CALVERT BRAIN & FRAULO® CONSULTING STRU

CONSULTING STRUCTURAL & CIVIL ENGINEERS

3 Portland Street, King's Lynn, Norfolk PE30 1PB Tel: 01553 766220

Project				Job Ref.	
s	South Wootton Pa	218	608		
Section		Sheet no./rev.			
	Extension - Stru	SD	/ 1		
Calc. by	Date	Chk'd by	Date	App'd by	Date
JRR	27/10/2021	RWB	29/10/2021		

General Loads and Information.

Roof Load.

Dead Roof Load @ SLS DRS = 1.25 kN/m^2 Live Roof Load @ SLS LRS = 0.85 kN/m^2

Total Roof Load @ SLS TRS = DRS + LRS = 2.10 kN/m²

Total Roof Load @ ULS $TRU = (1.4 \times DRS) + (1.6 \times LRS) = 3.11 \text{ kN/m}^2$

Cavity Wall Load.

Brickwork BWK = $0.1025 \text{m} \times 18 \text{kN/m}^3 = 1.85 \text{ kN/m}^2$

Insulation INS = 0.10 kN/m^2

Blockwork BLK = $0.1 \text{m} \times 15 \text{kN/m}^3 = 1.50 \text{ kN/m}^2$

Plaster & Skim PS = 0.20 kN/m^2

Total Cavity Wall Load @ SLS $TCWS = BWK + INS + BLK + PS = 3.65 \text{ kN/m}^2$

Total Cavity Wall Load @ ULS $TCWU = 1.4 \times TCWS = 5.10 \text{ kN/m}^2$

Foundation and Soils Investigation Information.

A foundation and soils investigation was undertaken on Tuesday 26th October 2021 by Calvert Brain & Fraulo Limited with the assistance of Smith Building Servcies Limited.

The results of this investigation are enclosed within Appendix 2 of these calculations as sketch number 218608 / SI-01.

The excavations revealed a 225mm thick concrete strip foundation located 725mm below existing ground level and a further 160mm below exisiting damp proof course (DPC) level. The foundation projected 135mm from the external facing brickwork face. Assuming that the cavity wall is located centrally to the strip foundation, the overall width would equate to 550mm.

A hand augured borehole was excavated beyond the base of the trial hole and revealed dry, firm, compact light brown SAND to approximately 1000mm bleow ground level, overlying, compact, dry, dark brown SAND and GRAVEL extending to the borehole end at approximately 2000mm below ground level.

The above soil findings would coincide with the likely soils to be encountered at this site as noted on the Geological Map of Great Britain and we would recommend that a maximum assumed bearing capacity of 75kN/m² be used for calculation purposes.

CALVERT BRAIN & FRAULO** CONSULTING STRUCTURAL & CIVIL ENGINEERS

Project		Job Ref.			
So	outh Wootton Pa	218	808		
Section		Sheet no./rev.			
E	Extension - Stru	SD	/2		
Calc. by	Date	Chk'd by	Date	App'd by	Date
JRR	27/10/2021	RWB	29/10/2021		

3 Portland Street, King's Lynn, Norfolk PE30 1PB Tel: 01553 766220

Design Beams over Meeting Room Opening.

A new opening is to be formed between the former meeting room and the extened meeting room.

Clear Span of Beam S = **5340** mm

Length of Bearing Lb = **200** mm

Design Length of Beam $L = S + (2 \times (Lb/2)) = 5540 \text{ mm}$

Note: Design Length of Beam is NOT the Overall Length of Beam.

Note: Overall Length of Beam MUST be determined on site prior to ordering of materials.

Existing Meeting Room Side Beam.

Dead UDL @ SLS DUDLE = $((6.0 \text{m} / 2) \times \text{DRS}) + ((1.5 \text{m} / 2) \times \text{DRS}) = 4.69 \text{ kN/m}$

Note: Self-weight of steelwork will be added to this load by the design software.

