.40 Image: Stratum	Projec Name	rt Armthor	be Acade	emy	-					22
Client: Sycamore Square Group 125 System or Square Group 0.75 126 System or Square Group 0.75 126 System or Square Group 0.75 10000 System or Square Group 0.10 0.75 10000 MDE GROUND (Black top) MDE GROUND (Black top) MDE GROUND (Black top) MADE GROUND (Black top) MDE GROUND (Black top) MDE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) MADE GROUND (Black top) Image of the top of th					02201	/2 1/ 2/00				
All and the solution is solution bit in the solution of the sol	Locali	on. Annunon	Je, Donc	asier DN3 2DA						
Base Depth Type Results (m) (m) <th< td=""><td>Client:</td><td></td><td></td><td></td><td>-</td><td>1</td><td>1</td><td></td><td></td><td></td></th<>	Client:				-	1	1			
MADE GROUND (Black top). Order Black top.	ater ike		г				Legend	Stratum Description		
Remarks: Pit completed with hand-held equipment.	<u>> 0</u>	Берш	туре	Nesuits	0.10			MADE GROUND (Dark grey clayey very sandy	sub- rick	
Remarks: Pit completed with hand-held equipment.					0.40			sandstone and clinker). MADE GROUND (Brown gravelly fine and med SAND. Gravel is sub-angular to rounded fine to of various lithologies brick and rare pottery (Re- Brown very sandy sub-rounded and rounded fir coarse GRAVEL of various lithologies. Low cob content.	ium coarse -worked)).	2
Remarks: Pit completed with hand-held equipment.										4 —
AGS										
Stability:			mpleted	with hand-held equi	pment.		1		AG	S

😵 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	22-10159-1		
Initial Date of Issue:	25-Mar-2022		
Client	Rogers Geotechnical Services Ltd		
Client Address:	Offices 1&2, Barncliffe Business Park Near Bank Shelley Huddersfield West Yorkshire HD8 8LU		
Contact(s):	Harry Letch		
Project	C2267/21/E/3867 Armthorpe Academy		
Quotation No.:		Date Received:	17-Mar-2022
Order No.:		Date Instructed:	17-Mar-2022
No. of Samples:	2		
Turnaround (Wkdays):	7	Results Due:	25-Mar-2022
Date Approved:	25-Mar-2022		
Approved By:			
sont	-		
Details:	Stuart Henderson, Technical Manager		

Project: C2267/21/E/3867 Armtho									
Chemtest Job No:	22-10159						Landfill V	Vaste Acceptane	ce Criteria
Chemtest Sample ID:	1393335							Limits	
Sample Ref:	D							Stable, Non-	
Sample ID:								reactive	
Sample Location:	TP04							hazardous	Hazardous
Top Depth(m):	0.35						Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.40						Landfill	hazardous	Landfill
Sampling Date:	15-Mar-2022							Landfill	
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	М	%			5.2	3	5	6
Loss On Ignition	2610	М	%			2.4			10
Total BTEX	2760	М	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg			< 0.10	1		
TPH Total WAC	2670	M	mg/kg			230	500		
Total (Of 17) PAH's	2700	N	mg/kg			300	100		
pН	2010	М				8.7		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			0.022		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative		for compliance	•
			mg/l	mg/l	mg/kg	mg/kg 10:1	, i i i i i i i i i i i i i i i i i i i	S EN 12457 at L	
Arsenic	1455	U	0.0003	< 0.0002	0.0005	0.0005	0.5	2	25
Barium	1455	U	0.007	< 0.005	0.014	0.013	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0018	0.0018	0.0035	0.018	0.5	10	70
Copper	1455	U	0.0013	0.010	0.0026	0.0024	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.0036	0.0009	0.0071	0.014	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	32	5.5	64	100	800	15000	25000
Fluoride	1220	U	0.19	0.16	< 1.0	1.7	10	150	500
Sulphate	1220	U	2.3	< 1.0	< 10	< 10	1000	20000	50000
Total Dissolved Solids	1020	N	160	72	320	880	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	20	13	< 50	140	500	800	1000

