

t: 01332 292 192 e: info@baylissconsulting.co.uk w: www.baylissconsulting.co.uk

STRUCTURAL CALCULATIONS

FOR THE PROPOSED CANOPIED EXTENSION

<u>AT</u>

WILLINGTON SPORTS PAVILLION

TWYFORD ROAD

WILLINGTON

DERBYSHIRE

THESE CALCULATIONS HAVE BEEN PREPARED IN ACCORDANCE WITH THE RELEVANT PARTS OF THE FOLLOWING BRITISH STANDARD CODES OF PRACTICE:-

- 1. BS 6399 "LOADINGS FOR BUILDINGS"
- 2. BS 5950 "STRUCTURAL USE OF STEELWORK"
- 3. BS 5628 "UNREINFORCED MASONRY"

JOB REF: 6000 DATE: JUNE 2023

	Project				Job Ref.	
BAYLISS		Willington S	port Pavillion		60	000
CONSULTING	Section				Sheet no./rev.	
Civil and Structural Engineering Consultants		Structural	Calculations			1
01332 292192	Calc. by	Date	Chk'd by	Date	App'd	Date
	TGB	01.06.23				

INTRODUCTION

We have been instructed by Willington Parish Council to prepare the structural calculations for the proposed canopied extension at Willington Sports Pavillion, Twyford Road, Willington.

In order to carry out the above we have been provided with architectural drawings prepared by Making Plans Architecture, no pre-alteration survey has been conducted by this office.

The design covers the steelwork support to the canopied roof. The roof is trussed rafters, designed and manufactured by a truss manufacturer. Our calculations assume that the trusses are positively fixed to the steelwork, that the roof is braced in accordance with BS5268 and that the ceiling acts as a rigid diaphragm.

Beam spans shown in these calculations are for design purposes only and so all dimensions should be checked on site by the builder prior to the fabrication of steelwork.

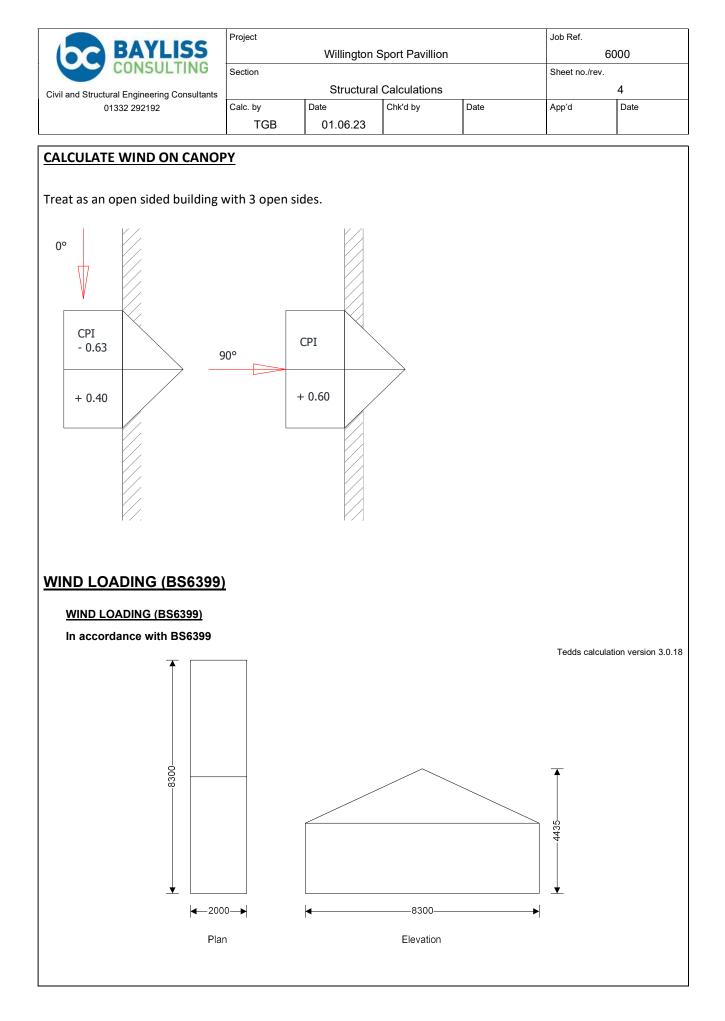
The heaviest beam specified in these calculations will weigh approximately 250 kg, the building contractor should ensure they have appropriate lifting gear for the safe installation of the steelwork.

All structural steelwork to be grade S355 and hot rolled. Plates are grade 275.

Due to its external location we also recommend the steelwork is hot dip galvanised.

These calculations have been prepared for Building Regulation purposes, and should be read in conjunction with the Architects drawings, and our mark up plan, any discrepancies should be reported immediately to this office.

Bayliss Consulting have not been asked to design the temporary works for the project. The builder is to provide adequate temporary propping to ensure the stability of the structure during the work.


Minor post – construction cracking of brittle finishes may occur.

	DAVIDES	Project				Job Ref.	
	BAYLISS		Willington S	port Pavillion			6000
	CONSULTING	Section				Sheet no./rev	
Civil and St	tructural Engineering Consultants		1	Calculations			2
	01332 292192	Calc. by TGB	Date 01.06.23	Chk'd by	Date	App'd	Date
		IGB	01.00.23				
STRUCT	URE LOADS						
Roof							
	S = <u>0.75 kN/m²</u>						
	D = Tiles		= 0.65 kN/m	2			
	Battens		= 0.03 kN/m				
	Felt		= 0.02 kN/m				
	Rafters		= 0.10 kN/m		<u>0.80 kN/m²</u>		
			,				
Ceiling							
	C 0.25 LN /m ²						
-	$S = 0.25 \text{ kN/m}^2$						
	D = Joists		= 0.10 kN/m	2			
	Insulation		= 0.05 kN/m	2			
	Ceiling Board		= 0.15 kN/m	2			
	Services		= 0.05 kN/m	² <u>=</u>	<u>0.35 kN/m²</u>		
Stud Wa	<u>all</u>						
			0.45101/	2			
	D = Studs		= 0.15 kN/m				
	Insulation		= 0.05 kN/m				
	Ply Sheathing a				$0.75 \text{ kN}/m^2$		
	Timber Claddin	8	= 0.25 kN/m	- <u>-</u>	<u>0.75 kN/m²</u>		
L							

	Project				Job Ref.	
BAYLISS		Willington S	Sport Pavillion		60	000
CONSULTING	Section				Sheet no./rev.	
Civil and Structural Engineering Consultants		Structural	Calculations			3
01332 292192	Calc. by	Date	Chk'd by	Date	App'd	Date
	TGB	01.06.23				

DE65 6BN
SK298285
45 Metres
Countryside
125m
21.40 m/sec

Civil and Structural Engineering Consultants	Project Section		Sport Pavillion		Job Ref. Sheet no./rev.	6000 5
01332 292192	Calc. by TGB	Date 01.06.23	Chk'd by	Date	App'd	Date
Building data Type of roof Length of building Pitch of roof Reference height	Duopitch L = 2000 mm α ₀ = 25.0 deg H _r = 4435 mm		Width of build	ing	W = 8300 m	ım

Dynamic classification			
Building type factor (table 1)	K _b = 4.0	Dynamic augmentation factor	(1.6.1) Cr = 0.05
Site wind speed			
Location	Willington	Basic wind speed	V _b = 21.4 m/s
Site altitude	∆s = 45 m	Upwind dist from sea to site	d _{sea} = 125 km
Direction factor	S _d =1.00	Seasonal factor	S _s = 1.00
Probability factor	S _p = 1.00	Critical gap between buidlings	g = 5000 mm
Topography not significant			
Altitude factor	Sa = 1.05	Site wind speed	V _s = 22.4 m/s
Terrain category	Country		
Displacement height	$H_d = 0mm$		

The velocity pressure for the windward face of the building with a 0 degree wind is to be considered as 2 parts as the height h is greater than b but less than 2b (cl.2.2.3.2)

e windward face of the	building with a 90 degree wind is to b	e considered as 1 part
1.2.2.3.2)		
rd wall (lower part) - W	/ind 0 deg	
H _e = 2000 mm		
Sc = 0.723	Turbulence factor (Table 22)	St = 0.215
g _t = 3.44	Terrain and building factor	S _b = 1.26
V _e = 28.1 m/s	Dynamic pressure	qs = 0.485 kN/m ²
rd wall (upper part) - W	/ind 0 deg and roof	
H _e = 2500 mm		
Sc = 0.750	Turbulence factor (Table 22)	St = 0.211
gt = 3.44	Terrain and building factor	S _b = 1.29
V _e = 28.9 m/s	Dynamic pressure	q _s = 0.513 kN/m ²
rd wall - Wind 90 deg a	ind roof	
H _e = 4435 mm		
Sc = 0.852	Turbulence factor (Table 22)	St = 0.196
gt = 3.44	Terrain and building factor	S _b = 1.43
V _e = 31.9 m/s	Dynamic pressure	qs = 0.625 kN/m ²
a _{eg} = 8.7 m	Exte size effect factor	C _{aeg} = 0.958
a _{es} = 3.2 m	Exte size effect factor	C _{aes} = 1.000
a _{er} = 5.0 m	Exte size effect factor	Caer = 1.000
e a _{eus} = 2.1 m	Exte size effect factor	Caeus = 1.000
side	a _{ebs} = 2.8 m	Exte size effect factor
Caebs = 1.000		
V _i = 40.0 m ³	Diag dim for int size effect	a _i = 34.2 m
C _{ai} = 0.855		
р	= $q_s \times c_{pe} \times C_{ae}$ - $q_s \times c_{pi} \times C_{ai}$	
	I.2.2.3.2) rd wall (lower part) - W $H_e = 2000 \text{ mm}$ $S_c = 0.723$ $g_t = 3.44$ $V_e = 28.1 \text{ m/s}$ rd wall (upper part) - W $H_e = 2500 \text{ mm}$ $S_c = 0.750$ $g_t = 3.44$ $V_e = 28.9 \text{ m/s}$ rd wall - Wind 90 deg a $H_e = 4435 \text{ mm}$ $S_c = 0.852$ $g_t = 3.44$ $V_e = 31.9 \text{ m/s}$ $a_{eg} = 8.7 \text{ m}$ $a_{es} = 3.2 \text{ m}$ $a_{er} = 5.0 \text{ m}$ e $a_{eus} = 2.1 \text{ m}$ side $C_{aebs} = 1.000$ $V_i = 40.0 \text{ m}^3$ $C_{ai} = 0.855$	rd wall (lower part) - Wind 0 deg $H_e = 2000 \text{ mm}$ $S_c = 0.723$ Turbulence factor (Table 22) $g_t = 3.44$ Terrain and building factor $V_e = 28.1 \text{ m/s}$ Dynamic pressurerd wall (upper part) - Wind 0 deg and roof $H_e = 2500 \text{ mm}$ $S_c = 0.750$ Turbulence factor (Table 22) $g_t = 3.44$ Terrain and building factor $V_e = 28.9 \text{ m/s}$ Dynamic pressurerd wall - Wind 90 deg and roof $H_e = 4435 \text{ mm}$ $S_c = 0.852$ Turbulence factor (Table 22) $g_t = 3.44$ Terrain and building factor $V_e = 31.9 \text{ m/s}$ Dynamic pressure $a_{eg} = 8.7 \text{ m}$ Exte size effect factor $a_{es} = 3.2 \text{ m}$ Exte size effect factor $a_{es} = 3.2 \text{ m}$ Exte size effect factor $a_{eus} = 2.1 \text{ m}$ Exte size effect factor $a_{ebs} = 2.8 \text{ m}$ Caebs = 1.000 $V_i = 40.0 \text{ m}^3$ Diag dim for int size effect

	AYLISS	Project	Willington Sport	Pavillion			Job Ref.	6000
C	DNSULTING	Section					Sheet no.	
	ngineering Consultants		Structural Calc		Data		A	6
01332	292192	Calc. by I TGB	Date Chk 01.06.23	d by	Date		App'd	Date
		IGB	01.00.23					
Net force			$F_w = p \times A_{ref}$					
Roof load c	ase 1 - Wind 0, c _{pi} .	-0.63, + c _{pe}						
Zone	Ext pressure coefficient, C _{pe}	Dynamic pressure, q₅ (kN/m²)	External size factor, C _{ae}	Net Pressu p (kN/	ıre,	Are A _{ref} (-	Net force, F _w (kN)
A (+ve)	0.60	0.62	1.000	0.7	1	0.4	14	0.31
C (+ve)	0.33	0.62	1.000	0.54	4	8.7	2	4.75
E (+ve)	-1.03	0.62	1.000	-0.3	1	0.4	14	-0.14
G (+ve) Total vertica	-0.50 I net force	0.62 F _{w,v} = 4.65 kN	1.000 Tot	0.02 al horizontal		8.7 ce F	72 F _{w,h} = 2.	0.21 11 kN
Total vertica		F _{w,v} = 4.65 kN	Tot External size factor,	Al horizontal	t net forc		F _{w,h} = 2 .	
Total vertica Roof load c	net force ase 2 - Wind 0, c _{pi} (Ext pressure	F _{w,v} = 4.65 kN 0.40, - c _{pe} Dynamic pressure, q _s	Tot	al horizontal	t net forc	ce F	F _{w,h} = 2 .	11 kN Net force,
Total vertica Roof load c	net force ase 2 - Wind 0, c _{pi} Ext pressure coefficient,	F _{w,v} = 4.65 kN 0.40, - c _{pe} Dynamic pressure, q _s	Tot External size factor,	Al horizontal	t met ford t m ²)	ce F	F _{w,h} = 2 . ea, m ²)	11 kN Net force,
Total vertica Roof load c Zone	ase 2 - Wind 0, c _{pi} Ext pressure coefficient, C _{pe}	F _{w,v} = 4.65 kN 0.40, - c pe Dynamic pressure, q₅ (kN/m²)	Tot External size factor, Cae	Net Pressu p (kN/	t m ²)	ce F Are A _{ref} (F _{w,h} = 2 . ea, m ²)	11 kN Net force, F _w (kN)
Total vertica Roof load c Zone A (-ve)	ase 2 - Wind 0, c _{pi} (Ext pressure coefficient, c _{pe} -0.70	F _{w,v} = 4.65 kN 0.40, - c _{pe} Dynamic pressure, q₅ (kN/m ²) 0.62	Tot External size factor, Cae 1.000	Net Pressu p (kN/ -0.6	t Inet ford t Ire, m ²) 5 8	ce F Are A _{ref} (0.4	F _{w,h} = 2 . ea, m ²) 44 72	11 kN Net force, F _w (kN) -0.29
Total vertica Roof load c Zone A (-ve) C (-ve)	net force ase 2 - Wind 0, c _{pi} (Ext pressure coefficient, c _{pe} -0.70 -0.27	F _{w,v} = 4.65 kN 0.40, - c _{pe} Dynamic pressure, q₅ (kN/m ²) 0.62 0.62	Tot External size factor, Cae 1.000 1.000	Net Pressu p (kN/ -0.6 -0.3	t m ²) 5 6	20 F Are A _{ref} (0.4 8.7 0.4 8.7	F _{w,h} = 2 . ea, m ²) 44 72 44	Net force, F _w (kN) -0.29 -3.31 -0.38 -4.58
Total vertica Roof load c Zone A (-ve) C (-ve) E (-ve)	ase 2 - Wind 0, c _{pi} Ext pressure coefficient, c _{pe} -0.70 -0.27 -1.03 -0.50	F _{w,v} = 4.65 kN 0.40, - c _{pe} Dynamic pressure, q _s (kN/m ²) 0.62 0.62 0.62	External size factor, Cae 1.000 1.000 1.000 1.000	Net Pressu p (kN/ -0.6 -0.3 -0.8	t met ford t m ²) 5 8 6 3	20 F Are A _{ref} (0.4 8.7 0.4 8.7	F _{w,h} = 2 . ea, m ²) 14 72	Net force, F _w (kN) -0.29 -3.31 -0.38 -4.58
Total vertica Roof load c Zone A (-ve) C (-ve) E (-ve) G (-ve) Total vertica	ase 2 - Wind 0, c _{pi} Ext pressure coefficient, c _{pe} -0.70 -0.27 -1.03 -0.50	F _{w,v} = 4.65 kN 0.40, - c _{pe} Dynamic pressure, q₅ (kN/m ²) 0.62 0.62 0.62 0.62 F _{w,v} = -7.76 kN	External size factor, Cae 1.000 1.000 1.000 1.000	Net Pressu p (kN/ -0.6 -0.3 -0.8 -0.5	t met ford t m ²) 5 8 6 3	20 F Are A _{ref} (0.4 8.7 0.4 8.7	F _{w,h} = 2 . ea, m ²) 44 72 44	Net force, F _w (kN) -0.29 -3.31 -0.38 -4.58
Total vertica Roof load c Zone A (-ve) C (-ve) E (-ve) G (-ve) Total vertica	ase 2 - Wind 0, c _{pi} Ext pressure coefficient, c _{pe} -0.70 -0.27 -1.03 -0.50 net force	F _{w,v} = 4.65 kN 0.40, - c _{pe} Dynamic pressure, q₅ (kN/m ²) 0.62 0.62 0.62 0.62 F _{w,v} = -7.76 kN	External size factor, Cae 1.000 1.000 1.000 1.000	Net Pressu p (kN/ -0.6 -0.3 -0.8 -0.5	t ure, m ²) 5 8 6 3 1 net foro t ure,	20 F Are A _{ref} (0.4 8.7 0.4 8.7	F _{w,h} = 2 . ea, m ²) 44 72 44 72 F _{w,h} = 0 . ea,	Net force, F _w (kN) -0.29 -3.31 -0.38 -4.58