Live UDL @ SLS LUDLE = $((6.0 \text{m}/2) \times \text{LRS}) + ((1.5 \text{m}/2) \times \text{LRS}) = 3.19 \text{ kN/m}$

Steel Beam will be designed using TEKLA Simple Beam Design Software.

The results are contained with Appendix 1.

Steel Beam required:

Existing Side:

300 x 100 PFC x 46 kg/m Minimum Grade S 355

OR

300 x 100 RHS x 6.3 Minimum Grade S 355

OR

305 x 127 UB x 48 kg/m Minimum Grade S 355

Calvert	Project				Job Ref.	
Brain & Fraulo**	So	outh Wootton Pa	rish Council Off	ices	218	8608
CONSULTING STRUCTURAL &	Section				Sheet no./rev.	
CIVIL ENGINEERS	E	Extension - Stru	ctural Design - S	SD	SE) / 3
3 Portland Street, King's Lynn, Norfolk	Calc. by	Date	Chk'd by	Date	App'd by	Date
DE20 4DD T-1 : 04552 700200	IDD	27/10/2021	D\MB	20/10/2021		

Check Bearing - Design Pad Stone - Meeting Room Opening Beam.

With reference to Appendix 1, the following Reactions are to be used.

Dead Reaction @ SLS DR = 1.2kN + 13.0kN = **14.20** kN

Live Reaction @ SLS LR = 8.9kN = 8.90 kN

With reference to the previous design Section, the following UDL's are to be used. Dead UDL @ SLS DUDL = 4.69 kN/m = 4.69 kN/m Live UDL @ SLS LUDL = 3.19 kN/m = 3.19 k

MASONRY BEARING DESIGN TO BS5628-1:2005

Masonry details

Masonry type Aggregate concrete blocks (25% or less formed voids)

Compressive strength of unit $p_{unit} = 3.6 \text{ N/mm}^2$

Mortar designation ii

Least horizontal dimension of masonry units $I_{unit} = 100 \text{ mm}$ h_{unit} = **215** mm Height of masonry units Category II Category of masonry units Category of construction control Normal Partial safety factor for material strength $y_{\rm m} = 3.5$ Thickness of load bearing leaf t = **100** mm Effective thickness of masonry wall $t_{ef} = 100 \text{ mm}$ h = **2400** mm Height of masonry wall h_{ef} = **2400** mm Effective height of masonry wall

Bearing details

Beam spanning in plane of wall

Width of bearing B = 100 mmLength of bearing $I_b = 250 \text{ mm}$

Calvert	Project				Job Ref.	
Brain & Fraulo"	Sc	outh Wootton Pa	rish Council Offi	ices	218	8608
CONSULTING STRUCTURAL &	Section				Sheet no./rev.	
CIVIL ENGINEERS	E	Extension - Stru	ctural Design - S	SD	SD	1 4
3 Portland Street King's Lynn Norfolk	Calc. by	Date	Chk'd by	Date	App'd by	Date

RWB

29/10/2021

Compressive strength from Table 2 BS5628:Part 1 - aggregate concrete blocks (25% or less formed voids)

27/10/2021

JRR

Ratio between 0.6 and 4.5 - OK

Characteristic compressive strength $f_k = 3.50 \text{ N/mm}^2$

Loading details

PE30 1PB Tel: 01553 766220

Characteristic concentrated dead load $G_k = 14 \text{ kN}$ Characteristic concentrated imposed load $Q_k = 9 \text{ kN}$

Design concentrated load $F = (G_k \times 1.4) + (Q_k \times 1.6) = \textbf{34.1 kN}$

Characteristic distributed dead load $g_k = 4.7 \text{ kN/m}$ Characteristic distributed imposed load $q_k = 3.2 \text{ kN/m}$

Design distributed load $f = (g_k \times 1.4) + (q_k \times 1.6) = 11.7 \text{ kN/m}$

