Brixton Energy Masterplan

Tuesday 8th December Stephen Cook

ARUP

Existing and future heat loads

 Demand data based on mix of meters, Display Energy Certificates (DECs) and benchmarks based on type/size
 New developments act as anchor loads and

provide capital funding through developer connection charge

• Existing development more challenging to retrofit but can deliver significant carbon savings

Energy centres and heat supplies

• Existing energy sources are typically dispersed and low temperature. Potential future sources but high risk for kickstart network

Proposed Energy Centre (EC) at Somerleyton Road
Alternative EC at Brixton Central

• Planned CHP at YNTH could be connected in future

• Longer term potential to take heat from King's College Hospital

- Air Quality considerations:
 - New ECs partially offset by displacement of existing systems
 - Central plant will have effective emission control and high stack to keep below statutory limits

³ Brixton Energy Masterplan

ARUP

Core Network Phase 1, 2018-2019

• Mainly residential connections

- 1,000 dwellings connected:
- Somerleyton Road
- Southwyck House Estate
- Elvedon House
- Moyne House
- Holmbury House
- Farmleigh House
- Kentwood House
- Pyford House
- 1000m pipe route
- Energy Centre at
- Somerleyton Road
 - 4.8 MWth peak load
 Boilers sized to meet peak load
 - 0.75MWe CHP provides baseload when running (typically 6,000 hours)

Core Network Phase 2, 2021-2024

Brixton Energy Masterplan

Future Network Expansion

• Potential connection to King's College Hospital and Brixton Hill area.

 Heat loads north of Brixton are individually heated and privately owned, therefore unlikely/unviable to connect.

Hospital shown as a heat load, but could be a heat source

0 Legend 00 00 ommunal/Public 0 0 . 0 - 1787 0 1787 - 6160 C 0 0 6160 - 36000 King's College 0 0 ommunal/Private 00 6 Hospital 0 0 - 1787 C Brixton Central 1787 - 6160 0 6160 - 36000 ndividual/Public 0 0 - 1787 0 1787 - 6160 Your New Town Hall 0 6160 - 36000 Somerleyton Road (Energy Centre) ndividual/Private 0 - 1787 1787 - 6160 6160 - 36000 d Energy Centres Somerleyton Road Future Network G Phase 2 Network Brixton SPD

ARUP

Strategic Masterplan

• Long-term potential network

• Technically plausible but uncertainties about deliverability when considering the connection to all heat loads

Brixton Energy Masterplan

ARUP

Economic Overview / Delivery Model

• 30-year analysis period

• Core network IRR appears attractive based on a public sector delivery model

• Commercial finance & delivery typically requires a 12% return for ESCo

• Council owns or controls most of the potential Core network sites

- Possible delivery routes:
 Council ESCo with
 DROM contractor (a)
 - DBOM contractor (e.g. Camden Somers Town)Council procures
 - commercial ESCo under 40-year concession (possibly with gap funding) (e.g. Olympic Park)
 - Somerleyton Road developer procures ESCo to deliver site network, incentivised to expand.

Financial Indicator	Core Network Phase 1 only	Full Core Network (including phase 2)	Expanded Future Network	Strategic Masterplan
Up front capex (£000s)	4,000	7,900	17,600	69,600
Total Lifecycle costs, over 30 years (£000s)	23,400	54,000	125,600	255,300
Total Revenues, over 30 years (£000s)	24,740	62,000	119,000	242,000
IRR, 30 years	6.2%	8.6%	4.0%	-2.1%
NPV, 30 years @ 6% discount rate (£000s)	54	1,250	-1,909	-24,100

Network benefits

• **Carbon savings**: CHP + DH can deliver net savings vs. BAU

• **Air quality**: net benefit depends on solution but well-designed systems will be no worse than BAU.

• Energy Efficiency improvements: Network investment can help address new metering requirements on existing systems, and improve system performance.

• **Planning compliance**: Enables connected new developments to comply with London Plan

• **Cost savings for developments**: Developer connection charge should be less than avoided costs of delivering heat and carbon savings without a heat network

• **Cost savings and certainty for customers**: Pricing policy should provide stable, competitive prices for customers

• **Peace of mind for customers**: System is fully maintained and operated by the ESCo, no need to worry about your boiler breaking over Christmas

• **Future proofing**: Supply agnostic system, can be connected to other lower carbon heat sources (easier than retrofitting 1,500 separate homes).

• **Long-term infrastructure**: pipes last 50+ years, delivering continued operational savings

⁹ Brixton Energy Masterplan

Network Risks

• **Demand risk**: Will planned buildings connect? Will phasing change? Is demand overestimated? Will climate change reduce demand?

• **Credit risk**: Customer late payments and non-payments affect business cash flow.

• **System efficiency**: Design thermal losses are <20%, experienced losses can be >60%. But can be controlled with good design, installation, data and the right incentives on the Operator.

• **Carbon intensity**: Changes in grid intensity will affect savings from different supply options

• **Customer trust and protection**: Lots of examples of bad practice. Transparent, fair, regulated pricing needs to be in place from the start.

Next Steps

• **Somerleyton Road**: Continued engagement to secure commitment for the network energy centre and to connect the site to the network. Agree contingency position and longstop dates.

• Your New Town Hall: ensure the on-site network is designed to allow future connection to the wider network

• Other developments: Require a commitment to connect through planning

• Develop a commercial strategy, identify the Council's capacity and willingness to play a role in network delivery

• Commission a feasibility study and business case, refine the Core Network scheme in detail

• Typical period from start of procurement to "heat on:" 18-24 months, therefore procurement needs to start in 2016