1.000-1.153.801.000-1.093.801.000-0.7010.71

Total vertical net force $F_{w,v} = -14.48 \text{ kN}$

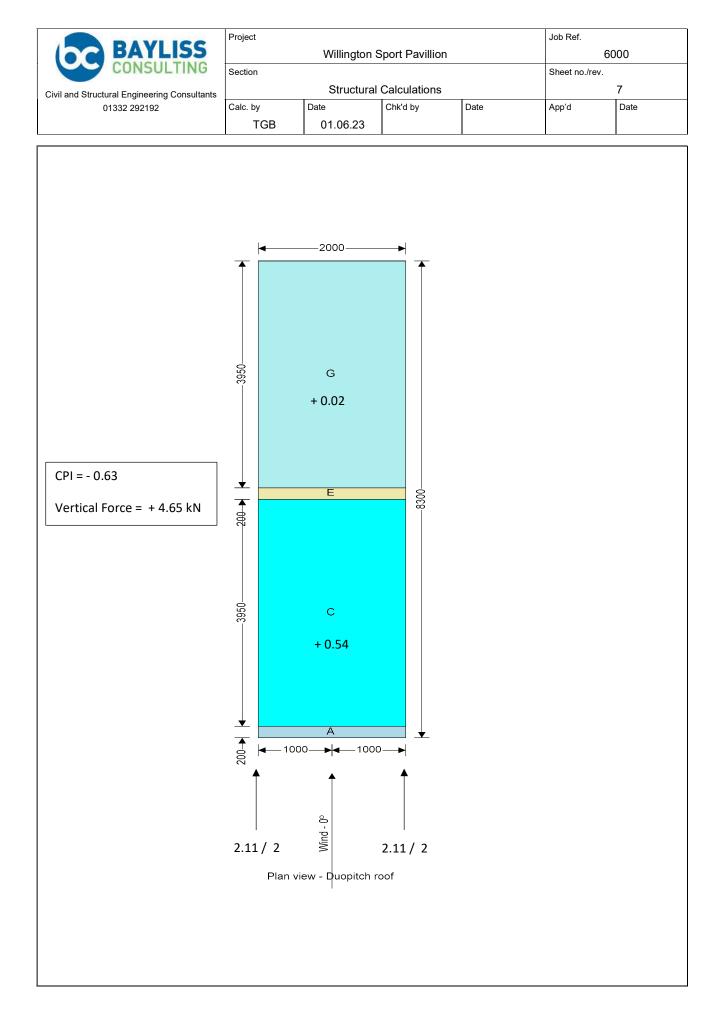
-1.23

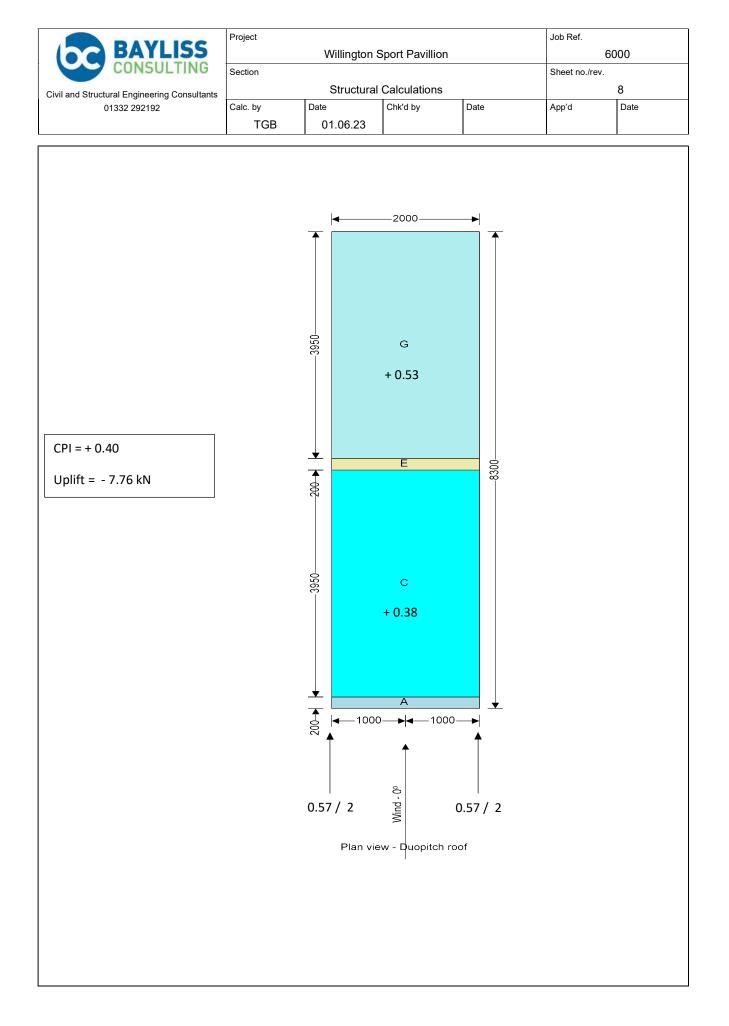
-0.60

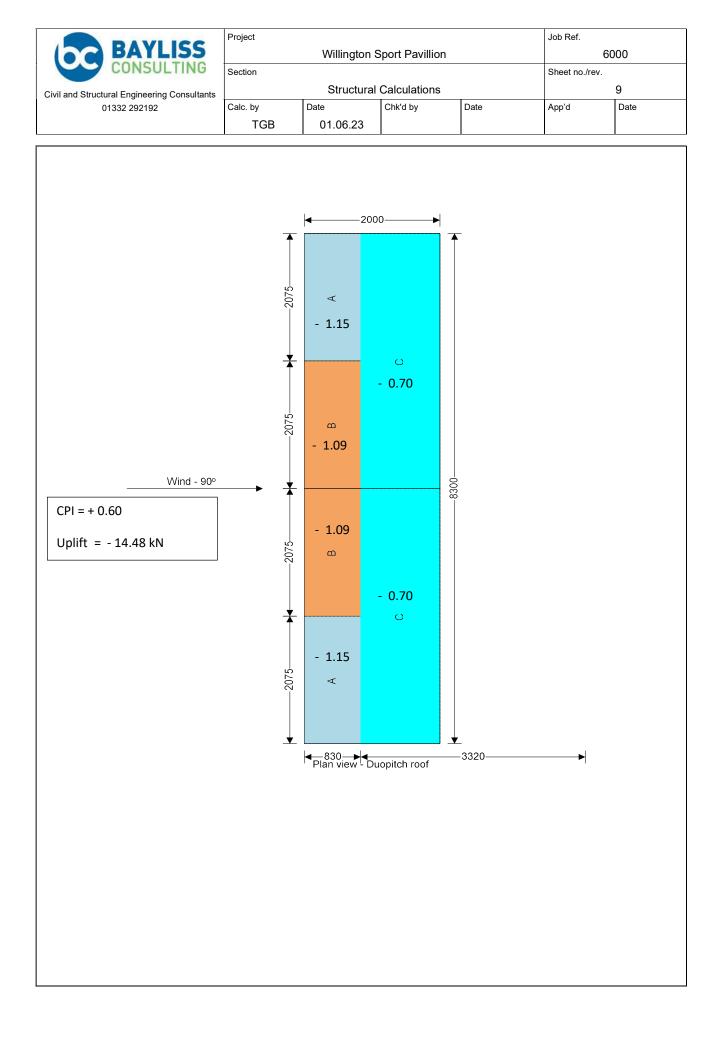
0.62

0.62

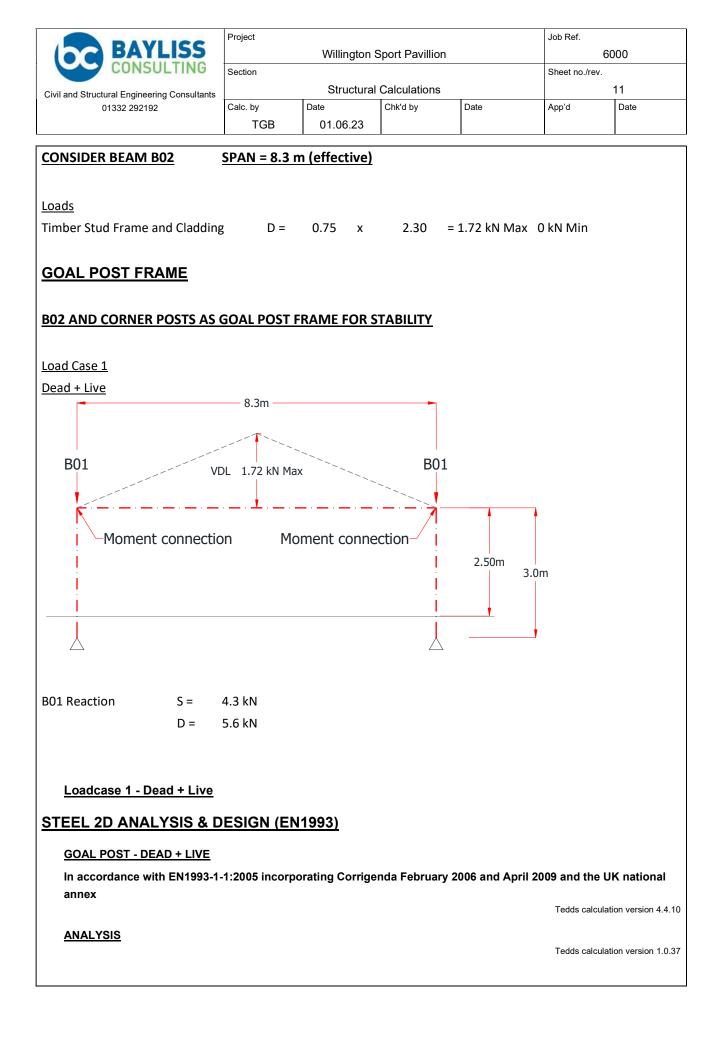
B (-ve)

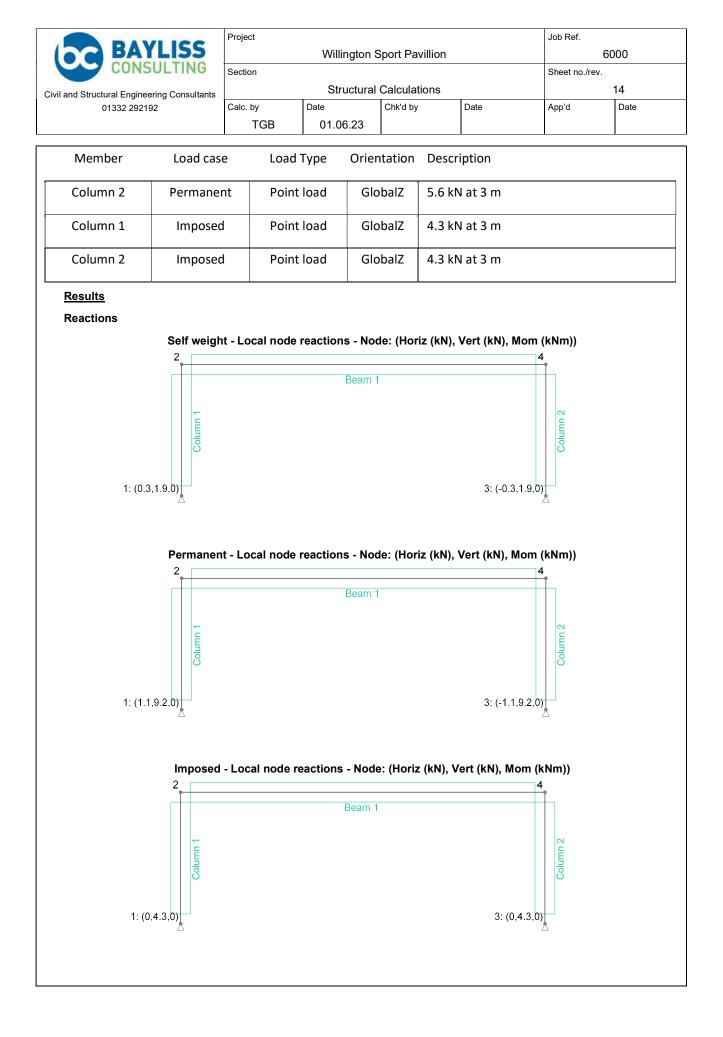

C (-ve)

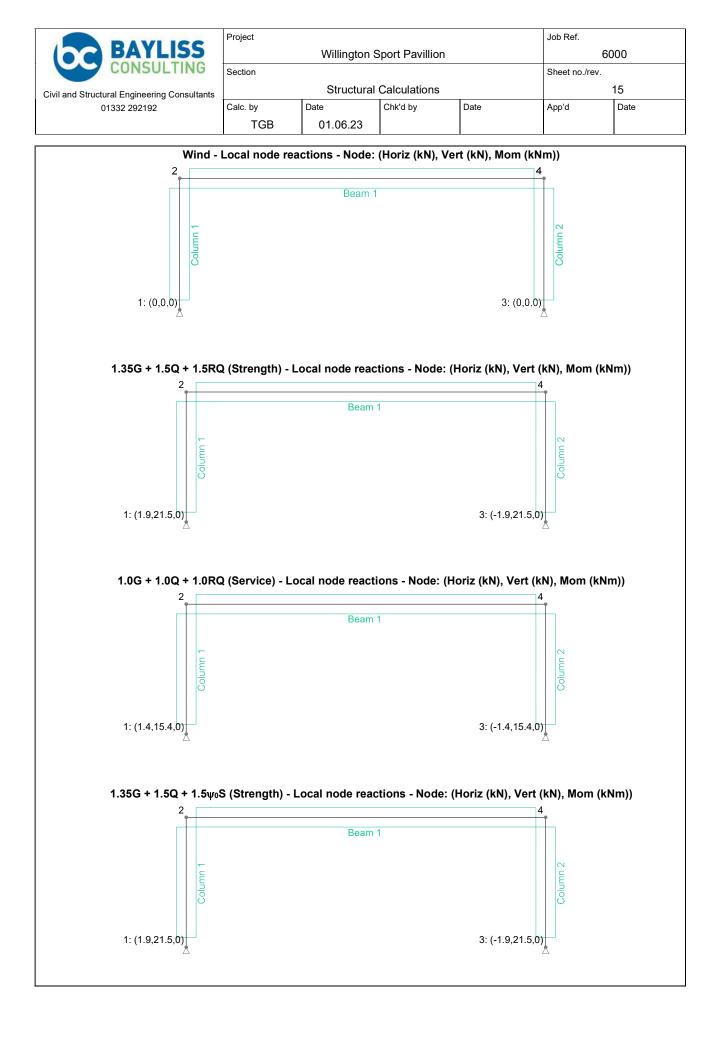

Total horizontal net force


F_{w,h} = **0.00** kN

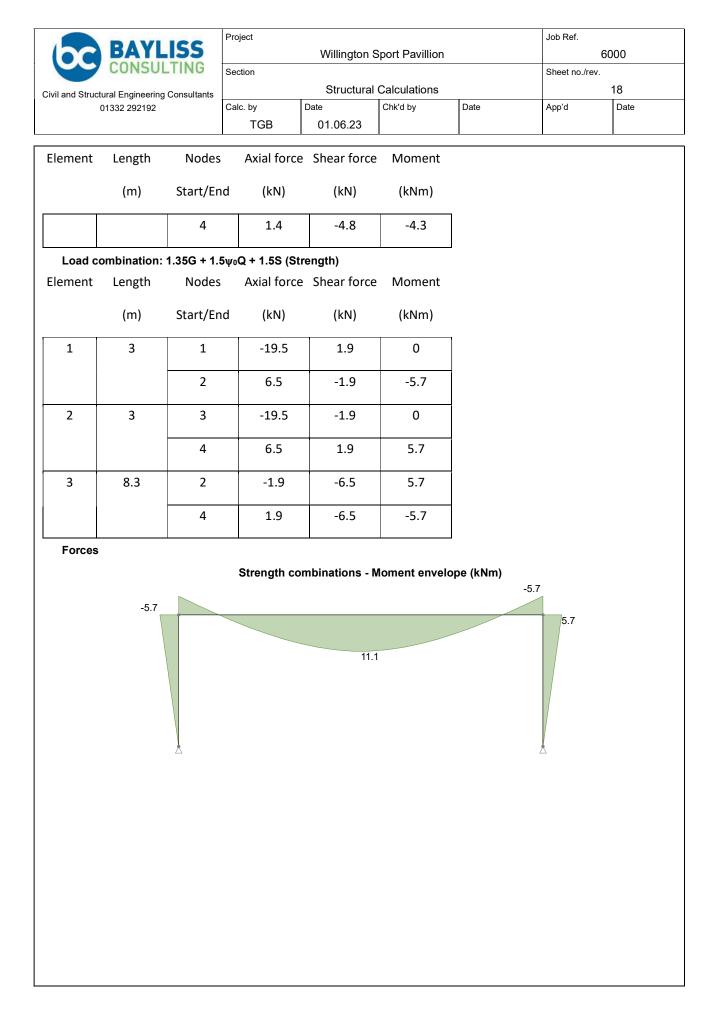
-4.15

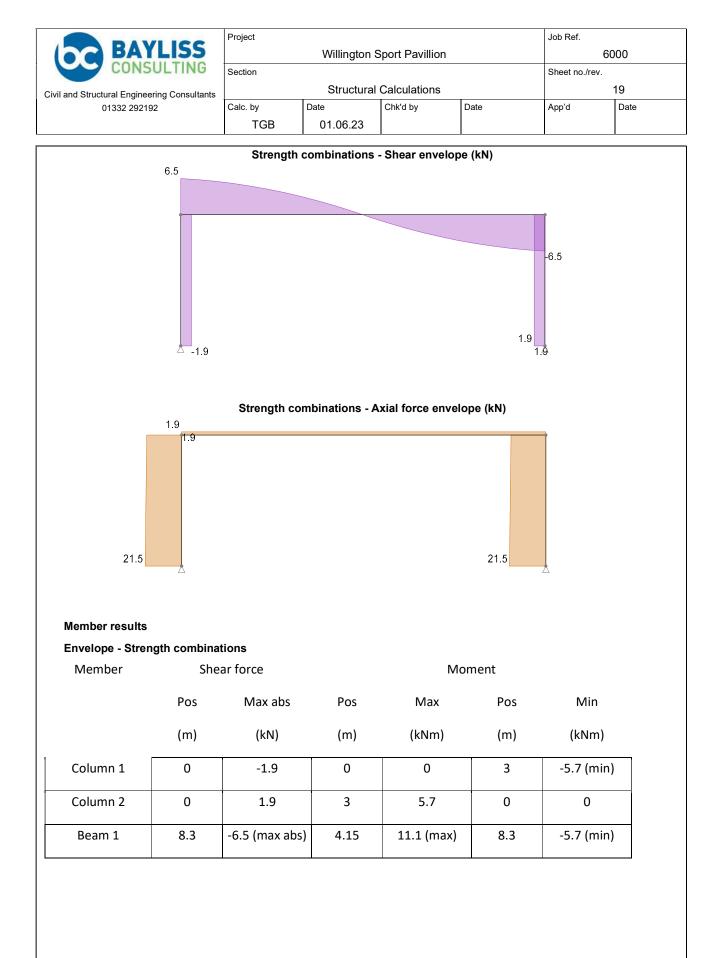

-7.45




6	BAYL		Project		Wi	llington Sp	oort Pavill	ion		Job Ref.	6000
	CONSU	LTING	Section		_					Sheet no./r	
Civil and St	ructural Engineering	g Consultants				tructural C				A	10
	01332 292192		Calc. by T	' GB	Date 01	06.23	Chk'd by	Date	8	App'd	Date
					I						
	ER BEAM BO	<u>01</u>	<u>SPAN</u>	= 2.0 ı	m (effe	ective)					
<u>Loads</u>											
Roof	S =	0.75	х	2.0	х	4.3	х	1.6	= 10.32 k	N	
	D =	0.80	х	2.0	х	4.8	х	1.4	= 10.75 k	N	
Ceiling	S =	0.25	х	2.0	х	4.3	х	1.6	= 3.44 k	N	
	D =	0.35	х	2.0	х	4.3	х	1.4	= 4.21 k	N	
Swt	D =	0.30	x	2.0	х	1.4			<u>= 0.84 k</u>	<u>N</u>	
									= 29.56 k	N	
eł 1.2	L + 2D		=	2.70	m						
V = 2	29.56 / 2		=	14.78	8 kN						
	23.3072			14.70							
M = 2	29.56 x 2.0 / 8	2	=	<u>7.39</u>	kNm						
	29.30 x 2.0 / 0)	-	1.55	KINIII						
δim = 2	2000 / 360		_								
	2000/300		=	5.5 m	1111						
		.									
I _{rea} 'd =	5 × 20.30 × 2 384 × 2.1	$2.0^{3} \times 10^{3}$	= 183	s cm ⁴							
ieq u	384 × 2.1	× 5.5									
_			_								
<u>PROVI</u>	DE 150 x 9	<u>0 x 24 k</u>	g PFC	<u>S355</u>							
Mb @ 2.	70 m	=			<u>.39 kNi</u>						
l _{prov'd}		=	<u>1160 c</u>	: <u>m⁴ > 1</u>	<u>83 cm⁴</u>						

bc	BAY		Project		Willingto	n Sport Pa	avillio	n		Job Re	6000	
	00110	CLINIC			Structu	ral Calcula	ations			Sheet r	12 io./rev.	
Civil and Struc	tural Enginee 01332 29219	-	Calc. b	/ GB	Date 01.06.23	Chk'd b			Date	App'd	Da	ite
Geome												
Materia												
Nai		Den	sity	Youn	gs Modulus	Shear N	Modu	ulus		ermal fficient		
		(kg/	m³)	kl	N/mm²	kN/	mm²	2		°C-1		
Steel	(EC3)	78	50		210	80	0.8		0.0	00012		
Sectio	ns											
Nai	me	Area	M	oment	of inertia	Shear a	area j	para	llel to			
			Ma	ajor	Minor	Minor	r	Μ	lajor			
		(cm²)	(cı	m⁴)	(cm ⁴)	(cm²)		(c	cm²)			
Colum 152x1		29.2	124	19.8	399.9	8.8		1	.8.6			
Beam 254x1		39.7	441	13.4	447.5	15.1		2	2.6			
Nodes												
Node	Co-ord	linates		Freedo	m	Coord sys	dinat tem	e		Spring		
	х	Z	Х	Z	Rot.	Name	An	ngle	Х	Z	Rot.	
	(m)	(m)					(°)	(kN/m)	(kN/m)	kNm/°	
1	0	0	Fixed	Fixed	Free			0	0	0	0	
2	0	3	Free	Free	Free			0	0	0	0	
3	8.3	0	Fixed	Fixed	Free			0	0	0	0	
4	8.3	3	Free	Free	Free			0	0	0	0]
Eleme												
Element	Length	No	odes	S	ection	Mat	erial			Releases		Rotated
	(m)	Start	End						Start momen	End t moment	Axial	
1	3	1	2		ımn - UC x152x23	Steel	(EC3	3)	Fixed	Fixed	Fixed	