Masonry bearing type

Bearing type Type 1
Bearing safety factor $\gamma_{\text{bear}} = 1.25$

Calvert	Project				Job Ref.	
Brain & Fraulo"	Sc	outh Wootton Pa	rish Council Offi	ces	218	808
CONSULTING STRUCTURAL &	Section				Sheet no./rev.	
CIVIL ENGINEERS	F	Extension - Stru	ctural Design - S	D	SD	/ 5
3 Portland Street, King's Lynn, Norfolk	Calc. by	Date	Chk'd by	Date	App'd by	Date
DE20 1DD Tol : 01552 766220	JRR	27/10/2021	RWB	29/10/2021		

Check design bearing without a spreader

Design bearing stress $f_{ca} = F / (B \times I_b) + f / t = 1.482 \text{ N/mm}^2$ Allowable bearing stress $f_{cp} = \gamma_{bear} \times f_k / \gamma_m = 1.250 \text{ N/mm}^2$

FAIL - Design bearing stress exceeds allowable bearing stress, use a spreader

Spreader details

Length of spreader I_s = 325 mm Depth of spreader h_s = 215 mm

Edge distance $s_{edge} = max(0 \text{ mm}, x_{edge} - (I_s - B) / 2) = 0 \text{ mm}$

Spreader bearing type

Bearing type Type 3
Bearing safety factor $\gamma_{bear} = 2.00$

Check design bearing with a spreader

Loading acts eccentrically within middle third – triangular stress distribution Eccentricity of load $e = (I_s - I_b) / 2 = 38 \text{ mm}$

Maximum bearing stress $f_{ca} = F \times (1 + (6 \times e / I_s)) / (I_s \times t) + f / t = 1.893 \text{ N/mm}^2$

Allowable bearing stress $f_{cp} = \gamma_{bear} \times f_k / \gamma_m = 2.000 \text{ N/mm}^2$

PASS - Allowable bearing stress exceeds design bearing stress

Calvert	Project				Job Ref.	
Brain & Fraulo"	Sc	outh Wootton Pa	rish Council Off	ices	218	8608
CONSULTING STRUCTURAL &	Section				Sheet no./rev.	
CIVIL ENGINEERS	1	Extension - Stru	ctural Design - S	SD	SD	0/6
3 Portland Street, King's Lynn, Norfolk	Calc. by	Date	Chk'd by	Date	App'd by	Date
PE30 1PB Tel: 01553 766220	JRR	27/10/2021	RWB	29/10/2021		

Check design bearing at 0.4 \times h below the bearing level

Slenderness ratio h_{ef} / t_{ef} = **24.00** Eccentricity at top of wall e_x = **0.0** mm

From BS5628:1 Table 7

Capacity reduction factor $\beta = \textbf{0.61}$ Length of bearing distributed at 0.4 \times h I_d = **1210** mm

PASS - Allowable bearing stress at 0.4 imes h below bearing level exceeds design bearing stress

Ensure : Steel Beam MUST have a Minimum of 250mm End Bearing
Provide : 325mm Long x 100mm Wide x 215mm High Concrete Pad Stone

CALVERT BRAIN & FRAULO** CONSULTING STRUCTURAL & CIVIL ENGINEERS

Project				Job Ref.	
Sc	outh Wootton Pa	218	608		
Section		Sheet no./rev.			
1	Extension - Stru	SD	SD	17	
Calc. by	Date	Chk'd by	Date	App'd by	Date
JRR	27/10/2021	RWB	29/10/2021		

3 Portland Street, King's Lynn, Norfolk PE30 1PB Tel: 01553 766220

Design Lintels over Meeting Room / Kitchen Openings.

Maximum Clear Span S = **1200** mm

Length of Bearings Lb = **150** mm

Design Length of Beam $L = S + (2 \times (Lb/2)) = 1350 \text{ mm}$

Note: Design Length of Beam is NOT the Overall Length of Beam.

Note: Overall Length of Beam MUST be determined on site prior to ordering of materials.

Dead UDL @ SLS DUDL = $((13.08 \text{m} / 2) \times \text{DRS}) + (0.45 \text{m} \times (\text{BLK+PS+PS})) = 9.03 \text{ kN/m}$

Note: Self-weight of steelwork will be added to this load by the design software.