Solid Information						
Dry mass of test portion/kg	0.175					
Moisture (%)	7.9					

Leachate Test Information							
Leachant volume 1st extract/l	0.335						
Leachant volume 2nd extract/l	1.400						
Eluant recovered from 1st extract/l	0.324						

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project: C2267/21/E/3867 Armtho									
Chemtest Job No:	22-10159						Landfill V	Vaste Acceptane	ce Criteria
Chemtest Sample ID:	1393336							Limits	
Sample Ref:	D							Stable, Non-	
Sample ID:								reactive	
Sample Location:	TP05							hazardous	Hazardous
Top Depth(m):	0.10						Inert Waste	waste in non-	Waste
Bottom Depth(m):	0.25						Landfill	hazardous	Landfill
Sampling Date:	15-Mar-2022		-					Landfill	
Determinand	SOP	Accred.	Units			-			
Total Organic Carbon	2625	M	%			3.1	3	5	6
Loss On Ignition	2610	M	%			3.2			10
Total BTEX	2760	M	mg/kg			< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg			< 0.10	1		
TPH Total WAC	2670	М	mg/kg			1600	500		
Total (Of 17) PAH's	2700	N	mg/kg			240	100		
рН	2010	М				8.6		>6	
Acid Neutralisation Capacity	2015	N	mol/kg			0.018		To evaluate	To evaluate
Eluate Analysis			2:1	8:1	2:1	Cumulative		for compliance	•
			mg/l	mg/l	mg/kg	mg/kg 10:1	using B	S EN 12457 at L	/S 10 I/kg
Arsenic	1455	U	0.0013	0.0011	0.0026	0.012	0.5	2	25
Barium	1455	U	0.021	0.012	0.041	0.13	20	100	300
Cadmium	1455	U	< 0.00011	< 0.00011	< 0.00011	< 0.00011	0.04	1	5
Chromium	1455	U	0.0031	0.0018	0.0062	0.019	0.5	10	70
Copper	1455	U	0.011	0.0077	0.022	0.012	2	50	100
Mercury	1455	U	< 0.00005	< 0.00005	< 0.00005	< 0.00005	0.01	0.2	2
Molybdenum	1455	U	0.011	0.0037	0.022	0.045	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.5	10	50
Antimony	1455	U	0.0011	< 0.0005	0.0021	0.0011	0.06	0.7	5
Selenium	1455	U	0.0007	0.0007	0.0015	0.0067	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.003	< 0.003	< 0.003	4	50	200
Chloride	1220	U	1.5	< 1.0	< 10	< 10	800	15000	25000
Fluoride	1220	U	0.79	0.35	1.6	4.0	10	150	500
Sulphate	1220	U	9.1	2.3	18	30	1000	20000	50000
Total Dissolved Solids	1020	N	100	65	210	690	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.030	< 0.30	< 0.50	1	-	-
Dissolved Organic Carbon	1610	U	29	18	58	200	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.175
Moisture (%)	8.1

Leachate Test Information							
Leachant volume 1st extract/l	0.335						
Leachant volume 2nd extract/l	1.400						
Eluant recovered from 1st extract/l	0.187						

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge
	Characterisation of Waste (Leaching WAC)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key			
U	UKAS accredited		
М	MCERTS and UKAS accredited		
Ν	Unaccredited		
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis		
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis		
Т	This analysis has been subcontracted to an unaccredited laboratory		
I/S	Insufficient Sample		
U/S	Unsuitable Sample		
N/E	not evaluated		
<	"less than"		
>	"greater than"		
SOP	Standard operating procedure		
LOD	Limit of detection		
	Comments or interpretations are beyond the scope of LIKAS appreditation		

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>