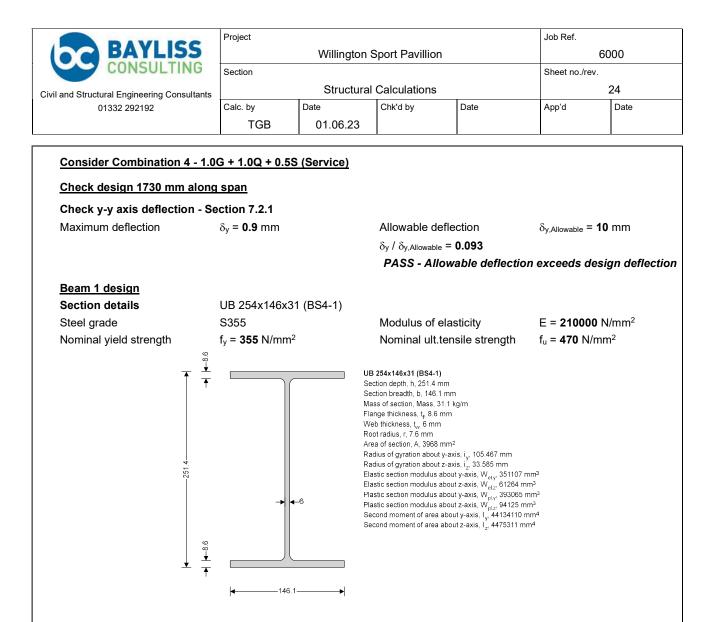

60	BAY		Project		Willir	ngton S	port Pa	villion		Job Ref	600	0
	ural Engineer 01332 29219:	ring Consultants 2	Calc. by	GB	Stru Date 01.06		Calcula Chk'd by		Date	App'd	13	ate
Element	Length	Node	es	Sec	tion		Mate	erial		Releases	I	Rotateo
	(m)	Start	End						Start moment	End moment	Axial	
2	3	3	4		in - UC 52x23		Steel	(EC3)	Fixed	Fixed	Fixed	
3	8.3	2	4		n - UB 46x31		Steel	(EC3)	Fixed	Fixed	Fixed	
Membe	rs											
Nan	ne		Elem	ents								
		Start		E	nd							
Column 1		1			1							
Column 2		2			2							
Beam 1		3			3							
Loading Self wei	-	ed (Self weigh	nt x 1)									
Load co	ombinatio	n factors										
	Load	combinatio	'n		Self weight	Permanent	Imposed	Wind				
1.35G + 1.	5Q + 1.5F	RQ (Strength	1)		1.35	1.35	1.50					
1.0G + 1.0	Q + 1.0R0	Q (Service)			1.00	1.00	1.00					
1.35G + 1.	5Q + 1.5ι	µ₀S (Strengt	h)		1.35	1.35	1.50					
1.0G + 1.0	Q + 0.5S	(Service)			1.00	1.00	1.00					
1.35G + 1.	5ψ₀Q + 1	.5S (Strengt	h)		1.35	1.35	1.05					
Membe	r Loads											
Mem	ber	Load cas	е	Load Ty	/pe	Orien	tation	Desc	ription			
Bean	n 1	Permane	nt	VDL		Glo	balZ	0 kN/	/m at 0 m to	1.72 kN/n	n at 4.15	i m
Bean	n 1	Permane	nt	VDL		Glo	balZ	1.72	kN/m at 4.1	5 m to 0 kl	N/m at 8	8.3 m
Colun	nn 1	Permane	nt	Point lo	bad	Glo	balZ	5.6 k	N at 3 m			



	BAYL CONSUL	TIMO	ction	winngton c	port Pavillion		Sheet no./re	6000
Land Struct	ural Engineering			Structural	Calculations			16
	01332 292192		Ic. by I TGB	Date 01.06.23	Chk'd by	Date	App'd	Date
	1.0G + 1	.0Q + 0.5S (Se	ervice) - Loca	l node reactio	ons - Node: (He	oriz (kN), Vei	rt (kN), Mom (k	Nm))
	1: (1.4,15.	4,0)		Beam 1	I	3: (-1.4,1	5.4,0)	
	1.35G + 1.5	5ψ₀Q + 1.5S (S	Strength) - Lo	cal node reac		(Horiz (kN), V	/ert (kN), Mom	(kNm))
	1: (1.9,19.	5,0)				3: (-1.9,1	9.5,0)	
		5,0)				3: (-1.9,1	Column	
	t end forces	5,0)				3: (-1.9,1	Column	
Load co	t end forces	5,0) Å			Moment	3: (-1.9,1	Column	
Load co	t end forces	5,0)		e ngth) Shear force (kN)	Moment (kNm)	3: (-1.9,1	Column	
Load co	it end forces ombination: Length	5,0) 5,0) 1.35G + 1.5Q Nodes	Axial force	Shear force		3: (-1.9,1	Column	
Load co	nt end forces combination: Length (m)	5,0) 1.35G + 1.5Q Nodes Start/End	Axial force (kN)	Shear force (kN)	(kNm)	3: (-1.9,1	Column	
Load co	nt end forces combination: Length (m)	5,0) 1.35G + 1.5Q Nodes Start/End 1	Axial force (kN) -21.5	Shear force (kN) 1.9	(kNm) 0	3: (-1.9,1	Column	
Load co ement	nt end forces combination: Length (m) 3	5,0) 1.35G + 1.5Q Nodes Start/End 1 2	Axial force (kN) -21.5 6.5	Shear force (kN) 1.9 -1.9	(kNm) 0 -5.7	3: (-1.9,1	Column	
Load co ement	nt end forces combination: Length (m) 3	5,0) 1.35G + 1.5Q Nodes Start/End 1 2 3	Axial force (kN) -21.5 6.5 -21.5	Shear force (kN) 1.9 -1.9 -1.9	(kNm) 0 -5.7 0	3: (-1.9,1	Column	

	BAYL	ISS	Project	Willington S	port Pavillion		Job Ref.	6000
	CONSUL	TING	Section				Sheet no./rev	
	ural Engineering 01332 292192	Consultants	Calc. by	Structural	Calculations Chk'd by	Date	App'd	17 Date
,	01332 292192		TGB	01.06.23	Onica by	Date	Abb a	Date
Load co		1.0G + 1.00	Q + 1.0RQ (Serv	-				
Element	Length	Nodes	Axial force	e Shear force	Moment			
	(m)	Start/En	d (kN)	(kN)	(kNm)			
1	3	1	-15.4	1.4	0			
		2	4.8	-1.4	-4.3			
2	3	3	-15.4	-1.4	0			
		4	4.8	1.4	4.3			
3	8.3	2	-1.4	-4.8	4.3			
		4	1.4	-4.8	-4.3			
Load co	ombination:	1.35G + 1.5	iQ + 1.5ψ₀S (St	rength)		I		
Element	Length	Nodes		e Shear force	Moment			
	(m)	Start/En	d (kN)	(kN)	(kNm)			
1	3	1	-21.5	1.9	0			
		2	6.5	-1.9	-5.7			
2	3	3	-21.5	-1.9	0			
		4	6.5	1.9	5.7			
3	8.3	2	-1.9	-6.5	5.7			
		4	1.9	-6.5	-5.7			
Load co	ombination:	1.0G + 1.00	Q + 0.5S (Servio	ce)				
Element	Length	Nodes	Axial force	e Shear force	Moment			
	(m)	Start/En	d (kN)	(kN)	(kNm)			
1	3	1	-15.4	1.4	0			
		2	4.8	-1.4	-4.3			
2	3	3	-15.4	-1.4	0			
		4	4.8	1.4	4.3			
3	8.3	2	-1.4	-4.8	4.3			

	Project		Job Ref.			
BAYLISS		Willington S	6000			
CONSULTING	Section		Sheet no./rev.			
Civil and Structural Engineering Consultants	Structural Calculations				20	
01332 292192	Calc. by	Date	Chk'd by	Date	App'd	Date
	TGB	01.06.23				


Envelope - Strer	ath combine	tions				
Member			l force			
Member		Axia	TIOICE			
	Pos	Max	Pos	Min		
	(m)	(kN)	(m)	(kN)		
Column 1	0	21.5 (max)	3	0 (min)		
Column 2	0	21.5 (max)	3	0 (min)		
Beam 1	0	1.9	0	1.9		
Envelope - Servi	ice combinat	ions				
Member		Defle	ction			
	Pos	Max	Pos	Min		
	(m)	(mm)	(m)	(mm)		
Column 1	3	0	1.73	-0.9 (min)		
Column 2	1.73	0.9	3	0		
Beam 1	4.15	5.6 (max)	0	0.1		
Partial factors -	Section 6.1	γ _{M0} = 1		γ _{M1} = 1		γ _{M2} = 1.1
<u>Column 1 design</u> Section details Steel grade Nominal yield stre		UC 152x152x23 S355 fy = 355 N/mm ²	(BS4-1)	Modulus of elas		E = 210000 N/mm² f _u = 470 N/mm²
7 803 1			5.8	Radius of gyratic Elastic section m Elastic section m Plastic section m Plastic section m Second moment	, 152.4 mm b, 152.2 mm Mass, 23 kg/m s, t _ρ 6.8 mm t _v , 5.8 mm 6 mm	79 mm v _{et,x} 164016 mm ³ v _{et,x} 52552 mm ³ v _{p1,y} 181982 mm ³ v _{p1,x} 80156 mm ³ r 12498039 mm ⁴

	Project		Job Ref.			
BAYLISS		Willington S	6000			
CONSULTING	Section		Sheet no./rev.			
Civil and Structural Engineering Consultants	Structural Calculations				21	
01332 292192	Calc. by	Date	Chk'd by	Date	App'd	Date
	TGB	01.06.23				

Column 1 results summar	У	Unit	Capacity	Maximum	Utilisation	Result
Shear resistance (y-y)		kN	204.4	1.9	0.009	PASS
Bending resistance (y-y)		kNm	58.2	5.7	0.099	PASS
Compression resistance		kN	524.3	21.5	0.041	PASS
Comb. bending and axial	force				0.147	PASS
Deflection (y-y)		mm	10	0.9	0.093	PASS
Lateral restraint Both flanges have lateral rest	raint at supports	only				
Classification of cross sect		-				
Internal compression parts	Class 1		Outstand	flanges	Class 3	
····· ··· · · · · · · · · · · · · · ·					Sect	ion is clas
Check compression - Section	on 6.2.4					
Design compression force $N_{Ed} = 21.5 \text{ kN}$			0	esistance of section	N _{c,Rd} = N _{pl,Rd} =	= 1038.2 kN
		PΔS		a – 0.021 ession resistance e	exceeds design	compressi
Check y-y axis flexural bucl	kling registeres					
Gheck v-v axis hexural duci	kiinu resistance	: - Secu	011 0.3.1.1			
	-			Pd = 0 025		
Design buckling resistance	N _{b,y,Rd} = 868.7		N _{Ed} / N _{b,y}	_{,Rd} = 0.025 ckling resistance e	exceeds design (compressi
Design buckling resistance	N _{b,y,Rd} = 868.7	/ kN	N _{Ed} / N _{b,y} PASS - Design bu	_{,Rd} = 0.025 ckling resistance e	exceeds design (compressi
Design buckling resistance Check z-z axis flexural buck	N _{b,y,Rd} = 868.7	' kN - Secti	N _{Ed} / N _{b,y} PASS - Design bu on 6.3.1.1	ckling resistance e	exceeds design (compressi
Design buckling resistance	N _{b,y,Rd} = 868.7	' kN - Secti	N _{Ed} / N _{b,y} <i>PASS - Design bu</i> on 6.3.1.1 N _{Ed} / N _{b,z}	ckling resistance e	-	-
Design buckling resistance Check z-z axis flexural buck Design buckling resistance	N _{b,y,Rd} = 868.7 (ling resistance N _{b,z,Rd} = 524.3	' kN - Secti 3 kN	N _{Ed} / N _{b,y} PASS - Design bu on 6.3.1.1 N _{Ed} / N _{b,z} PASS - Design bu	ckling resistance e _{.Rd} = 0.041 ckling resistance e	-	-
Design buckling resistance Check z-z axis flexural buck Design buckling resistance Check torsional and torsior	N _{b,y,Rd} = 868.7 Kling resistance N _{b,z,Rd} = 524.3 nal-flexural buck	/ kN - Secti 3 kN kling re	N _{Ed} / N _{b,y} PASS - Design bu on 6.3.1.1 N _{Ed} / N _{b,z} PASS - Design bu sistance - Section	ckling resistance e _{.Rd} = 0.041 ckling resistance e 6.3.1.1	-	-
Design buckling resistance Check z-z axis flexural buck Design buckling resistance	N _{b,y,Rd} = 868.7 (ling resistance N _{b,z,Rd} = 524.3	/ kN - Secti 3 kN kling re	N _{Ed} / N _{b,y} PASS - Design bu on 6.3.1.1 N _{Ed} / N _{b,z} PASS - Design bu sistance - Section N _{Ed} / N _{b,T}	rckling resistance e _{Rd} = 0.041 rckling resistance e 6.3.1.1 _{Rd} = 0.032	exceeds design (compressi
Design buckling resistance Check z-z axis flexural buck Design buckling resistance Check torsional and torsior Design buckling resistance	N _{b,y,Rd} = 868.7 (ling resistance $N_{b,z,Rd}$ = 524.3 hal-flexural buck $N_{b,T,Rd}$ = 671.6	/ kN - Secti 3 kN kling re	N _{Ed} / N _{b,y} PASS - Design bu on 6.3.1.1 N _{Ed} / N _{b,z} PASS - Design bu sistance - Section N _{Ed} / N _{b,T}	ckling resistance e _{.Rd} = 0.041 ckling resistance e 6.3.1.1	exceeds design (compressi
Design buckling resistance Check z-z axis flexural buck Design buckling resistance Check torsional and torsior Design buckling resistance Check design at end of spa	N _{b,y,Rd} = 868.7 (ling resistance $N_{b,z,Rd}$ = 524.3 hal-flexural buck $N_{b,T,Rd}$ = 671.6	/ kN - Secti 3 kN kling re	N _{Ed} / N _{b,y} PASS - Design bu on 6.3.1.1 N _{Ed} / N _{b,z} PASS - Design bu sistance - Section N _{Ed} / N _{b,T}	ckling resistance e _{Rd} = 0.041 ckling resistance e 6.3.1.1 _{Rd} = 0.032	exceeds design (compressi
Design buckling resistance Check z-z axis flexural buck Design buckling resistance Check torsional and torsior Design buckling resistance Check design at end of spa Check shear - Section 6.2.6	N _{b,y,Rd} = 868.7 (ling resistance N _{b,z,Rd} = 524.3 hal-flexural buck N _{b,T,Rd} = 671.8 <u>n</u>	Y kN - Secti 3 kN ding re 3 kN	NEd / Nb,y PASS - Design bu on 6.3.1.1 PASS - Design bu sistance - Section NEd / Nb,T PASS - Design bu	ckling resistance e _{Rd} = 0.041 ckling resistance e 6.3.1.1 _{Rd} = 0.032 ckling resistance e	exceeds design o	compressi compressi
Design buckling resistance Check z-z axis flexural buck Design buckling resistance Check torsional and torsior Design buckling resistance Check design at end of spa	N _{b,y,Rd} = 868.7 (ling resistance $N_{b,z,Rd}$ = 524.3 hal-flexural buck $N_{b,T,Rd}$ = 671.6	Y kN - Secti 3 kN ding re 3 kN	NEd / Nb,y PASS - Design bu on 6.3.1.1 PASS - Design bu sistance - Section NEd / Nb,T PASS - Design bu Design s	rckling resistance e Rd = 0.041 rckling resistance e 6.3.1.1 Rd = 0.032 rckling resistance e hear resistance	exceeds design (compressi compressi
Design buckling resistance Check z-z axis flexural buck Design buckling resistance Check torsional and torsior Design buckling resistance Check design at end of spa Check shear - Section 6.2.6	N _{b,y,Rd} = 868.7 (ling resistance N _{b,z,Rd} = 524.3 hal-flexural buck N _{b,T,Rd} = 671.8 <u>n</u>	Y kN - Secti 3 kN ding re 3 kN	NEd / Nb,y PASS - Design bu on 6.3.1.1 PASS - Design bu sistance - Section NEd / Nb,T PASS - Design bu Design si Vy,Ed / Vpl	hear resistance e	exceeds design o exceeds design o V _{pl,y,Rd} = 204. 4	compressi compressi 4 kN
Design buckling resistance Check z-z axis flexural buck Design buckling resistance Check torsional and torsior Design buckling resistance Check design at end of spa Check shear - Section 6.2.6 Design shear force	N _{b,y,Rd} = 868.7 Kling resistance N _{b,z,Rd} = 524.3 hal-flexural buck N _{b,T,Rd} = 671.8 \underline{n} V _{y,Ed} = 1.9 kN	Y kN - Secti 3 kN ding re 3 kN	NEd / Nb,y PASS - Design bu on 6.3.1.1 PASS - Design bu sistance - Section NEd / Nb,T PASS - Design bu Design si Vy,Ed / Vpl	rckling resistance e Rd = 0.041 rckling resistance e 6.3.1.1 Rd = 0.032 rckling resistance e hear resistance	exceeds design o exceeds design o V _{pl,y,Rd} = 204. 4	compressi compressi 4 kN
Design buckling resistance Check z-z axis flexural buck Design buckling resistance Check torsional and torsior Design buckling resistance Check design at end of spa Check shear - Section 6.2.6	N _{b,y,Rd} = 868.7 Kling resistance N _{b,z,Rd} = 524.3 hal-flexural buck N _{b,T,Rd} = 671.8 \underline{n} V _{y,Ed} = 1.9 kN	' kN - Secti 3 kN (ling re 3 kN	NEd / Nb,y PASS - Design bu on 6.3.1.1 PASS - Design bu sistance - Section NEd / Nb,T PASS - Design bu Design si Vy,Ed / Vp PASS - Desig Bending	ckling resistance e $_{Rd} = 0.041$ ckling resistance e 6.3.1.1 $_{Rd} = 0.032$ ckling resistance e hear resistance $_{Ly,Rd} = 0.009$ gn shear resistance resistance moment	exceeds design o exceeds design o V _{pl,y,Rd} = 204. 4	compressi compressi 4 kN n shear for
Design buckling resistance Check z-z axis flexural buck Design buckling resistance Check torsional and torsion Design buckling resistance <u>Check design at end of spa</u> <u>Check shear - Section 6.2.6</u> Design shear force Check bending moment - S	N _{b,y,Rd} = 868.7 (ling resistance N _{b,z,Rd} = 524.3 hal-flexural buck N _{b,T,Rd} = 671.8 N _{y,Ed} = 1.9 kN ection 6.2.5 M _{y,Ed} = 5.7 kN	Y kN - Secti 3 kN ding re 3 kN	NEd / Nb,y PASS - Design bu on 6.3.1.1 PASS - Design bu sistance - Section NEd / Nb,T PASS - Design bu Design st Vy,Ed / Vpl PASS - Desig Bending My,Ed / Ma	ckling resistance e $_{Rd}$ = 0.041 ckling resistance e 6.3.1.1 $_{Rd}$ = 0.032 ckling resistance e hear resistance $_{Ly,Rd}$ = 0.009 gn shear resistance resistance moment $_{Ly,Rd}$ = 0.099	exceeds design o exceeds design o V _{pl,y,Rd} = 204.4 e exceeds design M _{c,y,Rd} = 58.2	compressi compressi 4 kN n shear for kNm
Design buckling resistance Check z-z axis flexural buck Design buckling resistance Check torsional and torsion Design buckling resistance <u>Check design at end of spa</u> <u>Check shear - Section 6.2.6</u> Design shear force Check bending moment - S Design bending moment	Nb,y,Rd = 868.7 Kling resistance Nb,z,Rd = 524.3 hal-flexural buck Nb,T,Rd = 671.8 N Vy,Ed = 1.9 kN ection 6.2.5 My,Ed = 5.7 kN PAS.	Y kN - Secti 3 kN ding re 3 kN Im S - Des	NEd / Nb,y PASS - Design bu on 6.3.1.1 PASS - Design bu sistance - Section NEd / Nb,T PASS - Design bu Design st Vy,Ed / Vpl PASS - Desig Bending My,Ed / Ma	ckling resistance e $_{Rd} = 0.041$ ckling resistance e 6.3.1.1 $_{Rd} = 0.032$ ckling resistance e hear resistance $_{Ly,Rd} = 0.009$ gn shear resistance resistance moment	exceeds design o exceeds design o V _{pl,y,Rd} = 204.4 e exceeds design M _{c,y,Rd} = 58.2	compressi compressi 4 kN n shear for kNm
Design buckling resistance Check z-z axis flexural buck Design buckling resistance Check torsional and torsion Design buckling resistance <u>Check design at end of spa</u> <u>Check shear - Section 6.2.6</u> Design shear force Check bending moment - S	Nb,y,Rd = 868.7 Kling resistance Nb,z,Rd = 524.3 hal-flexural buck Nb,T,Rd = 671.8 N Vy,Ed = 1.9 kN ection 6.2.5 My,Ed = 5.7 kN PAS.	r kN - Secti 3 kN ding re 3 kN lm S - Des	NEd / Nb,y PASS - Design bu on 6.3.1.1 NEd / Nb,z PASS - Design bu sistance - Section NEd / Nb,T PASS - Design bu Design st Vy,Ed / Vpi PASS - Desig Bending My,Ed / Ma ign bending resist	ckling resistance e $_{Rd}$ = 0.041 ckling resistance e 6.3.1.1 $_{Rd}$ = 0.032 ckling resistance e hear resistance $_{Ly,Rd}$ = 0.009 gn shear resistance resistance moment $_{Ly,Rd}$ = 0.099	exceeds design o exceeds design o V _{pl,y,Rd} = 204.4 e exceeds design M _{c,y,Rd} = 58.2	compressi compressi kNn shear for