Live UDL @ SLS LUDL = $(13.08 \text{m}/2) \times \text{LRS} = 5.56 \text{ kN/m}$

Total UDL @ SLS TUDL = DUDL + LUDL = 14.59 kN/m

Total Load on Lintel TLL = TUDL \times L = 19.70 kN

CATNIC BHD 100 Lintel with 150mm End Bearing

Safe Working Load SWL = 29 kN

Result: PASS

Calvert Brain & Fraulo**

CONSULTING STRUCTURAL & CIVIL ENGINEERS

3 Portland Street, King's Lynn, Norfolk PE30 1PB Tel: 01553 766220

Project		Job Ref.			
s	outh Wootton Pa	218	608		
Section		Sheet no./rev.			
	Extension - Stru	SD	/ 8		
Calc. by	Date	Chk'd by	Date	App'd by	Date
JRR	27/10/2021	RWB	29/10/2021		

Foundation Assessment.

Reference to Appendix 2 and the first page paragraph is to be made for the following assessment.

Existing UDL.

 $\text{EUDL} = ((\ 6.0 \text{m}\ /\ 2\) \times \text{TRS}\) + (\ 3.0 \text{m} \times \text{TCWS}\) + ((\ 0.55 \text{m} \times 0.225 \text{m}\) \times 24 \text{kN/m}^3\) = \textbf{20.20}\ \text{kN/m}$

Width of Existing Foundation.

WEF = 550mm = **0.55** m

Existing Bearing Pressure.

 $EBP = EUDL / WEF = 36.74 kN/m^2$

Additional UDL.

AUDL = $(1.5m / 2) \times TRS = 1.58 \text{ kN/m}$

Additional Point Load Reaction form New Steel Beams.

APL = 1.2kN + 13.0kN + 8.9kN = 23.10 kN

Length of Spread of Point Load along Exisitng Foundation.

LS = $0.25m + (2 \times 0.725m) = 1.70 m$

Additional Bearing Pressure.

ABP = $(AUDL / WEF) + (APL / (WEF \times LS)) = 27.57 \text{ kN/m}^2$

Total New Bearing Pressure.

TNBP = EBP + ABP = 64.31 kN/m^2

Result: New Total Bearing Pressure is LESS than the assumed maximum allowable bearing capacity of 75kN/m² stated on Page 1 of these calculations, however, the increase in pressure from 36.74kN/m² to 64.31kN/m² may result in some initial 'bedding-down' of the adjusted structure which may coause some minor cracking to the finishes but is NOT considered structural movement.

CALVERT BRAIN & FRAULO® CONSULTING STRUCTURAL &

CONSULTING STRUCTURAL & CIVIL ENGINEERS

3 Portland Street, King's Lynn, Norfolk PE30 1PB Tel: 01553 766220

Project				Job Ref.	
Sc	outh Wootton Pa	218	8608		
Section		Sheet no./rev.			
E	Extension - Stru	SD) / 9		
Calc. by	Date	Chk'd by	Date	App'd by	Date
JRR	27/10/2021	RWB	29/10/2021		

FE30 IFB Tel: 01333 700220	OTATA	2171072021	IXVID	20/10/2021	
Appendix 1					
TEKLA Simple Beam Design Sof	ftware Results				

	Calvert Brain & Fraulo Limited	South Wootton Parish Council Offices	johnrasberry@c-b-f.co.uk
	3 Portland Street	218608 - SD	www.c-b-f.co.uk
r	King's Lynn, Norfolk	Extension - Structural Design - SD	01553 766220
	PE30 1PB	John R Rasberry	Page

10

REFERENCE: Meeting Room Opening Beam - Existing Side - PFC

Beam

	Span, L
Section Size, Grade	[m]
Rolled, RSCP 300x100x46, S355	5.540

Restraints

Left hand support type 1 Compression flange laterally unrestrained.

Both flanges free to rotate on plan.