BAYLISS	Project	W	/illington S	port Pavilli	on	Job Ref.	6000
CONSULTING	Section					Sheet no./rev.	
I and Structural Engineering Consultants		. 5	Structural	Calculation	s		22
01332 292192	Calc. by TGB	Date 01	.06.23	Chk'd by	Date	App'd	Date
	IGB	01	.00.23				
Check bending and axial for	ce - Section 6.2.9	9					
Maximum longitudinal stress		σ	$T_{y,Ed} = M_{y,E}$	d / Wel.y + N	l _{Ed} / A = 42 N/m	m²	
Limiting longitudinal stress - Eq	1.6.42	σ	$f_{y,lim} = f_y / \gamma$	_{′M0} = 355 N	/mm²		
		σ	$\sigma_{y,Ed} / \sigma_{y,lim}$	= 0.118			
				-	stress is less t	han limiting long	itudinal str
Interaction formula - eq.6.2	N _{Ed} / N _{c,Rd} + M _y ,						. :
						ng and axial force	e is accepta
Interaction factors k _{ij} for men				deformatio	ons - Table B.2		
Interaction formulae	max(0.089, 0.14	,		ombined l	onding and co	mpression checl	re aro catici
.				ombined l	renunny and co	mpression chech	is ale salisi
Consider Combination 4 - 1.0	<u>)G + 1.0Q + 0.5S</u>	(Serv	<u>vice)</u>				
Check design 1730 mm along	<u>q span</u>						
Check y-y axis deflection - Se	ection 7.2.1						
Maximum deflection	δy = 0.9 mm			Allowable	deflection	$\delta_{y,Allowable} = r$	10 mm
				δy / δy,Allowa	able = 0.093		
				PASS - A	llowable deflec	ction exceeds de	sign deflect
<u>Column 2 design</u>							
Section details	UC 152x152x23	3 (BS4	-1)				
Steel grade	S355			Modulus c	of elasticity	E = 210000	N/mm ²
Nominal yield strength	f _y = 355 N/mm ²			Nominal u	It.tensile strengt	h f _u = 470 N/n	nm²
u; uj uj uj uj uj uj uj uj uj uj uj uj uj					-452-22 (DO 4.4)		
↑ <u>+</u> └──				Section	<152x23 (BS4-1) depth, h, 152.4 mm		
				Mass of	breadth, b, 152.2 mm section, Mass, 23 kg/m		
				Web thi	hickness, t _r 6.8 mm ckness, t _v 5.8 mm		
				Area of	dius, r, 7.6 mm section, A, 2925 mm ²		
152.4				Radius	of gyration about y-axis, i _y of gyration about z-axis, i _z	, 36.979 mm	
1 1 2					ection modulus about y-a ection modulus about z-a		
	→ 	-5.8			ection modulus about y-a ection modulus about z-a		
				Second	moment of area about y-a moment of area about z-a	ixis, I _v , 12498039 mm ⁴	
						. 2	
9 9 ₩ ₩ ₩							
<u> </u>				1			
	152.2			▶			
Column 2 results summary	U	nit	Capacit	У	Maximum	Utilisation	Result
			204.5		4.0	0.000	D • 00
	k	N	204.4		1.9	0.009	PASS
Shear resistance (y-y)			-				
	k	Nm	58.2		5.7	0.099	PASS
Shear resistance (y-y) Bending resistance (y-y)	k	Nm	58.2		5.7	0.099	PASS

BAYLISS	Project	W	illington S	Sport Pavill	ion		J	ob Ref. 6	000	
CUNSULTING	Section						S	Sheet no./rev.		
I and Structural Engineering Consultants			Structural	Calculation					23	
01332 292192	Calc. by	Date	- ,			Date	A	vpp'd	Da	te
	TGB	01	.06.23							
Comb. bending and axial fo	rce						0.1	47		PASS
Deflection (y-y)		mm	10		0.9		0.0	93		PASS
Lateral restraint										
Both flanges have lateral restra	int at supports	s only								
Classification of cross sectio	ns - Section	5.5								
Internal compression parts	Class 1			Outstand	flanges	5	С	lass 3		
								Sec	tion	is class
Check compression - Section	6.2.4									
Design compression force	N _{Ed} = 21.5 kl	N		Design re N _{Ed} / N _{c,R}		e of section 21	N	$_{c,Rd} = N_{pl,Rd}$	= 10	38.2 kN
		PAS	S - Desig	n compre	ssion	resistance e	xcee	eds design	con	npressi
Check y-y axis flexural buckli	ng resistanc	e - Secti	on 6.3.1.1	I						
Design buckling resistance	N _{b,y,Rd} = 868.	7 kN		N_{Ed} / $N_{b,y,}$)25 resistance e	xcee	eds desian	con	npressi
Check z-z axis flexural buckli	na resistanc			-	0			U		
Design buckling resistance	N _{b,z,Rd} = 524.		511 0.0.1.1	N _{Ed} / N _{b.z.}	Rd = 0.()41				
g	·		PASS - L			resistance e	xcee	eds design	con	npressi
Check torsional and torsiona	l-flexural buc	klina re	sistance	- Section (6.3.1.1			_		-
Design buckling resistance	N _{b,T,Rd} = 671	-		NEd / Nb.T.		032				
5 5	_,.,		PASS - L			resistance e	xcee	eds design	con	npressi
Check design at end of span				-	_			-		-
Check shear - Section 6.2.6										
				D · · ·			.,	004		
Design shear force	V _{y,Ed} = 1.9 kM	N		Design sh			V	pl,y,Rd = 204 .	. 4 kN	I
Design shear force	V _{y,Ed} = 1.9 kM	N	PAS	V _{y,Ed} / V _{pl,}	_{y,Rd} = 0	.009				
,		N	PAS	V _{y,Ed} / V _{pl,}	_{y,Rd} = 0					
Check bending moment - Sec	tion 6.2.5		PAS	V _{y,Ed} / V _{pl,} SS - Desig	_{y,Rd} = 0 n shea	.009 er resistance	exc	eeds desig	ın sl	near for
,			PAS	V _{y,Ed} / V _{pl,} SS - Desig Bending r	_{y,Rd} = 0 <i>n shea</i> resistar	. 009 ar resistance	exc		ın sl	near for
Check bending moment - Sec	tion 6.2.5 M _{y,Ed} = 5.7 kl	Nm		V _{y,Ed} / V _{pl} , SS - Desig Bending r M _{y,Ed} / M _c	_{y,Rd} = 0 <i>n shea</i> resistar _{,y,Rd} = 0	. 009 ar resistance	exc M	eeds desig _{c,y,Rd} = 58.2	in sl kNr	near for
Check bending moment - Sec	tion 6.2.5 M _{y,Ed} = 5.7 kl <i>PA</i> S	Nm SS - Desi		V _{y,Ed} / V _{pl} , SS - Desig Bending r M _{y,Ed} / M _c	_{y,Rd} = 0 <i>n shea</i> resistar _{,y,Rd} = 0	.009 Ir resistance Ince moment 0.099	exc M	eeds desig _{c,y,Rd} = 58.2	in sl kNr	n ear for a
Check bending moment - Sec Design bending moment	tion 6.2.5 M _{y,Ed} = 5.7 kl <i>PA</i> S	Nm SS - Desi 1		V _{y,Ed} / V _{pl} , SS - Desig Bending r M _{y,Ed} / M _c	_{y,Rd} = 0 n shea resistar _{y,Rd} = 0 nnce m	.009 nr resistance nce moment).099 noment exce	exc M	eeds desig _{c,y,Rd} = 58.2	in sl kNr	near for
Check bending moment - Sec Design bending moment Check buckling resistance - S	tion 6.2.5 M _{y,Ed} = 5.7 kl PA: Section 6.3.2. M _{b,y,Rd} = 58.2	Nm S <i>S - Desi</i> 1 2 kNm	ign bendi	V _{y,Ed} / V _{pl,} SS - Desig Bending r M _{y,Ed} / M _c ing resista	_{y,Rd} = 0 n shea esistar _{y,Rd} = 0 nce m	.009 nr resistance nce moment).099 noment exce	exc M eds o	eeds desig _{c.y.Rd} = 58.2 design ben	gn sl kNr ading	near for n g mome
Check bending moment - Sec Design bending moment Check buckling resistance - S	tion 6.2.5 M _{y,Ed} = 5.7 kl PA3 Section 6.3.2 M _{b,y,Rd} = 58.2 PAS	Nm SS - Desi 1 2 kNm SS - Desi	ign bendi	V _{y,Ed} / V _{pl,} SS - Desig Bending r M _{y,Ed} / M _c ing resista	_{y,Rd} = 0 n shea esistar _{y,Rd} = 0 nce m	.009 nr resistance nce moment 0.099 noment exce 0.099	exc M eds o	eeds desig _{c.y.Rd} = 58.2 design ben	gn sl kNr ading	near for n g mome
Check bending moment - Sec Design bending moment Check buckling resistance - S Buckling resistance moment	tion 6.2.5 M _{y,Ed} = 5.7 kl PA3 Section 6.3.2 M _{b,y,Rd} = 58.2 PAS	Nm SS - Desi 1 2 kNm SS - Desi .2.9	ign bendi gn buckli	V _{y,Ed} / V _{pl,} SS - Desig Bending r M _{y,Ed} / M _e ing resista M _{y,Ed} / M _b	_{y,Rd} = 0 n shea esistar _{y,Rd} = 0 nnce m y, _{Rd} = 0 nnce m	.009 nr resistance nce moment 0.099 noment exce 0.099	exc M eds o	eeds desig _{c.y.Rd} = 58.2 design ben	gn sl kNr ading	near for n g mome
Check bending moment - Sec Design bending moment Check buckling resistance - S Buckling resistance moment Check bending and axial force	tion 6.2.5 M _{y,Ed} = 5.7 kl PAS Section 6.3.2. M _{b,y,Rd} = 58.2 PAS e - Section 6	Nm SS - Desi 1 2 kNm SS - Desi .2.9 5	ign bendi gn buckli _{y,Ed} = M _{y,E}	V _{y,Ed} / V _{pl,} SS - Desig Bending r M _{y,Ed} / M _e ing resista M _{y,Ed} / M _b	_{y,Rd} = 0 n shea resistar y, _{y,Rd} = 0 nce m , _{y,Rd} = 0 nce m	.009 nr resistance nce moment 0.099 noment exce 0.099 noment exce	exc M eds o	eeds desig _{c.y.Rd} = 58.2 design ben	gn sl kNr ading	near for n g mome
Check bending moment - Sec Design bending moment Check buckling resistance - S Buckling resistance moment Check bending and axial forc Maximum longitudinal stress	tion 6.2.5 M _{y,Ed} = 5.7 kl PAS Section 6.3.2. M _{b,y,Rd} = 58.2 PAS e - Section 6	Nm SS - Desi 1 2 kNm SS - Desi .2.9 a	ign bendi gn buckli _{y,Ed} = M _{y,E}	V _{y,Ed} / V _{pl,} SS - Desig Bending r M _{y,Ed} / M _c ing resista M _{y,Ed} / M _b ing resista (M _{y,Ed} / M _b (M _{y,Ed} / M _b) (M _{y,Ed} / M _b)	_{y,Rd} = 0 n shea resistar y, _{y,Rd} = 0 nce m , _{y,Rd} = 0 nce m	.009 nr resistance nce moment 0.099 noment exce 0.099 noment exce	exc M eds o	eeds desig _{c.y.Rd} = 58.2 design ben	gn sl kNr ading	near for n g mome
Check bending moment - Sec Design bending moment Check buckling resistance - S Buckling resistance moment Check bending and axial forc Maximum longitudinal stress	tion 6.2.5 M _{y,Ed} = 5.7 kl PA3 Section 6.3.2. M _{b,y,Rd} = 58.2 PAS e - Section 6 .6.42	Nm SS - Desi 1 2 kNm SS - Desi 3 .2.9 5 5 .3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ign bendi gn buckli y,Ed = My,E y,lim = fy / γ y,Ed / σy,lim	V _{y,Ed} / V _{pl} , S - Desig Bending r M _{y,Ed} / M _c ing resista M _{y,Ed} / M _b ing resista (M _{y,Ed} / M _b ing resista (M _{y,Ed} / M _b ing resista ing resista ing resista ing resista ing resista ing resista ing resista ing resista ing resista ing resista	y,Rd = 0 <i>n shea</i> resistar y,Rd = 0 <i>nce m</i> <i>y</i> ,Rd = 0 <i>nce m</i> <i>nce m</i> <i>N</i> Ed / A	.009 nr resistance nce moment 0.099 noment exce 0.099 noment exce	M eds o	eeds desig _{c,y,Rd} = 58.2 design ben design ben	ın sl ! kNr ading	n n g mome g mome
Check bending moment - Sec Design bending moment Check buckling resistance - S Buckling resistance moment Check bending and axial forc Maximum longitudinal stress	tion 6.2.5 M _{y,Ed} = 5.7 kl PA3 Section 6.3.2. M _{b,y,Rd} = 58.2 PAS e - Section 6 .6.42	Nm SS - Desi 2 kNm SS - Desi .2.9 o 3 SS - Ma	ign bendi gn buckli y,Ed = My,E y,Iim = fy / γ y,Ed / σy,Iim κimum Io	$V_{y,Ed} / V_{pl}$, SS - Desig Bending r $M_{y,Ed} / M_c$ ing resistat $M_{y,Ed} / M_b$ ing resistat $M_{y,Ed} / W_{el,y} + 1$ $Y_{M0} = 355 N$ = 0.118 ngitudina	y,Rd = 0 <i>n shea</i> resistar y,Rd = 0 <i>nce m</i> <i>y</i> ,Rd = 0 <i>nce m</i> <i>nce m</i> <i>N</i> Ed / A	.009 nr resistance nce moment 0.099 noment exce 0.099 noment exce = 42 N/mm ²	M eds o	eeds desig _{c,y,Rd} = 58.2 design ben design ben	ın sl ! kNr ading	n n g mome g mome
Check bending moment - Sec Design bending moment Check buckling resistance - S Buckling resistance moment Check bending and axial forc Maximum longitudinal stress Limiting longitudinal stress - Eq	tion 6.2.5 M _{y,Ed} = 5.7 kl PA3 Section 6.3.2. M _{b,y,Rd} = 58.2 PA5 e - Section 6 .6.42 PA	Nm SS - Desi 2 kNm SS - Desi .2.9 o SS - Ma M _{y,Ed} / Ma	ign bendi gn buckli y,Ed = My,E y,Iim = fy / γ y,Ed / σy,Iim ximum Io c,y,Rd = 0.1	$V_{y,Ed} / V_{pl}$ SS - Desig Bending r $M_{y,Ed} / M_{c}$ ing resistation $M_{y,Ed} / M_{b}$ ing resistation $M_{y,Ed} / M_{b}$ $M_{y,Ed} / M_{b}$ M_{y	y,Rd = 0 <i>n shea</i> resistar y,Rd = 0 <i>ance m</i> <i>y</i> ,Rd = 0 <i>ance m</i> NEd / A N/mm ² <i>I stres</i>	.009 nr resistance nce moment 0.099 noment exce 0.099 noment exce = 42 N/mm ²	exc M eds (eds (eeds desig _{c,y,Rd} = 58.2 design ben design ben iting longi	ın sl ! kNr nding nding	n n g mome g mome nal stre
Check bending moment - Sec Design bending moment Check buckling resistance - S Buckling resistance moment Check bending and axial forc Maximum longitudinal stress Limiting longitudinal stress - Eq	etion 6.2.5 M _{y,Ed} = 5.7 kl PA3 Section 6.3.2. M _{b,y,Rd} = 58.2 PAS e - Section 6 .6.42 PA NEd / N _{c,Rd} +	Nm SS - Desi KNm SS - Desi SS - Desi G SS - Ma M _{y,Ed} / Ma PAS	ign bendi gn buckli y,Ed = My,E y,Iim = fy / γ y,Ed / σy,Iim ximum Io c,y,Rd = 0.1 SS - Utilis	$V_{y,Ed} / V_{pl}$, SS - Desig Bending r $M_{y,Ed} / M_c$ ing resista $M_{y,Ed} / M_b$ ing resista $M_{y,Ed} / M_b$ $M_{y,Ed} $	y,Rd = 0 n shea resistar y,Rd = 0 nce m NEd / A N/mm ² I stress ombin	.009 In resistance Ince moment 0.099 Inoment exce 0.099 Inoment exce = 42 N/mm ² Is is less that ed bending of	exc M eds (eds (eeds desig _{c,y,Rd} = 58.2 design ben design ben iting longi	ın sl ! kNr nding nding	n n g mome g mome nal stre
Check bending moment - Sec Design bending moment Check buckling resistance - S Buckling resistance moment Check bending and axial forc Maximum longitudinal stress Limiting longitudinal stress - Eq Interaction formula - eq.6.2	etion 6.2.5 M _{y,Ed} = 5.7 kl PA3 Section 6.3.2. M _{b,y,Rd} = 58.2 PAS e - Section 6 .6.42 PA NEd / N _{c,Rd} +	Nm SS - Desi 2 kNm SS - Desi 3 .2.9 3 SS - Ma My,Ed / Ma PAS otible to 1	ign bendi gn buckli y,Ed = My,E y,Iim = fy / γ y,Ed / σy,Iim ximum Io s,y,Rd = 0.1 SS - Utilis corsional	$V_{y,Ed} / V_{pl}$, SS - Desig Bending r $M_{y,Ed} / M_c$ ing resista $M_{y,Ed} / M_b$ ing resista $M_{y,Ed} / M_b$ $M_{y,Ed} $	y,Rd = 0 n shea resistar y,Rd = 0 nce m NEd / A N/mm ² I stress ombin	.009 In resistance Ince moment 0.099 Inoment exce 0.099 Inoment exce = 42 N/mm ² Is is less that ed bending of	exc M eds (eds (eeds desig _{c,y,Rd} = 58.2 design ben design ben iting longi	ın sl ! kNr nding nding	n n g mome g mome nal strea