Restraint against torsion provided only by the pressure of the bottom flange onto supports.

Start position	End position	Sub-beam length	Eff. length Normal	Eff. length Destab.
[m]	[m]	[m]	[m]	[m]
0.0	5.540	5.540	1.2000L+2D	1.4000L+2D
Right hand support type 1	Compression	flange laterally unrestrained.		

Both flanges free to rotate on plan.

Restraint against torsion provided only by the pressure of the bottom flange onto supports.

Design Loadcases Dead, Type: Dead

	F	g1	g2	а	b	
Load Type	[kN]	[kN/m]	[kN/m]	[m]	[m]	Stability type
UDL	-	4.7	-	0.0	5.540	Destab.

Imposed, Type: Imposed

	F	g1	g2	а	b	
Load Type	[kN]	[kN/m]	[kN/m]	[m]	[m]	Stability type
UDL	-	3.2	-	0.0	5.540	Destab.

Design Combinations

SW+D+I

Loadcase	Strength Factor	Service Factor
Self weight - steel beam only	1.400	1.000
Dead	1.400	1.000
Imposed	1.600	1.000

End Reactions Summary by Loadcase (Unfactored)

	Reactions at supports	
	Left support	Right support
Loadcase	[kN]	[kN]
Self weight - steel beam only	1.2	1.2
Dead	13.0	13.0
Imposed	8.9	8.9

End Reactions Summary by Combination (Factored)

	Reactions a	Reactions at supports	
	Left support	Right support	
Combination	[kN]	[kN]	
SW+D+I	34.1	34.1	

Design Code: BS 5950-1: 2000

Design Summary

Design Condition	Status	Combination	Critical Value	Capacity\Limit	Units	Ratio
Class	Pass	1	Class 1			
Shear Vertical	Pass	1	34.1	558.9	kN	0.061
Shear Web Buckling	Pass	1	26.333	62.496		n/a
Moment	Pass	1	47.3	221.1	kNm	0.214
Buckling	Pass	1	47.3	56.2	kNm	0.841
Deflection	Pass	1	6.1	10.0	mm	0.607
Notes						

29/10/2021	14:52:28	Page

Fastrak Simple Beam Design, Simple Beam, version: 21.3.0.0, www.tekla.com

Calvert Brain & Fraulo Limited	South Wootton Parish Council Offices	johnrasberry@c-b-f.co.uk
3 Portland Street	218608 - SD	www.c-b-f.co.uk
King's Lynn, Norfolk	Extension - Structural Design - SD	01553 766220
PE30 1PB	John R Rasberry	Page

SW+D+I

11

Classification check

Item	Value Units	Clause Ref.
Flange Class	Class 1 Plastic	Table 11
Web Class	Class 1 Plastic	Table 11
Section Class	Class 1 Plastic	Part 1: 3.5
Pacc		

Vertical Shear check

Support	Critical Value	Capacity	Units	Ratio	Status
Support	34.1	558.9	kN	0.061	Pass

Shear Web Buckling

Item	Value Units	Clause Ref.
Depth to thickness ratio, d/t	26.333	
Depth to thickness ratio limit, d/t _{limit}	62.496	
Pacc		

Moment check

Position	Critical Value	Capacity Unit	s Ratio	Status
2.770 m	47.3	221.1 kNm	0.214	Pass

Lateral Torsional Buckling check

Sub Beam	Critical Value	Capacity	Units	Ratio	Status
Sub Beam 1	47.3	56.2	kNm	0.841	Pass

Deflection check

Condition	Critical Value	Limit	Units	Ratio	Status
Dead	3.7	11.1	mm	0.338	Pass
Imposed	2.3	10.0	mm	0.233	Pass
Total	6.1	10.0	mm	0.607	Pass

Notes

Note

No notes!