Beam 1 results summary	Unit	Capacity	Maximum	Utilisation	Result
Shear resistance (y-y)	kN	335.5	6.5	0.019	PASS
Bending resistance (y-y)	kNm	42.2	11.1	0.264	PASS
Compression resistance	kN	121.5	1.9	0.016	PASS
Comb. bending and axial force				0.279	PASS
Deflection (y-y)	mm	23.1	5.6	0.243	PASS

Lateral restraint

Both flanges have lateral restraint at supports onlyClassification of cross sections - Section 5.5Internal compression partsClass 1

Outstand flanges

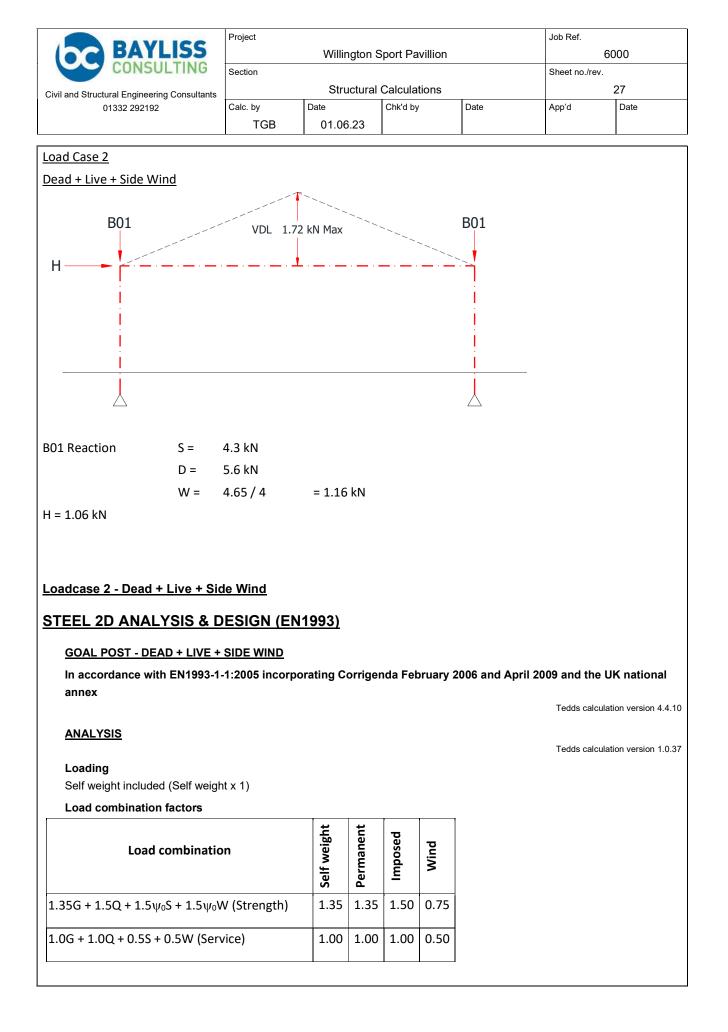
Class 1 Section is class 1

	Project				Job Ref.	
BAYLISS		Willington S	Sport Pavillion		6	000
CONSULTING	Section				Sheet no./rev.	
I and Structural Engineering Consultants			Calculations	1		25
01332 292192	Calc. by	Date	Chk'd by	Date	App'd	Date
	TGB	01.06.23				
Check compression - Section	n 6.2.4					
Design compression force	N _{Ed} = 1.9 kN		Design resista	ance of section	$N_{c,Rd} = N_{pl,Rd}$	= 1038.2 kN
			$N_{Ed} / N_{c,Rd} = 0$.002		
		PASS - Desig	gn compressio	on resistance ex	xceeds design	compressi
Check y-y axis flexural buckl	ing resistance -	Section 6.3.1.	1			
Design buckling resistance	N _{b,y,Rd} = 908 kN		$N_{Ed} / N_{b,y,Rd} =$	0.002		
		PASS - L	Design bucklir	ng resistance ex	xceeds design	compressi
Check z-z axis flexural buckli	ing resistance -	Section 6.3.1.1	1			
Design buckling resistance	N _{b,z,Rd} = 121.5 k	N	$N_{Ed} / N_{b,z,Rd} =$	0.016		
		PASS - I	Design bucklir	ng resistance ex	xceeds design	compressi
Check torsional and torsiona	I-flexural buckli	ng resistance	- Section 6.3.1	.1		
Design buckling resistance	N _{b,T,Rd} = 541.7 k	Ν	$N_{Ed} / N_{b,T,Rd} =$	0.004		
		PASS - L	Design bucklir	ng resistance ex	xceeds design	compressi
Check design 4150 mm along	<u>ı span</u>					
Check bending moment - Sec	ction 6.2.5					
Design bending moment	M _{y,Ed} = 11.1 kNr	n	Bending resis	tance moment	M _{c,y,Rd} = 139.	5 kNm
5 5	,,		M _{y,Ed} / M _{c,y,Rd}		-,,,	
	PASS	Design bend	ing resistance	moment excee	eds design ben	ding mome
Check buckling resistance - S	Section 6.3.2.1					
Buckling resistance moment	M _{b,y,Rd} = 42.2 kN	lm	M _{y,Ed} / M _{b,y,Rd}	= 0.264		
	PASS -	Design buckl	ing resistance	moment excee	eds design ben	ding mome
Check bending and axial force	e - Section 6.2.9					
Bending and axial force check	N _{y,lim} = 142.9 kN		$N_{Ed} / N_{y,lim} = 0$.013		
Allowance need not be ma	ade for the effec	t of the axial f	orce on the pl	astic resistance	e moment abou	it the y-y a
Interaction factors kij for men	nbers susceptib	le to torsional	deformations	- Table B.2		
Interaction formulae	max(0.247, 0.27	9) = 0.279				
		DACC C				
		PA33 - C	Combined ben	ding and compi	ression checks	are satisfi
Check design at end of span		PA33 - 0	Combined ben	ding and compi	ression checks	are satisfi
Check design at end of span Check shear - Section 6.2.6		PA33 - U	Combined ben	ding and compi	ression checks	are satisfi
	V _{y,Ed} = 6.5 kN	PA33 - U				
Check shear - Section 6.2.6	V _{y,Ed} = 6.5 kN	PA33 - U	Design shear Vy,Ed / Vc,y,Rd =	resistance	ression checks $V_{c,y,Rd} = V_{pl,y,F}$	
Check shear - Section 6.2.6	V _{y,Ed} = 6.5 kN		Design shear V _{y,Ed} / V _{c,y,Rd} =	resistance	V _{c,y,Rd} = V _{pl,y,F}	ad = 204.4 kl
Check shear - Section 6.2.6			Design shear V _{y,Ed} / V _{c,y,Rd} =	resistance • 0.032	V _{c,y,Rd} = V _{pl,y,F}	ad = 204.4 kl
Check shear - Section 6.2.6 Design shear force		PAS	Design shear V _{y,Ed} / V _{c,y,Rd} = SS - Design sh	resistance • 0.032	V _{c,y,Rd} = V _{pl,y,F}	ad = 204.4 kl n shear for
Check shear - Section 6.2.6 Design shear force Check bending moment - Sec	ction 6.2.5	PAS	Design shear V _{y,Ed} / V _{c,y,Rd} = SS - Design sh	resistance = 0.032 pear resistance tance moment	V _{c,y,Rd} = V _{pl,y,F} exceeds desig	ad = 204.4 kl n shear for
Check shear - Section 6.2.6 Design shear force Check bending moment - Sec	ction 6.2.5 M _{y,Ed} = 5.7 kNm	PAS	Design shear V _{y,Ed} / V _{c,y,Rd} = SS - Design sh Bending resis M _{y,Ed} / M _{c,y,Rd}	resistance = 0.032 pear resistance tance moment	V _{c,y,Rd} = V _{pl,y,F} exceeds desig M _{c,y,Rd} = 139.	ad = 204.4 kl <i>n shear for</i> 5 kNm
Check shear - Section 6.2.6 Design shear force Check bending moment - Sec	ction 6.2.5 M _{y,Ed} = 5.7 kNm <i>PASS</i> -	PAS	Design shear V _{y,Ed} / V _{c,y,Rd} = SS - Design sh Bending resis M _{y,Ed} / M _{c,y,Rd}	resistance • 0.032 • dear resistance tance moment = 0.041	V _{c,y,Rd} = V _{pl,y,F} exceeds desig M _{c,y,Rd} = 139.	ad = 204.4 kl <i>n shear for</i> 5 kNm
Check shear - Section 6.2.6 Design shear force Check bending moment - Sec Design bending moment	ction 6.2.5 M _{y,Ed} = 5.7 kNm <i>PASS</i> Section 6.3.2.1 M _{b,y,Rd} = 42.2 kN	PA: - Design bend	Design shear V _{y,Ed} / V _{c,y,Rd} = SS - Design sh Bending resis M _{y,Ed} / M _{c,y,Rd} ing resistance M _{y,Ed} / M _{b,y,Rd}	resistance = 0.032 tear resistance tance moment = 0.041 = moment excee = 0.136	V _{c,y,Rd} = V _{pl,y,F} exceeds desig M _{c,y,Rd} = 139. eds design ben	ad = 204.4 kl n shear for 5 kNm ding mome
Check shear - Section 6.2.6 Design shear force Check bending moment - Sec Design bending moment Check buckling resistance - S	ction 6.2.5 M _{y,Ed} = 5.7 kNm <i>PASS</i> Section 6.3.2.1 M _{b,y,Rd} = 42.2 kN	PA: - Design bend	Design shear V _{y,Ed} / V _{c,y,Rd} = SS - Design sh Bending resis M _{y,Ed} / M _{c,y,Rd} ing resistance M _{y,Ed} / M _{b,y,Rd}	resistance = 0.032 tear resistance tance moment = 0.041 = moment excee	V _{c,y,Rd} = V _{pl,y,F} exceeds desig M _{c,y,Rd} = 139. eds design ben	ad = 204.4 kl <i>n shear for</i> 5 kNm <i>ding mome</i>
Check shear - Section 6.2.6 Design shear force Check bending moment - Sec Design bending moment Check buckling resistance - S	Ction 6.2.5 M _{y,Ed} = 5.7 kNm <i>PASS</i> Section 6.3.2.1 M _{b,y,Rd} = 42.2 kN <i>PASS</i> -	PAS • Design bend Im Design buckl	Design shear V _{y,Ed} / V _{c,y,Rd} = SS - Design sh Bending resis M _{y,Ed} / M _{c,y,Rd} ing resistance M _{y,Ed} / M _{b,y,Rd}	resistance ear resistance tance moment = 0.041 moment excee = 0.136 moment excee	V _{c,y,Rd} = V _{pl,y,F} exceeds desig M _{c,y,Rd} = 139. eds design ben	ad = 204.4 kl <i>n shear for</i> 5 kNm <i>ding mome</i>
Check shear - Section 6.2.6 Design shear force Check bending moment - Sec Design bending moment Check buckling resistance - Sec Buckling resistance moment	Ction 6.2.5 M _{y,Ed} = 5.7 kNm <i>PASS</i> Section 6.3.2.1 M _{b,y,Rd} = 42.2 kN <i>PASS</i> -	PAS - Design bend Im Design buckl le to torsional	Design shear V _{y,Ed} / V _{c,y,Rd} = SS - Design sh Bending resis M _{y,Ed} / M _{c,y,Rd} ing resistance M _{y,Ed} / M _{b,y,Rd}	resistance ear resistance tance moment = 0.041 moment excee = 0.136 moment excee	V _{c,y,Rd} = V _{pl,y,F} exceeds desig M _{c,y,Rd} = 139. eds design ben	ad = 204.4 kl <i>n shear for</i> 5 kNm <i>ding mome</i>

	Project				Job Ref.	
BAYLISS	Willington Sport Pavillion				6000	
CONSULTING	Section				Sheet no./rev.	
Civil and Structural Engineering Consultants		Structural	26			
01332 292192	Calc. by	Date	Chk'd by	Date	App'd	Date
	TGB	01.06.23				

Consider Combination 4 - 1.0G + 1.0Q + 0.5S (Service)

Check design 4150 mm along span


Check y-y axis deflection - Section 7.2.1

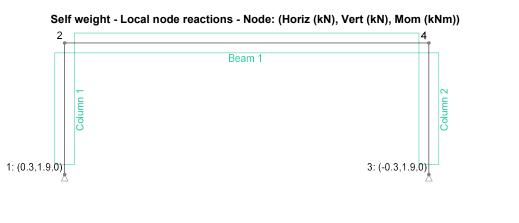
Maximum deflection $\delta_y = 5.6 \text{ mm}$

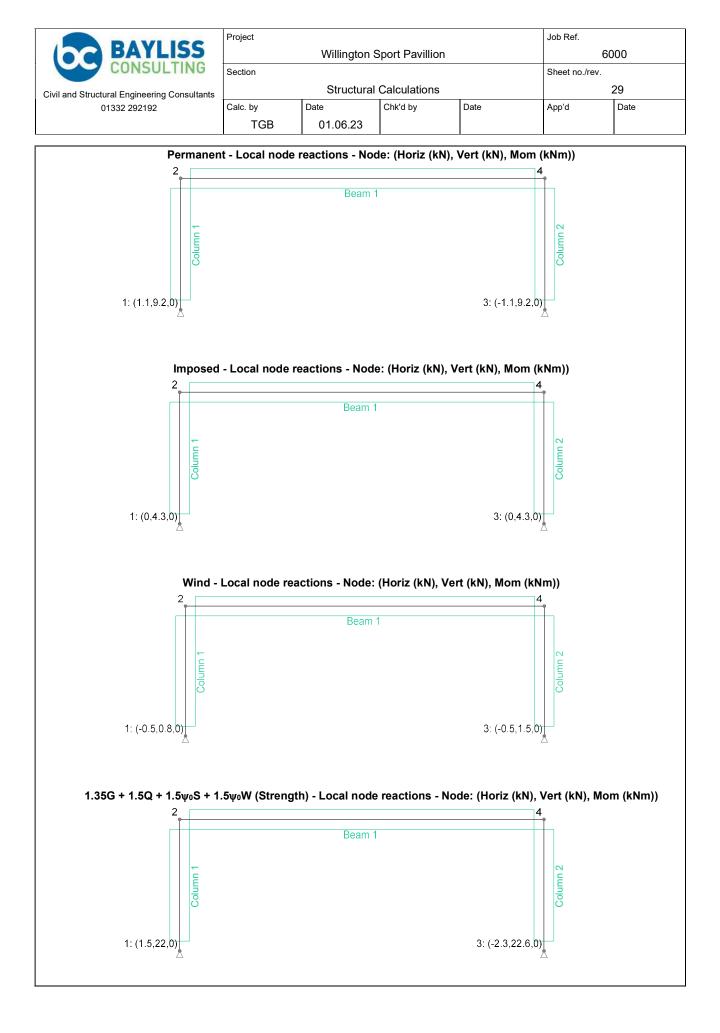
Allowable deflection $\delta_y / \delta_{y,Allowable} = 0.243$

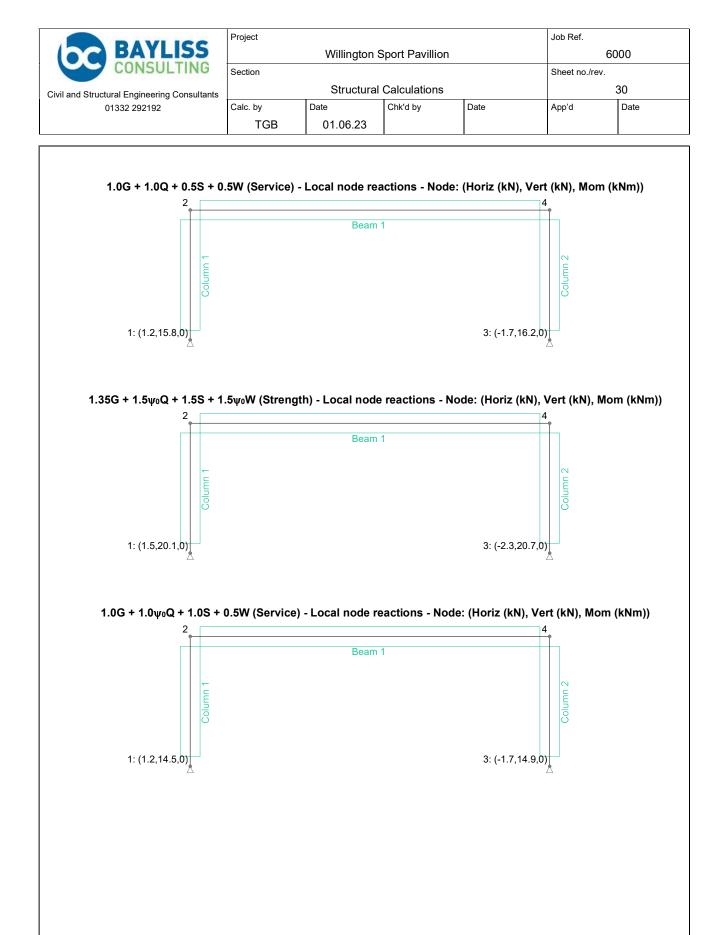
 $\delta_{y,Allowable}$ = 23.1 mm

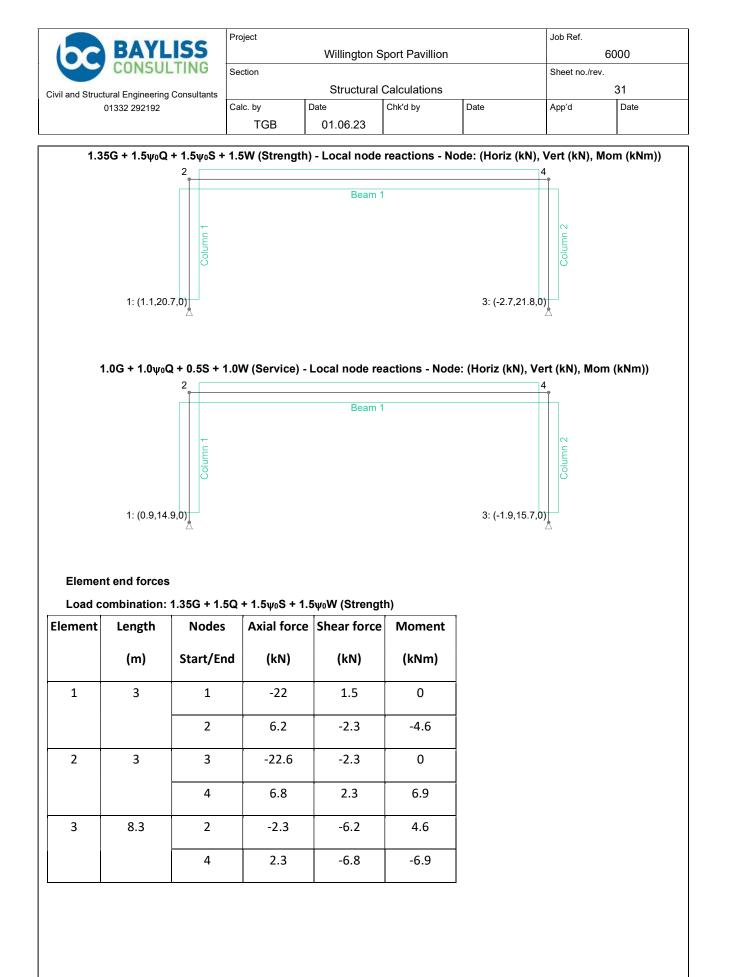
PASS - Allowable deflection exceeds design deflection

	Project		Job Ref.			
BAYLISS		Willington S	6000			
CONSULTING	Section		Sheet no./rev.			
Civil and Structural Engineering Consultants		Structural	Calculations		28	
01332 292192	Calc. by	Date	Chk'd by	Date	App'd	Date
	TGB	01.06.23				


Load combination	Self weight	Permanent	Imposed	Wind
$1.35G + 1.5\psi_0Q + 1.5S + 1.5\psi_0W$ (Strength)	1.35	1.35	1.05	0.75
$1.0G + 1.0\psi_0Q + 1.0S + 0.5W$ (Service)	1.00	1.00	0.70	0.50
$1.35G + 1.5\psi_0Q + 1.5\psi_0S + 1.5W$ (Strength)	1.35	1.35	1.05	1.50
$1.0G + 1.0\psi_0Q + 0.5S + 1.0W$ (Service)	1.00	1.00	0.70	1.00


Member Loads


Member Eddus				
Member	Load case	Load Type	Orientation	Description
Beam 1	Permanent	VDL	GlobalZ	0 kN/m at 0 m to 1.72 kN/m at 4.15 m
Beam 1	Permanent	VDL	GlobalZ	1.72 kN/m at 4.15 m to 0 kN/m at 8.3 m
Column 1	Permanent	Point load	GlobalZ	5.6 kN at 3 m
Column 2	Permanent	Point load	GlobalZ	5.6 kN at 3 m
Column 1	Imposed	Point load	GlobalZ	4.3 kN at 3 m
Column 2	Imposed	Point load	GlobalZ	4.3 kN at 3 m
Column 1	Wind	Point load	GlobalZ	1.16 kN at 3 m
Column 1	Wind	Point load	GlobalX	1.06 kN at 3 m
Column 2	Wind	Point load	GlobalZ	1.16 kN at 3 m


<u>Results</u>

Reactions

	Project				Job Ref.	
BAYLISS	Willington Sport Pavillion				6000	
CONSULTING	Section		Sheet no./rev.			
Civil and Structural Engineering Consultants	Structural Calculations				32	
01332 292192	Calc. by	Date	Chk'd by	Date	App'd	Date
	TGB	01.06.23				

Load c	ombination:	1.0G + 1.0Q +	0.5S + 0.5W (Service)	
Element	Length	Nodes	Axial force	Shear force	Moment
	(m)	Start/End	(kN)	(kN)	(kNm)
1	3	1	-15.8	1.2	0
		2	4.6	-1.7	-3.5
2	3	3	-16.2	-1.7	0
		4	5	1.7	5
3	8.3	2	-1.7	-4.6	3.5
		4	1.7	-5	-5

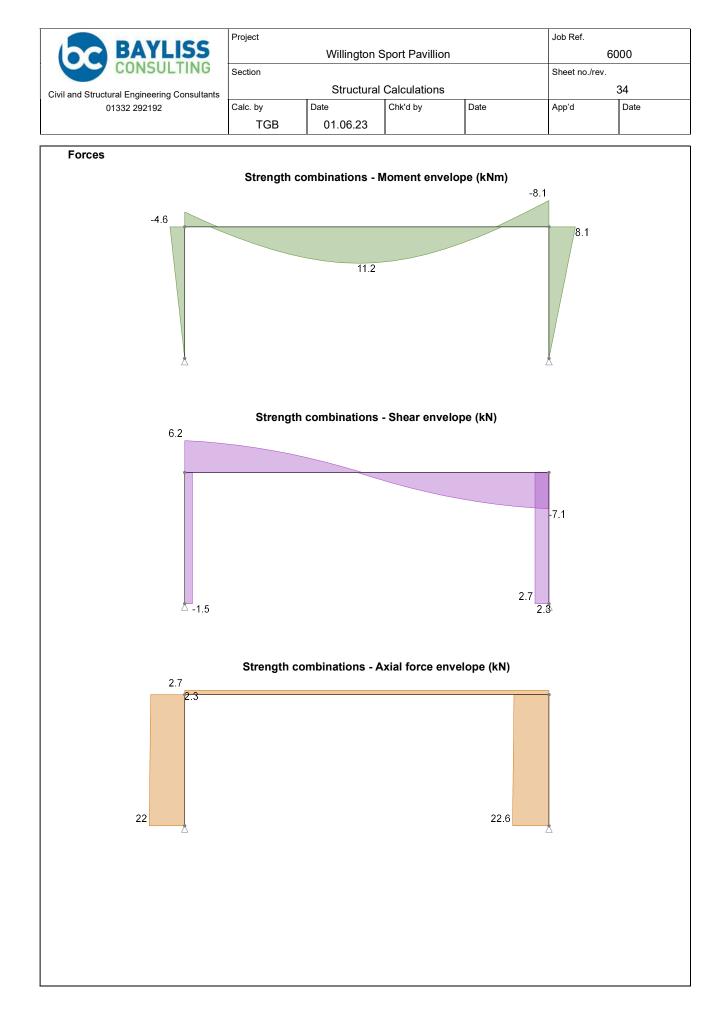
Load combination: 1.35G + 1.5y₀Q + 1.5S + 1.5y₀W (Strength)

Element	Length	Nodes	Axial force	Shear force	Moment
	(m)	Start/End	(kN)	(kN)	(kNm)
1	3	1	-20.1	1.5	0
		2	6.2	-2.3	-4.6
2	3	3	-20.7	-2.3	0
		4	6.8	2.3	6.9
3	8.3	2	-2.3	-6.2	4.6
		4	2.3	-6.8	-6.9

Load combination: $1.0G + 1.0\psi_0Q + 1.0S + 0.5W$ (Service)

Element	Length	Nodes	Axial force	Shear force	Moment
	(m)	Start/End	(kN)	(kN)	(kNm)
1	3	1	-14.5	1.2	0
		2	4.6	-1.7	-3.5
2	3	3	-14.9	-1.7	0
		4	5	1.7	5
3	8.3	2	-1.7	-4.6	3.5

	Project			
BAYLISS		Willington S	port Pavillion	Date
CONSULTING	Section			
Civil and Structural Engineering Consultants		Structural	Calculations	
01332 292192	Calc. by	Date	Chk'd by	Date
	TGB	01.06.23		


Element	Length (m)	Nodes Start/End	Axial force (kN)	Shear force (kN)	Moment (kNm)
		4	1.7	-5	-5

Load combination: $1.35G + 1.5\psi_0Q + 1.5\psi_0S + 1.5W$ (Strength)

Element	Length	Nodes	Axial force	Shear force	Moment
	(m)	Start/End	(kN)	(kN)	(kNm)
1	3	1	-20.7	1.1	0
		2	6	-2.7	-3.4
2	3	3	-21.8	-2.7	0
		4	7.1	2.7	8.1
3	8.3	2	-2.7	-6	3.4
		4	2.7	-7.1	-8.1

Load combination: $1.0G + 1.0\psi_0Q + 0.5S + 1.0W$ (Service)

Element	Length	Nodes	Axial force	Shear force	Moment
	(m)	Start/End	(kN)	(kN)	(kNm)
1	3	1	-14.9	0.9	0
		2	4.5	-1.9	-2.7
2	3	3	-15.7	-1.9	0
		4	5.2	1.9	5.8
3	8.3	2	-1.9	-4.5	2.7
		4	1.9	-5.2	-5.8

BAY	ISS	Project	v	Villington	Sport Pavill	ion	Job Ref.	6000	
CONS	ULTING	Section		~			Sheet no./rev.		
I and Structural Enginee	ering Consultants			Structura	al Calculation	าร		35	
01332 2921	•	Calc. by	Date		Chk'd by	Date	App'd	Date	
		TGB	0	1.06.23					
Member results									
Envelope - Serv	ice combinat	ions							
Member	De	eflectio	n						
	Pos	Max		Pos	Min				
	(m)	(mm)		(m)	(mm)				
Column 1	3	2.6	1	L.021 -0.2 (min)		n)			
Column 2	2.301	3		0	0				
Beam 1	4.02	5.6 (max)		0	0.1				
Partial factors -	Section 6.1	γ _{M0} = 1		1	γ _{M1} = 1		γ _{M2} = 1.1		
Steel grade Nominal yield stre	ength	S355 f _y = 355 N/mr	m²			of elasticity ult.tensile stren	E = 210000 Igth f _u = 470 N/m		
Column 1 resu	lts summary	1	Unit	Сарас	ity	Maximum	Utilisation	Result	
Shear resistand	се (у-у)		kN	204.4		1.5	0.007	PASS	
Bending resista	ance (y-y)		kNm	58.2		4.6	0.078	PASS	
Compression r	esistance		kN	524.3		22.0	0.042	PASS	
Comb. bending	g and axial fo	orce					0.126	PASS	
Deflection (y-y	')		mm	10		2.6	0.257	PASS	
Lateral restraint Both flanges have <u>Consider Combi</u> Classification of	e lateral restra ination 1 - 1.3 f cross sectio	<u>35G + 1.5Q + 1</u> ons - Section	I.5ψ₀S +	- <u>1.5ψ₀</u> ₩		_			
Internal compress	sion parts	Class 1			Outstand	flanges	Class 3 Sec	tion is clas	
Check compress	sion - Sectior	า 6.2.4							
Design compress	ion force	N _{Ed} = 22 kN			N _{Ed} / N _{c,R}				
				~ ~					
						ssion resista	nce exceeds design	compressi	
Check y-y axis f Design buckling r		ing resistanc N _{b,y,Rd} = 868.	e - Sect		.1	ssion resista _{Rd} = 0.025	nce exceeds design	compressi	

	- <u>_</u>					
BAYLISS	Project				Job Ref.	
CONSULTING		Willington	Sport Pavillion		-	000
CONSOLTINO	Section	01 1			Sheet no./rev.	<u></u>
I and Structural Engineering Consultants	Calc. by	Date	Calculations	Date		36 Date
01332 292192	TGB	01.06.23		Jale	App'd	Date
	ТGВ	01.00.23				
Check z-z axis flexural buckl	ing resistance -	Section 6.3.1	1			
Design buckling resistance	N _{b,z,Rd} = 524.3 k		N _{Ed} / N _{b,z,Rd} = 0.0	42		
5 5	_,_, _		Design buckling i		ceeds design	compressio
Check torsional and torsiona	l-flexural buckli	na resistance	- Section 6 3 1 1		_	-
Design buckling resistance	N _{b,T,Rd} = 671.8 k	-	N _{Ed} / N _{b.T.Rd} = 0.0	33		
0			Design buckling i	resistance ex	ceeds design	compressi
Check decign at start of oner	-				-	-
Check design at start of spar	1					
Check shear - Section 6.2.6						
Design shear force	V _{y,Ed} = 1.5 kN		Design shear res		V _{pl,y,Rd} = 204. 4	4 KN
		DA	$V_{y,Ed} / V_{pl,y,Rd} = 0$. SS - Design shea		ovcoode dosia	n choar for
		r A	55 - Design shea	resistance	exceeds design	ii Shear Tur
Check design at end of span						
Check shear - Section 6.2.6						
Design shear force	V _{y,Ed} = 1.5 kN		Design shear res		V _{pl,y,Rd} = 204. 4	4 kN
			$V_{y,Ed} / V_{pl,y,Rd} = 0$			
		PA	SS - Design shea	r resistance (exceeds desig	n shear for
Check bending moment - See	ction 6.2.5					
Design bending moment	M _{y,Ed} = 4.6 kNm		Bending resistan		M _{c,y,Rd} = 58.2	kNm
			$M_{y,Ed} / M_{c,y,Rd} = 0$			
		· Design bena	ling resistance m	oment excee	as aesign ben	aing mome
Check buckling resistance -						
Buckling resistance moment	M _{b,y,Rd} = 58.2 kN		$M_{y,Ed} / M_{b,y,Rd} = 0$		da daalaa kaa	
		•	ling resistance m	oment excee	as aesign ben	aing mome
Check bending and axial for	:e - Section 6.2.9					
Maximum longitudinal stress			Ed / W _{el.y} + N _{Ed} / A	= 35 N/mm ²		
Limiting longitudinal stress - Ec	Į.6.42		γ _{M0} = 355 N/mm ²			
		σy,Ed / σy,lin			11	
Interaction formula or 6.2		- Maximum k	ongitudinal stress	s is less than	limiting longit	udinal stre
Interaction formula - eq.6.2	PASS N _{Ed} / N _{c,Rd} + M _{y,E}	- Maximum Io _{Ed} / M _{c,y,Rd} = 0.0	ongitudinal stress 099			
	N _{Ed} / N _{c,Rd} + M _{y,f}	- Maximum Ic _{Ed} / M _{c,y,Rd} = 0.0 PASS - Utilis	ongitudinal stress 099 sation of combine	ed bending a		
Interaction factors k _{ij} for mer	N _{Ed} / N _{c,Rd} + M _{y,E}	- Maximum Id _{Ed} / M _{c.y.Rd} = 0.0 PASS - Utilia le to torsional	ongitudinal stress 099 sation of combine	ed bending a		
	N _{Ed} / N _{c,Rd} + M _{y,f}	<i>Maximum Ic</i> _{Ed} / M _{c.y.Rd} = 0.(<i>PASS - Utili</i> le to torsional (6) = 0.126	ongitudinal stress 099 sation of combine I deformations - T	ed bending a able B.2	nd axial force	is acceptab
Interaction factors k _{ij} for mer Interaction formulae	N _{Ed} / N _{c,Rd} + M _{y,} nbers susceptibl max(0.076, 0.12	Maximum Ic - Maximum Ic	ongitudinal stress 099 sation of combine I deformations - T Combined bendin	ed bending a able B.2	nd axial force	is acceptab
Interaction factors k _{ij} for mer	N _{Ed} / N _{c,Rd} + M _{y,} nbers susceptibl max(0.076, 0.12	Maximum Ic - Maximum Ic	ongitudinal stress 099 sation of combine I deformations - T Combined bendin	ed bending a able B.2	nd axial force	is acceptab
Interaction factors k _{ij} for mer Interaction formulae	N _{Ed} / N _{c,Rd} + M _{y,F} nbers susceptib max(0.076, 0.12 D <u>G + 1.0ψ₀Q + 0.5</u>	Maximum Ic - Maximum Ic	ongitudinal stress 099 sation of combine I deformations - T Combined bendin	ed bending a able B.2	nd axial force	is acceptab
Interaction factors k _{ij} for mer Interaction formulae <u>Consider Combination 6 - 1.0</u>	N _{Ed} / N _{c,Rd} + M _{y,} nbers susceptib max(0.076, 0.12 DG + 1.0ψ₀Q + 0.5	Maximum Ic - Maximum Ic	ongitudinal stress 099 sation of combine I deformations - T Combined bendin	ed bending a able B.2	nd axial force	is acceptab
Interaction factors k _{ij} for mer Interaction formulae <u>Consider Combination 6 - 1.0</u> <u>Check design at end of span</u>	N _{Ed} / N _{c,Rd} + M _{y,} nbers susceptib max(0.076, 0.12 DG + 1.0ψ₀Q + 0.5	Maximum Ic - Maximum Ic	ongitudinal stress 099 sation of combine I deformations - T Combined bendin	ed bending a able B.2 g and compr	nd axial force	is acceptab are satisfi
Interaction factors k _{ij} for mer Interaction formulae <u>Consider Combination 6 - 1.0</u> <u>Check design at end of span</u> Check y-y axis deflection - Se	N _{Ed} / N _{c,Rd} + M _{y,F} nbers susceptib max(0.076, 0.12 0 <u>G + 1.0ψ₀Q + 0.5</u> ection 7.2.1	Maximum Ic - Maximum Ic	ongitudinal stress 099 sation of combine I deformations - T Combined bendin rvice)	ed bending a Table B.2 g and compr	nd axial force i	is acceptab are satisfi
Interaction factors k _{ij} for mer Interaction formulae <u>Consider Combination 6 - 1.0</u> <u>Check design at end of span</u> Check y-y axis deflection - Se	N _{Ed} / N _{c,Rd} + M _{y,F} nbers susceptib max(0.076, 0.12 0 <u>G + 1.0ψ₀Q + 0.5</u> ection 7.2.1	Maximum Ic - Maximum Ic	ongitudinal stress 099 sation of combine I deformations - T Combined bendin rvice) Allowable deflect	ed bending a Table B.2 g and compr ion 257	nd axial force of ression checks δ _{y,Allowable} = 10	is acceptab are satisfic
Interaction factors k _{ij} for mer Interaction formulae <u>Consider Combination 6 - 1.0</u> <u>Check design at end of span</u> <u>Check y-y axis deflection - Se</u> Maximum deflection	N _{Ed} / N _{c,Rd} + M _{y,F} nbers susceptib max(0.076, 0.12 0 <u>G + 1.0ψ₀Q + 0.5</u> ection 7.2.1	Maximum Ic - Maximum Ic	ongitudinal stress 099 sation of combine I deformations - T Combined bendin rvice) Allowable deflect δy / δy,Allowable = 0.	ed bending a Table B.2 g and compr ion 257	nd axial force of ression checks δ _{y,Allowable} = 10	is acceptat are satisfic
Interaction factors k _{ij} for mer Interaction formulae <u>Consider Combination 6 - 1.0</u> <u>Check design at end of span</u> <u>Check y-y axis deflection - Se</u> Maximum deflection	N _{Ed} / N _{c,Rd} + M _{y,f} mbers susceptibl max(0.076, 0.12 0G + 1.0ψ₀Q + 0.5 ection 7.2.1 δ _y = 2.6 mm	e - Maximum Ic =d / M _{c,y,Rd} = 0.0 PASS - Utilia le to torsional (6) = 0.126 PASS - 0 5S + 1.0W (Set	ongitudinal stress 099 sation of combine I deformations - T Combined bendin rvice) Allowable deflect δy / δy,Allowable = 0.	ed bending a Table B.2 g and compr ion 257	nd axial force of ression checks δ _{y,Allowable} = 10	is acceptat are satisfic
Interaction factors k _{ij} for mer Interaction formulae <u>Consider Combination 6 - 1.0</u> <u>Check design at end of span</u> <u>Check y-y axis deflection - Se</u> Maximum deflection	N _{Ed} / N _{c,Rd} + M _{y,F} nbers susceptib max(0.076, 0.12 0 <u>G + 1.0ψ₀Q + 0.5</u> ection 7.2.1	e - Maximum Ic =d / M _{c,y,Rd} = 0.0 PASS - Utilia le to torsional (6) = 0.126 PASS - 0 5S + 1.0W (Set	ongitudinal stress 099 sation of combine I deformations - T Combined bendin rvice) Allowable deflect δy / δy,Allowable = 0.	ed bending a Table B.2 g and compr ion 257 ble deflectior	nd axial force of ression checks δ _{y,Allowable} = 10	is acceptab are satisfic mm gn deflectic