Calvert Brain & Fraulo Limited	South Wootton Parish Council Offices	iohnrasherry@c-h-f co.uk
3 Portland Street	218608 - SD	www.c-b-f.co.uk
King's Lynn, Norfolk	Extension - Structural Design - SD	01553 766220
PF30 1PB	John R Rasherry	Page

REFERENCE: Meeting Room Opening Beam - Existing Side - RHS

12

Beam

	Span, L
Section Size, Grade	[m]
Rolled, RHS 300x100x6.3, S355	5.540

Restraints

Left hand support type 1 Compression flange laterally unrestrained.

Both flanges free to rotate on plan.

Restraint against torsion provided only by the pressure of the bottom flange onto supports.

Start position	End position	Sub-beam length	Eff. length Normal	Eff. length Destab.
[m]	[m]	[m]	[m]	[m]
0.0	5.540	5.540	1.2000L+2D	1.4000L+2D
Right hand support type 1	Compression	flange laterally unrestrained		

Right hand support type 1 Compression flange laterally unrestrained.

Both flanges free to rotate on plan.

Restraint against torsion provided only by the pressure of the bottom flange onto supports.

Design Loadcases

Dead, Type: Dead

	F	g1	g2	a	b	
Load Type	[kN]	[kN/m]	[kN/m]	[m]	[m]	Stability type
UDL	-	4.7	-	0.0	5.540	Destab.

Imposed, Type: Imposed

	F	g1	g2	а	b	
Load Type	[kN]	[kN/m]	[kN/m]	[m]	[m]	Stability type
UDL	-	3.2	-	0.0	5.540	Destab.

Design Combinations

SW+D+I

Loadcase	Strength Factor	Service Factor
Self weight - steel beam only	1.400	1.000
Dead	1.400	1.000
Imposed	1.600	1.000

End Reactions Summary by Loadcase (Unfactored)

	Reactions at s	upports
	Left support Right s	
Loadcase	[kN]	[kN]
Self weight - steel beam only	1.0	1.0
Dead	13.0	13.0
Imposed	8.9	8.9

End Reactions Summary by Combination (Factored)

	Reactions at supports
	Left support Right support
Combination	[kN] [kN]
SW+D+I	33.9 33.9

Design Code: BS 5950-1: 2000

Design Summary

Design Condition	Status	Combination	Critical Value	Capacity\Limit	Units	Ratio
Class	Pass	1	Class 1			
Shear Vertical	Pass	1	33.9	773.0	kN	0.044
Shear Web Buckling	Pass	1	44.619	61.610		n/a
Moment	Pass	1	46.9	145.2	kNm	0.323
Buckling	Pass	1	46.9	153.5	kNm	0.305
Deflection	Pass	1	9.7	10.0	mm	0.968
Notes						

29/10/2021	14:52:28	Page	
	Fastrak Simple Beam Design, Simple Beam,	version: 21.3.0.0, www.tekla.com	

	Calvert Brain & Fraulo Limited	South Wootton Parish Council Offices	johnrasberry@c-b-f.co.uk
	3 Portland Street	218608 - SD	www.c-b-f.co.uk
r	King's Lynn, Norfolk	Extension - Structural Design - SD	01553 766220
	PE30 1PB	John R Rasberry	Page

13

SW+D+I

Classification check

Item	Value Units	Clause Ref.
Flange Class	Class 1 Plastic	Table 12
Web Class	Class 1 Plastic	Table 12
Section Class	Class 1 Plastic	Part 1: 3.5
Pass		

Vertical Shear check

Support	Critical Value	Capacity Units	Ratio	Status
Support	33.9	773.0 kN	0.044	Pass

Shear Web Buckling

Item	Value Units	Clause Ref.
Depth to thickness ratio, d/t	44.619	
Depth to thickness ratio limit, d/t _{limit}	61.610	
Pass		

Moment check

Position	Critical Value	Capacity	Units	Ratio	Status
2.770 m	46.9	145.2	kNm	0.323	Pass

Lateral Torsional Buckling check

Sub Beam	Critical Value	Capacity	Units	Ratio	Status
Sub Beam 1	46.9	153.5	kNm	0.305	Pass

Deflection check

Condition	Critical Value	Limit	Units	Ratio	Status
Dead	5.9	11.1	mm	0.536	Pass
Imposed	3.7	10.0	mm	0.375	Pass
Total	9.7	10.0	mm	0.968	Pass

Notes

Note

No notes!