	Project				Job Ref.	
BAYLISS		Willington S	port Pavillion		60	000
CONSULTING	Section				Sheet no./rev.	
Civil and Structural Engineering Consultants		Structural	Calculations		:	37
	Calc. by	Date	Chk'd by	Date	App'd	Date
	TGB	01.06.23				

Column 2 results summa	ry	Unit	Capacity	Maximum	Utilisation	Result
Shear resistance (y-y)		kN	204.4	2.7	0.013	PASS
Bending resistance (y-y)		kNm	58.2	8.1	0.140	PASS
Compression resistance		kN	524.3	22.6	0.043	PASS
•						
Comb. bending and axial	force				0.193	PASS
Deflection (y-y)		mm	10	3.0	0.301	PASS
Lateral restraint Both flanges have lateral rest Consider Combination 5 - 1 Classification of cross sect	<u>.35G + 1.5ψ₀Q +</u>	· 1.5ψ₀S	S + 1.5W (Strength	<u>ı)</u>		
Internal compression parts	Class 1		Outstar	nd flanges	Class 3	ion is class
Check compression - Section	on 6.2.4				Secu	UN 13 CIASS
Design compression force	N _{Ed} = 21.8 kN		•	resistance of section _{x,Rd} = 0.021	N _{c,Rd} = N _{pl,Rd} =	= 1038.2 kN
		PAS	SS - Design comp	ression resistance of	exceeds design	compressi
Check y-y axis flexural buc	-			- 0.025		
Design buckling resistance	N _{b,y,Rd} = 868.7	KIN		_{b,y,Rd} = 0.025 buckling resistance e	exceeds design (compressi
Check z-z axis flexural bucl	kling resistance	- Secti	on 6.3.1.1	-	-	
Design buckling resistance	N _{b,z,Rd} = 524.3			_{b,z,Rd} = 0.042		
			PASS - Design b	ouckling resistance of	exceeds design	compressi
Check torsional and torsion		-				
Design buckling resistance	N _{b,T,Rd} = 671.8	3 kN		_{b,T,Rd} = 0.032 buckling resistance o	ovcoods dosian	compressi
			Allo - Design b	acking resistance		Compression
Check design at start of spa						
Check shear - Section 6.2.6			Desian	shear resistance	Vply Rd = 204 4	l kN
Check shear - Section 6.2.6			0	shear resistance /pl.y.Rd = 0.013	V _{pl,y,Rd} = 204.4	l kN
Check shear - Section 6.2.6			V _{y,Ed} / V			
Check shear - Section 6.2.6 Design shear force	V _{y,Ed} = 2.7 kN		V _{y,Ed} / V	/ _{pl,y,Rd} = 0.013		
	V _{y,Ed} = 2.7 kN <u>n</u>		V _{y,Ed} / V	/ _{pl,y,Rd} = 0.013		
Check shear - Section 6.2.6 Design shear force <u>Check design at end of spa</u> Check shear - Section 6.2.6	V _{y,Ed} = 2.7 kN <u>n</u>		V _{y,Ed} / ∨ PASS - Des Design	γ _{pl,y,Rd} = 0.013 <i>ign shear resistance</i> shear resistance		n shear for
Check shear - Section 6.2.6 Design shear force <u>Check design at end of spa</u> Check shear - Section 6.2.6	V _{y,Ed} = 2.7 kN <u>n</u>		V _{y,Ed} / V PASS - Des Design V _{y,Ed} / V	/ _{pl.y.Rd} = 0.013 ign shear resistance	e exceeds design V _{pl,y,Rd} = 204.4	n shear for I kN
Check shear - Section 6.2.6 Design shear force Check design at end of spa	V _{y,Ed} = 2.7 kN <u>n</u> V _{y,Ed} = 2.7 kN		V _{y,Ed} / V PASS - Des Design V _{y,Ed} / V	Y _{pl,y,Rd} = 0.013 <i>ign shear resistance</i> shear resistance Y _{pl,y,Rd} = 0.013	e exceeds design V _{pl,y,Rd} = 204.4	n shear for I kN

	Project		/illim+			Job Ref.	6000
BAYLISS CONSULTING		W	/illington \$	Sport Pavilli	on		6000
CONSOLTINO	Section			0 1 1 1		Sheet no./rev.	00
and Structural Engineering Consultants			Structural	Calculation			38
01332 292192	Calc. by	Date		Chk'd by	Date	App'd	Date
	TGB	01	.06.23				
				M _{y,Ed} / M _{c,}	/ Rd = 0.14		
	PASS	- Des	ian bend	-		xceeds design be	ndina mon
A		Dee	ign bena	ing resista		xuccuu ucoigii be	nanng mon
Check buckling resistance - S							
Buckling resistance moment	M _{b,y,Rd} = 58.2 kN			My,Ed / Mb,			
	PA33 -	Desi	дп бискі	ing resista	nce moment e	xceeds design be	naing mon
Check bending and axial forc	e - Section 6.2.9	Ð					
Maximum longitudinal stress		σ	$\sigma_{y,Ed} = M_{y,I}$	_{Ed} / W _{el.y} + №	N _{Ed} / A = 57 N/m	1m²	
Limiting longitudinal stress - Eq	.6.42	σ	$\sigma_{y,lim} = f_y /$	_{γM0} = 355 N	/mm²		
		σ	$\sigma_{ m y,Ed}$ / $\sigma_{ m y,lim}$	n = 0.16			
	PASS	6 - Ma	ximum lo	ongitudinal	stress is less	than limiting long	itudinal str
Interaction formula - eq.6.2	$N_{Ed} / N_{c,Rd} + M_{y,R}$	_{Ed} / M	_{c,y,Rd} = 0.1	6			
		PAS	SS - Utilis	sation of co	ombined bend	ing and axial force	e is accepta
Interaction factors kij for men	nbers susceptib	le to t	torsional	deformatio	ons - Table B.2	2	
Interaction formulae	max(0.117, 0.19						
		-		Combined L	pending and co	ompression check	s are satis
					-		
Consider Combination 6 - 1.0	$G + 1.0\psi_0 Q + 0.5$	55 + 1	I.UW (Ser	<u>VICe)</u>			
Check design 2301 mm along	span						
Check y-y axis deflection - Se	ection 7.2.1						
Maximum deflection							
	$o_V = 3$ (1)(1)			Allowable	deflection	$\delta_{v,Allowable} = 1$	0 mm
	δ _y = 3 mm			Allowable δy / δy Allowa		$\delta_{y,Allowable} = 1$	0 mm
	oy = 3 mm			$\delta_{ m y}$ / $\delta_{ m y,Allowa}$	able = 0.301		
	oy = 3 mm			$\delta_{ m y}$ / $\delta_{ m y,Allowa}$	able = 0.301	δ _{y,Allowable} = 1	
Beam 1 design				$\delta_{ m y}$ / $\delta_{ m y,Allowa}$	able = 0.301		
<u>Beam 1 design</u> Section details	UB 254x146x31	(BS4	⊦-1)	δ _y / δ _{y,Allowa} PASS - A	_{able} = 0.301 Allowable defle	ction exceeds des	sign deflec
<u>Beam 1 design</u> Section details Steel grade	UB 254x146x31 S355	(BS4	I-1)	δ _y / δ _{y,Allowa} PASS - A Modulus c	able = 0.301 Mowable defle	ection exceeds des E = 210000	sign deflec
<u>Beam 1 design</u> Section details	UB 254x146x31	(BS4	I-1)	δ _y / δ _{y,Allowa} PASS - A Modulus c	_{able} = 0.301 Allowable defle	ection exceeds des E = 210000	sign deflec
<u>Beam 1 design</u> Section details Steel grade	UB 254x146x31 S355 f _y = 355 N/mm ²	(BS4	-1) Capaci	δ _y / δ _{y,Allowa} PASS - A Modulus c Nominal u	able = 0.301 Mowable defle	ection exceeds des E = 210000	sign deflec N/mm² 1m²
<u>Beam 1 design</u> Section details Steel grade Nominal yield strength	UB 254x146x31 S355 f _y = 355 N/mm ²	nit		δ _y / δ _{y,Allowa} PASS - A Modulus c Nominal u	able = 0.301 Allowable defie of elasticity It.tensile streng	E = 210000 th f _u = 470 N/m	n/mm ²
Beam 1 design Section details Steel grade Nominal yield strength Beam 1 results summary Shear resistance (γ-γ)	UB 254x146x31 S355 fy = 355 N/mm ²	nit	Capaci 335.5	δ _y / δ _{y,Allowa} PASS - A Modulus c Nominal u	able = 0.301 <i>llowable defle</i> of elasticity It.tensile streng Maximum 7.1	E = 210000 th $f_u = 470 \text{ N/m}$ Utilisation 0.021	N/mm ² m ² Resul
Beam 1 design Section details Steel grade Nominal yield strength Beam 1 results summary	UB 254x146x31 S355 fy = 355 N/mm ²	nit	Capaci	δ _y / δ _{y,Allowa} PASS - A Modulus c Nominal u	able = 0.301 Ilowable defie of elasticity It.tensile streng Maximum	E = 210000 th $f_u = 470 \text{ N/m}$ Utilisation	N/mm ² m ² Resu
Beam 1 design Section details Steel grade Nominal yield strength Beam 1 results summary Shear resistance (γ-γ)	UB 254x146x31 S355 fy = 355 N/mm ²	nit N	Capaci 335.5	δ _y / δ _{y,Allowa} PASS - A Modulus c Nominal u	able = 0.301 <i>llowable defle</i> of elasticity It.tensile streng Maximum 7.1	E = 210000 th $f_u = 470 \text{ N/m}$ Utilisation 0.021	n/mm ² Resu PASS
Beam 1 designSection detailsSteel gradeNominal yield strengthBeam 1 results summaryShear resistance (y-y)Bending resistance (y-y)	UB 254x146x31 S355 fy = 355 N/mm ² Ui kN kN kN	nit N	Capaci 335.5 41.8	δ _y / δ _{y,Allowa} PASS - A Modulus c Nominal u	able = 0.301 <i>Ilowable defle</i> of elasticity It.tensile streng Maximum 7.1 11.2	E = 210000 th $f_u = 470 \text{ N/m}$ Utilisation 0.021 0.268	n/mm² m² Resul PASS PASS
Beam 1 designSection detailsSteel gradeNominal yield strengthBeam 1 results summaryShear resistance (y-y)Bending resistance (y-y)Compression resistanceComb. bending and axial for	UB 254x146x31 S355 fy = 355 N/mm ² Uf kN kN rce	nit N Nm N	Capaci 335.5 41.8 121.5	δ _y / δ _{y,Allowa} PASS - A Modulus c Nominal u	able = 0.301 Mowable defie of elasticity It.tensile streng Maximum 7.1 11.2 2.7	E = 210000 th $f_u = 470 \text{ N/m}$ Utilisation 0.021 0.268 0.022 0.289	sign deflec N/mm ² m ² Resul PASS PASS PASS PASS
Beam 1 designSection detailsSteel gradeNominal yield strengthBeam 1 results summaryShear resistance (y-y)Bending resistance (y-y)Compression resistance	UB 254x146x31 S355 fy = 355 N/mm ² Uf kN kN rce	nit N	Capaci 335.5 41.8	δ _y / δ _{y,Allowa} PASS - A Modulus c Nominal u	able = 0.301 <i>Ilowable defle</i> of elasticity It.tensile streng Maximum 7.1 11.2	E = 210000 th f _u = 470 N/m 0.021 0.268 0.022	sign deflec N/mm ² m ² Resul PASS PASS PASS
Beam 1 designSection detailsSteel gradeNominal yield strengthBeam 1 results summaryShear resistance (y-y)Bending resistance (y-y)Compression resistanceComb. bending and axial for	UB 254x146x31 S355 fy = 355 N/mm ² Uf kN kN rce	nit N Nm N	Capaci 335.5 41.8 121.5	δ _y / δ _{y,Allowa} PASS - A Modulus c Nominal u	able = 0.301 Mowable defie of elasticity It.tensile streng Maximum 7.1 11.2 2.7	E = 210000 th $f_u = 470 \text{ N/m}$ Utilisation 0.021 0.268 0.022 0.289	sign deflec N/mm ² m ² Resul PASS PASS PASS
Beam 1 designSection detailsSteel gradeNominal yield strengthBeam 1 results summaryShear resistance (y-y)Bending resistance (y-y)Compression resistanceComb. bending and axial for	UB 254x146x31 S355 fy = 355 N/mm ² Uf kN kN rce	nit N Nm N	Capaci 335.5 41.8 121.5	δ _y / δ _{y,Allowa} PASS - A Modulus c Nominal u	able = 0.301 Mowable defie of elasticity It.tensile streng Maximum 7.1 11.2 2.7	E = 210000 th $f_u = 470 \text{ N/m}$ Utilisation 0.021 0.268 0.022 0.289	n/mm² m² Resul PASS PASS
Beam 1 designSection detailsSteel gradeNominal yield strengthBeam 1 results summaryShear resistance (y-y)Bending resistance (y-y)Compression resistanceComb. bending and axial foDeflection (y-y)	UB 254x146x31 S355 fy = 355 N/mm ² Uf kN kN rce m	nit N Nm N	Capaci 335.5 41.8 121.5	δ _y / δ _{y,Allowa} PASS - A Modulus c Nominal u	able = 0.301 Mowable defie of elasticity It.tensile streng Maximum 7.1 11.2 2.7	E = 210000 th $f_u = 470 \text{ N/m}$ Utilisation 0.021 0.268 0.022 0.289	sign deflec N/mm ² m ² Resul PASS PASS PASS

Classification of cross sections - Section 5.5 Internal compression parts Class 1

Outstand flanges

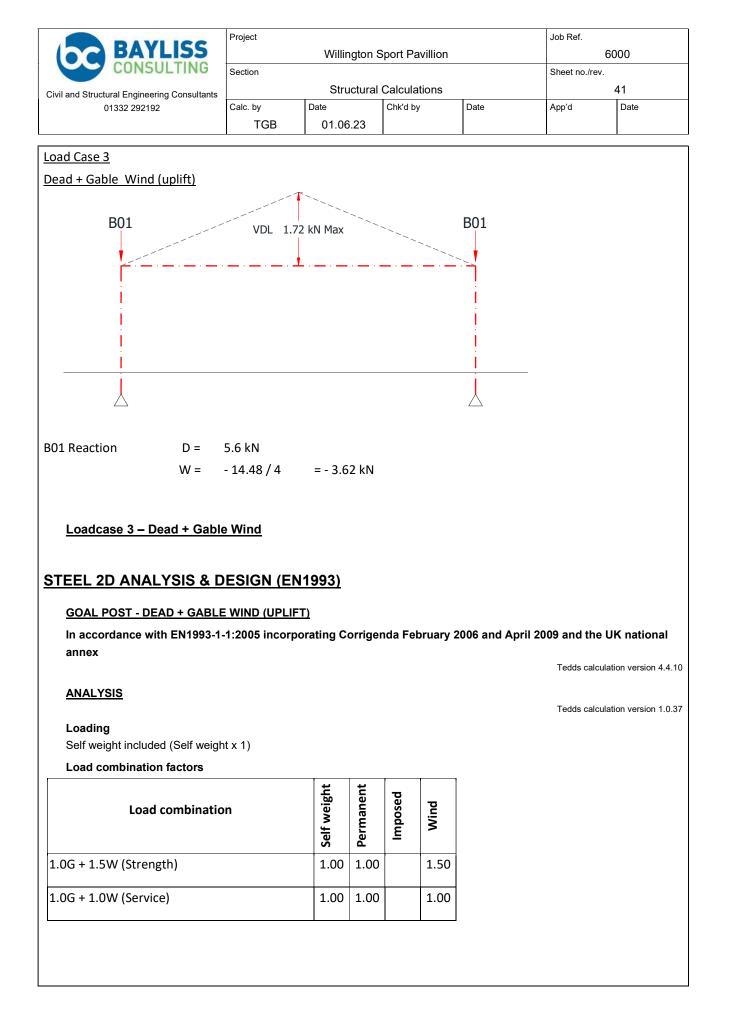
Class 1 Section is class 1

	Project				Job Ref.	
BAYLISS	Project	Willington S	Sport Pavillion			6000
CONSULTING	Section				Sheet no./rev.	
I and Structural Engineering Consultants		Structural	Calculations			39
01332 292192	Calc. by	Date	Chk'd by	Date	App'd	Date
	TGB	01.06.23				
Check compression - Section						
Design compression force	N _{Ed} = 2.7 kN		0	ance of section	$N_{c,Rd} = N_{pl,Rd}$	= 1038.2 kN
			$N_{Ed} / N_{c,Rd} = 0$			
		PASS - Desig	gn compressio	on resistance e	xceeas aesign	i compressi
Check y-y axis flexural buckl	-					
Design buckling resistance	N _{b,y,Rd} = 908 kN		$N_{Ed} / N_{b,y,Rd} =$			
		PASS - I	Jesign bucklii	ng resistance e	xceeds design	i compressi
Check z-z axis flexural buckli	•		l			
Design buckling resistance	N _{b,z,Rd} = 121.5		$N_{Ed} / N_{b,z,Rd} =$			
		PASS - I	Design bucklii	ng resistance e.	xceeds design	n compressi
Check torsional and torsiona	I-flexural buckli	ing resistance	- Section 6.3.	1.1		
Design buckling resistance	N _{b,T,Rd} = 541.7	٨N	$N_{Ed} / N_{b,T,Rd} =$	0.005		
		PASS - I	Design bucklii	ng resistance e	xceeds design	n compressi
Check design 3935 mm along	<u>span</u>					
Check bending moment - Sec	tion 6 2 5					
Design bending moment	M _{y,Ed} = 11.2 kN	m	Bendina resis	stance moment	M _{c,y,Rd} = 139	. 5 kNm
Doolgh bonaing momon	iniy,Eu		M _{y,Ed} / M _{c,y,Rd}		100,y,10	
	PASS	- Desian bend		e moment excee	eds desian bei	ndina mome
Check buckling resistance - S		0	0		U	U
Buckling resistance moment	M _{b,y,Rd} = 41.8 kl	Nm	M _{y,Ed} / M _{b,y,Rd}	= 0.268		
	-			e moment excee	eds desian bei	ndina mome
Check bending and axial force		-	0		U	U
Bending and axial force check			$N_{Ed} / N_{V,lim} = 0$	0 019		
Allowance need not be ma			2		e moment abo	ut the v-v a
			-			,,,
Interaction factors k _{ij} for men Interaction formulae	max(0.248, 0.28		deformations	5 - Table B.2		
	max(0.240, 0.20	•	ombined ben	ding and comp	ression check	e aro eatisfi
		7 400 - 0	ombilica beli	ang ana comp		S are Satish
Check design at end of span						
Check shear - Section 6.2.6						
Design shear force	V _{y,Ed} = 7.1 kN		Design shear V _{y,Ed} / V _{c,y,Rd} =		$V_{c,y,Rd} = V_{pl,y}$	_{,Rd} = 204.4 ki
		PAS		hear resistance	exceeds desig	gn shear for
Check bending moment - Sec	tion 6.2.5		-			
Design bending moment	M _{y,Ed} = 8.1 kNm	ı	-	stance moment	Mc,y,Rd = 139	.5 kNm
	D 400	Dealers have 1	My,Ed / Mc,y,Rd		do doniero bi	ndine
		- Design bend	ing resistance	e moment excee	eus uesign Dei	nung mome
Check buckling resistance - S				a 46-		
	M _{b,y,Rd} = 41.8 kl		My,Ed / Mb,y,Rd		de destrat	
Buckling resistance moment	2280	- Design buckl	ing resistance	e moment excee	eas aesign bei	naing mome
Buckling resistance moment	1 400	•				
Interaction factors k _{ij} for men	nbers susceptik	ole to torsional	deformations	s - Table B.2		
-		ble to torsional 16) = 0.216		s - Table B.2 Inding and comp		