	Calvert Brain & Fraulo Limited	South Wootton Parish Council Offices	johnrasberry@c-b-f.co.uk
	3 Portland Street	218608 - SD	www.c-b-f.co.uk
,	King's Lynn, Norfolk	Extension - Structural Design - SD	01553 766220
	PE30 1PB	John R Rasberry	Page

REFERENCE: Meeting Room Opening Beam - Existing Side - UB

14

Beam

	Span, L
Section Size, Grade	[m]
Rolled, UB 305x127x48, S355	5.540

Restraints

Left hand support type 1 Compression flange laterally unrestrained.

Both flanges free to rotate on plan.

Restraint against torsion provided only by the pressure of the bottom flange onto supports.

Start position	End position	Sub-beam length	Eff. length Normal	Eff. length Destab.
[m]	[m]	[m]	[m]	[m]
0.0	5.540	5.540	1.2000L+2D	1.4000L+2D
Right hand support type 1	•	flange laterally unrestrained.		

Both flanges free to rotate on plan.

Restraint against torsion provided only by the pressure of the bottom flange onto supports.

Design Loadcases

Dead, Type: Dead

	F	g1	g2	a	b	
Load Type	[kN]	[kN/m]	[kN/m]	[m]	[m]	Stability type
UDL	-	4.7	-	0.0	5.540	Destab.

Imposed, Type: Imposed

	F	g1	g2	а	b	
Load Type	[kN]	[kN/m]	[kN/m]	[m]	[m]	Stability type
UDL	-	3.2	-	0.0	5.540	Destab.

Design Combinations

SW+D+I

Loadcase	Strength Factor	Service Factor
Self weight - steel beam only	1.400	1.000
Dead	1.400	1.000
Imposed	1.600	1.000

End Reactions Summary by Loadcase (Unfactored)

	Reactions at supports	
	Left support	Right support
Loadcase	[kN]	[kN]
Self weight - steel beam only	1.3	1.3
Dead	13.0	13.0
Imposed	8.9	8.9

End Reactions Summary by Combination (Factored)

		Reactions at supports	
		Left support Right suppo	
	Combination	[kN]	[kN]
5	SW+D+I	34.2	34.2

Design Code: BS 5950-1: 2000

Design Summary

Design Condition	Status	Combination	Critical Value	Capacity\Limit	Units	Ratio
Class	Pass	1	Class 1			
Shear Vertical	Pass	1	34.2	596.2	kN	0.057
Shear Web Buckling	Pass	1	29.467	61.610		n/a
Moment	Pass	1	47.4	252.3	kNm	0.188
Buckling	Pass	1	47.4	49.6	kNm	0.957
Deflection	Pass	1	5.2	10.0	mm	0.523
Notes						

29/10/2021	14:52:28	Page	
	Fastrak Simple Beam Design Simple	Beam version: 21 3 0 0 www.tekla.com	

Calvert Brain & Fraulo Limited	South Wootton Parish Council Offices	johnrasberry@c-b-f.co.uk
3 Portland Street	218608 - SD	www.c-b-f.co.uk
King's Lynn, Norfolk	Extension - Structural Design - SD	01553 766220
PE30 1PB	John R Rasberry	Page

15

SW+D+I

Classification check

Item	Value Units	Clause Ref.
Flange Class	Class 1 Plastic	Table 11
Web Class	Class 1 Plastic	Table 11
Section Class	Class 1 Plastic	Part 1: 3.5
Dacc		

Vertical Shear check

Support	Critical Value	Capacity	Units	Ratio	Status
Support	34.2	596.2	kN	0.057	Pass

Shear Web Buckling

Item	Value Units	Clause Ref.
Depth to thickness ratio, d/t	29.467	
Depth to thickness ratio limit, d/t _{limit}	61.610	
Pass		

Moment check

Position	Critical Value	Capacity Units	Ratio	Status
2.770 m	47.4	252.3 kNm	0.188	Pass

Lateral Torsional Buckling check

Sub Beam	Critical Value	Capacity	Units	Ratio	Status
Sub Beam 1	47.4	49.6	kNm	0.957	Pass

Deflection check

Condition	Critical Value	Limit	Units	Ratio	Status
Dead	3.2	11.1	mm	0.292	Pass
Imposed	2.0	10.0	mm	0.200	Pass
Total	5.2	10.0	mm	0.523	Pass

Notes

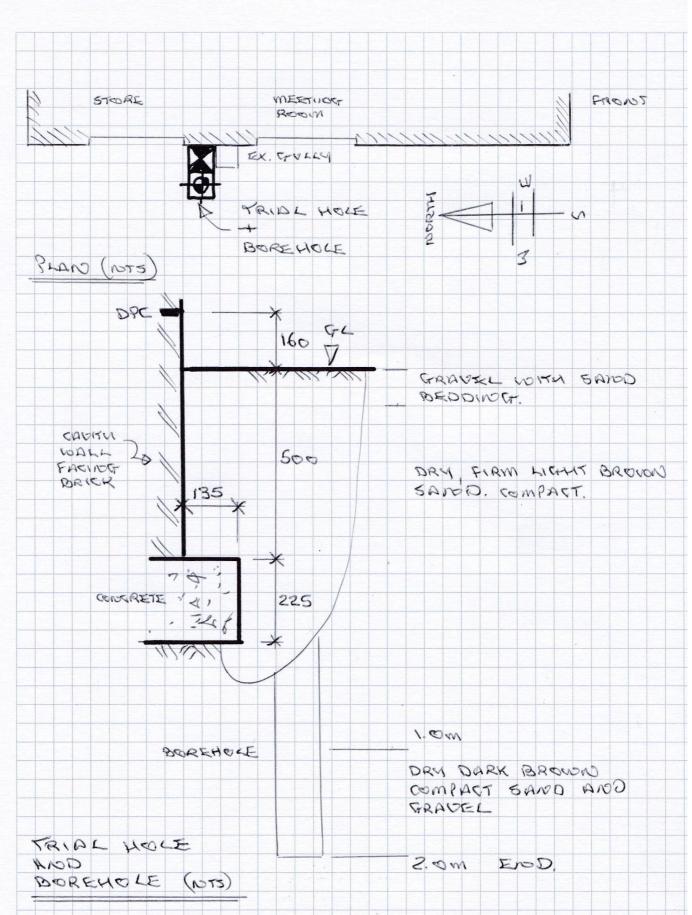
Note

No notes!

Calvert Brain & Project Job Ref. South Wootton Parish Council Offices 218608 FRAULO Section Sheet no./rev. CONSULTING STRUCTURAL & SD / 16 Extension - Structural Design - SD **CIVIL ENGINEERS** Calc. by Date Chk'd by Date App'd by Date 3 Portland Street, King's Lynn, Norfolk

PE30 1PB Tel: 01553 768220 JRR 27/10/2021 RWB 29/10/2021 Appendix 2 Soils Investigation : Sketch Number 218608 / SI-01	Portland Street, King's Lynn, Norfolk	IDD	27/10/2021	DIMP	20/10/2021	, , , , , , , , , , , , , , , , , , , ,	
	PE30 1PB Tel: 01553 766220	JRK	27/10/2021	RWB	29/10/2021		
	Appendix 2						
		nhar 218608 / SI	I_ 0 1				
	Solis investigation . Sketch Nul	ilber 2 10000 / 31	1-0 1				

PROJECT SOUTH WOOTFORD PARISH COUDCIL OFFICES. GOILS INVESTIGATION.


SHEET NO. 218608

SI - 01

MADE BY SRR

| DATE

CALVERT BRAIN & 26-10-21 NOT TO SCALE A4 FRAUL(