	Project				Job Ref.	
BAYLISS		Willington S	port Pavillion		60	000
CONSULTING	Section				Sheet no./rev.	
Civil and Structural Engineering Consultants		Structural	Calculations			40
01332 292192	Calc. by	Date	Chk'd by	Date	App'd	Date
	TGB	01.06.23				

Consider Combination 6 - 1.0G + 1.0w0Q + 0.5S + 1.0W (Service)

Check design 4020 mm along span

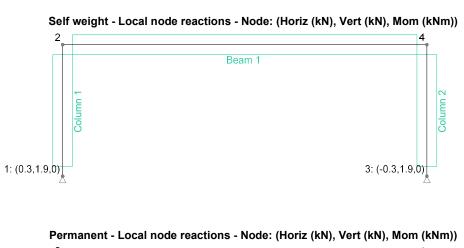

Check y-y axis deflection - Section 7.2.1

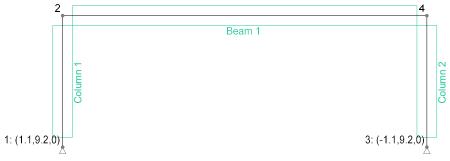
Maximum deflection δ_y = 5.6 mm

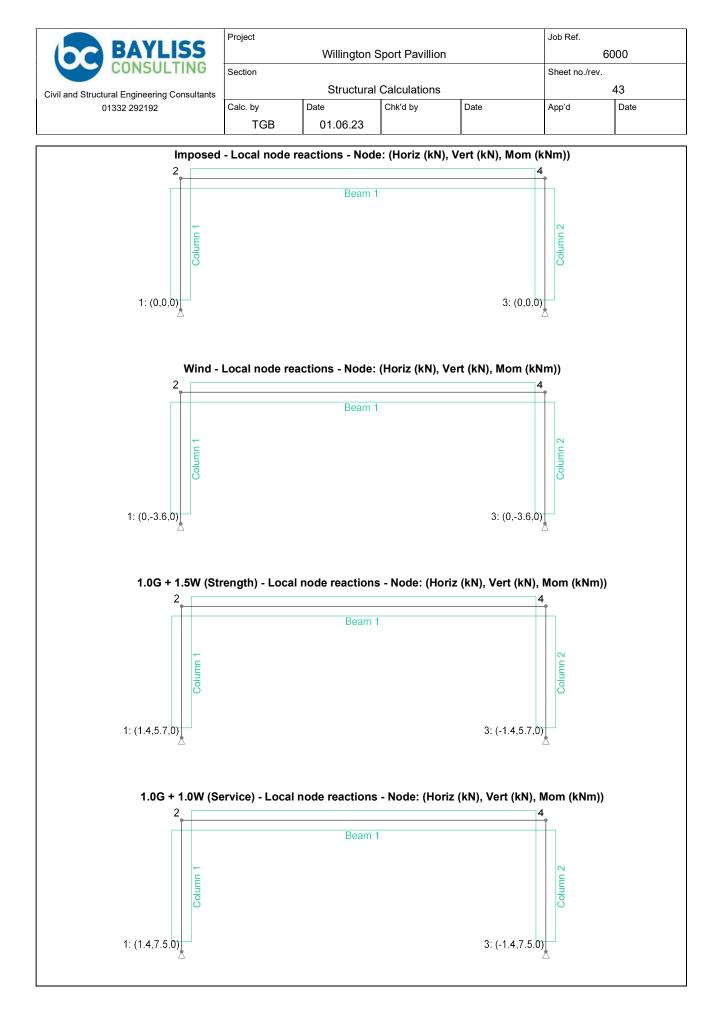
Allowable deflection $\delta_y / \delta_{y,Allowable} = 0.243$

 $\delta_{y,Allowable}$ = 23.1 mm

PASS - Allowable deflection exceeds design deflection



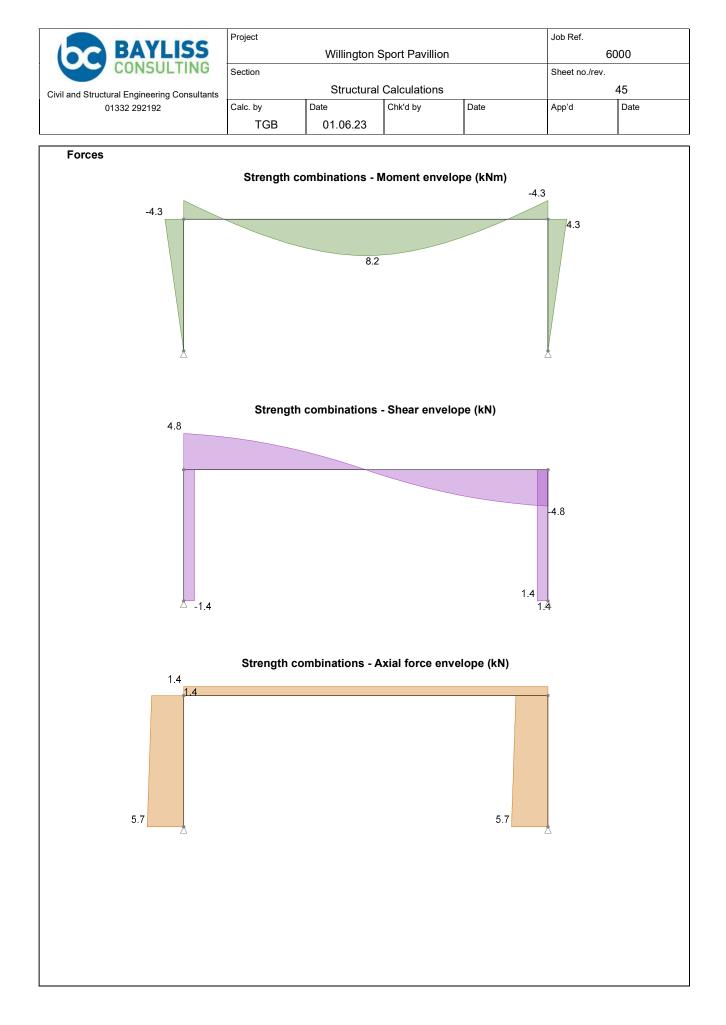

	Project				Job Ref.	
BAYLISS		Willington S	port Pavillion		60	00
CONSULTING	Section				Sheet no./rev.	
Civil and Structural Engineering Consultants		Structural	Calculations			42
01332 292192	Calc. by	Date	Chk'd by	Date	App'd	Date
	TGB	01.06.23				


Member Loads				
Member	Load case	Load Type	Orientation	Description
Beam 1	Permanent	VDL	GlobalZ	0 kN/m at 0 m to 1.72 kN/m at 4.15 m
Beam 1	Permanent	VDL	GlobalZ	1.72 kN/m at 4.15 m to 0 kN/m at 8.3 m
Column 1	Permanent	Point load	GlobalZ	5.6 kN at 3 m
Column 2	Permanent	Point load	GlobalZ	5.6 kN at 3 m
Column 1	Wind	Point load	GlobalZ	-3.62 kN at 3 m
Column 2	Wind	Point load	GlobalZ	-3.62 kN at 3 m

<u>Results</u>

Reactions

	Project				Job Ref.	
BAYLISS		Willington S	port Pavillion		60	000
CONSULTING	Section				Sheet no./rev.	
Civil and Structural Engineering Consultants		Structural	Calculations			44
01332 292192	Calc. by	Date	Chk'd by	Date	App'd	Date
	TGB	01.06.23				


Element end forces

Load combination: 1.0G + 1.5W (Strength)

Element	Length	Nodes	Axial force	Shear force	Moment
	(m)	Start/End	(kN)	(kN)	(kNm)
1	3	1	-5.7	1.4	0
		2	4.8	-1.4	-4.3
2	3	3	-5.7	-1.4	0
		4	4.8	1.4	4.3
3	8.3	2	-1.4	-4.8	4.3
		4	1.4	-4.8	-4.3

Load combination: 1.0G + 1.0W (Service)

Element	Length	Nodes	Axial force	Shear force	Moment
	(m)	Start/End	(kN)	(kN)	(kNm)
1	3	1	-7.5	1.4	0
		2	4.8	-1.4	-4.3
2	3	3	-7.5	-1.4	0
		4	4.8	1.4	4.3
3	8.3	2	-1.4	-4.8	4.3
		4	1.4	-4.8	-4.3

DA DA	YLISS	Project	v	Villington	Sport Pavill	ion		Job Ref.	6000
CON	SULTING	Section		U				Sheet no./rev.	
and Structural Engine	ering Consultants			Structura	al Calculation	ns			46
01332 292		Calc. by	Date		Chk'd by		Date	App'd	Date
		TGB	0	1.06.23					
Member results	;								
Envelope - Serv	vice combinat						1		
Member		De	eflectio	n					
	Pos	Max		Pos	Min				
	(m)	(mm)		(m)	(mm)				
Column 1	3	0	1	1.73	-0.9 (mi	n)			
Column 2	1.73	0.9		3	0				
Beam 1	4.15	5.6 (max)		0	0				
Partial factors -	Section 6.1	γ _{M0} = 1	I		γ _{M1} = 1		J	γ _{M2} = 1.1	
Column 1 desig	ın								
Section details		UC 152x152	x23 (BS4	4-1)					
Steel grade		S355	,	,	Modulus	of ela	sticity	E = 210000	N/mm ²
-	onath	f _y = 355 N/mi	2				-		
Nominal yield str	engin	ly - 355 N/III	n-		Nominal u	ult.ten	sile strength	f _u = 470 N/m	1m²
Nominal yield sti	engin	iy – 355 N/III	n-		Nominal (ult.ten	sile strength	f _u = 470 N/m	1m²
Column 1 resu			Unit	Сарас		T	nsile strength ximum	f _u = 470 N/m	
-	ults summary		1	Capac 204.4		T			
Column 1 resu	ults summary		Unit			Max		Utilisation	Resul
Column 1 resu	ults summary ce (y-y) ance (y-y)		Unit kN	204.4		Ma 1.4		Utilisation 0.007	Resul PASS
Column 1 resu Shear resistan Bending resist	ults summary ice (y-y) cance (y-y) resistance	/	Unit kN kNm	204.4 58.2		Max 1.4 4.3		Utilisation 0.007 0.073	PASS PASS
Column 1 resu Shear resistan Bending resist Compression	ults summary ce (y-y) ance (y-y) resistance g and axial fo	/	Unit kN kNm	204.4 58.2		Max 1.4 4.3		Utilisation 0.007 0.073 0.011	ResultPASSPASSPASS
Column 1 resu Shear resistan Bending resist Compression Comb. bendin	ults summary ce (y-y) ance (y-y) resistance g and axial fo	/	Unit kN kNm kN	204.4 58.2 524.3		Max 1.4 4.3 5.7		Utilisation 0.007 0.073 0.011 0.090	ResultPASSPASSPASSPASS
Column 1 resu Shear resistan Bending resist Compression Comb. bendin Deflection (y-y	ults summary ice (y-y) ance (y-y) resistance g and axial fo y)	brce	Unit kN kNm kN mm	204.4 58.2 524.3		Max 1.4 4.3 5.7		Utilisation 0.007 0.073 0.011 0.090	ResultPASSPASSPASSPASS
Column 1 resu Shear resistan Bending resist Compression Comb. bendin Deflection (y-y Lateral restrain Both flanges hav	ults summary ice (y-y) cance (y-y) resistance g and axial for y) t t ye lateral restra	prce	Unit kN kNm kN mm	204.4 58.2 524.3		Max 1.4 4.3 5.7		Utilisation 0.007 0.073 0.011 0.090	ResultPASSPASSPASSPASS
Column 1 resu Shear resistan Bending resist Compression Comb. bendin Deflection (y-y Lateral restrain Both flanges hav Classification o	ults summary ce (y-y) cance (y-y) resistance g and axial fo y) t t ve lateral restra	prce	Unit kN kNm kN mm	204.4 58.2 524.3	ity	Max 1.4 4.3 5.7	ximum	Utilisation 0.007 0.073 0.011 0.090 0.093	ResultPASSPASSPASSPASS
Column 1 resu Shear resistan Bending resist Compression Comb. bendin Deflection (y-y Lateral restrain Both flanges hav	ults summary ce (y-y) cance (y-y) resistance g and axial fo y) t t ve lateral restra	prce	Unit kN kNm kN mm	204.4 58.2 524.3		Max 1.4 4.3 5.7	ximum	Utilisation 0.007 0.073 0.011 0.090 0.093 Class 3	ResultPASSPASSPASSPASS
Column 1 resu Shear resistan Bending resist Compression Comb. bendin Deflection (y-y Lateral restrain Both flanges hav Classification o	ults summary ice (y-y) cance (y-y) resistance g and axial for y) t t ve lateral restra of cross section asion parts	orce	Unit kN kNm kN mm	204.4 58.2 524.3	ity	Max 1.4 4.3 5.7	ximum	Utilisation 0.007 0.073 0.011 0.090 0.093 Class 3	ResultPASSPASSPASSPASSPASS
Column 1 resu Shear resistan Bending resist Compression Comb. bendin Deflection (y-y Lateral restrain Both flanges hav Classification o Internal compress	ults summary ce (y-y) cance (y-y) resistance g and axial fo y) t t ve lateral restra of cross sections ssion parts ssion - Section	orce	Unit kN kNm kN mm	204.4 58.2 524.3	Outstand	Max 1.4 4.3 5.7 0.9 flang	es	Utilisation 0.007 0.073 0.011 0.090 0.093 Class 3	Result PASS
Column 1 resu Shear resistan Bending resist Compression f Comb. bendin Deflection (y-y Lateral restrain Both flanges hav Classification o Internal compress	ults summary ce (y-y) cance (y-y) resistance g and axial fo y) t t ve lateral restra of cross sections ssion parts ssion - Section	Drce aint at supports ons - Section Class 1 n 6.2.4	Unit kN kNm kN mm	204.4 58.2 524.3 10	Design re NEd / Nc,R	Max 1.4 4.3 5.7 0.9 flang sistar d = 0.0	es nce of section 005	Utilisation 0.007 0.073 0.011 0.090 0.093 Class 3 Sec	Result PASS
Column 1 results Shear resistant Bending resist Compression of Comb. bendint Deflection (y-y) Lateral restraint Both flanges hav Classification of Internal compress Design compress Check y-y axis	ults summary ice (y-y) ance (y-y) resistance g and axial for y) t t re lateral restra of cross section asion parts asion - Section sion force	orce aint at supports ons - Section Class 1 n 6.2.4 N _{Ed} = 5.7 kN	Unit kN kNm kN mm s only 5.5 PA: e - Sect	204.4 58.2 524.3 10	Design re NEd / Nc,Ri ign compre	Max 1.4 4.3 5.7 0.9 flang esistar d = 0. ession	es nce of section 005 n resistance of	Utilisation 0.007 0.073 0.011 0.090 0.093 Class 3 Sec N _{c,Rd} = N _{pl,Rd}	Result PASS
Column 1 resu Shear resistan Bending resist Compression f Comb. bendin Deflection (y-y Lateral restrain Both flanges hav Classification of Internal compress Design compress	ults summary ice (y-y) ance (y-y) resistance g and axial for y) t t re lateral restra of cross section asion parts asion - Section sion force	orce aint at supports ons - Section Class 1 n 6.2.4 N _{Ed} = 5.7 kN	Unit kN kNm kN mm s only 5.5 PA: e - Sect	204.4 58.2 524.3 10 SS - Des ion 6.3.1	Design re NEd / Nc,R ign compre	Max 1.4 4.3 5.7 0.9 flang sistar d = 0. essistar d = 0. Rd = 0	es nce of section 005 n resistance of	Utilisation 0.007 0.073 0.011 0.090 0.093 Class 3 Sec N _{c,Rd} = N _{pl,Rd}	Result PASS PASS

	<u> </u>					
BAYLISS	Project				Job Ref.	
CONSULTING		Willington	Sport Pavillio	n		6000
CONSOLITINO	Section	Structural	Calculations		Sheet no./rev	. 47
and Structural Engineering Consultants 01332 292192	Calc by Dat	Calc. by Date Chk'd by Date				
01332 292192	-	e 01.06.23	Clik d by	Date	App'd	Date
	100	51.00.20				
Check z-z axis flexural buckli	ing resistance - Sec	tion 6.3.1.	1			
Design buckling resistance	N _{b,z,Rd} = 524.3 kN		N _{Ed} / N _{b,z,Rd}	= 0.011		
		PASS -	Design buck	ling resistance e	xceeds desig	n compressio
Check torsional and torsiona	I-flexural buckling	resistance	- Section 6.3	3.1.1		
Design buckling resistance	N _{b,T,Rd} = 671.8 kN		NEd / Nb,T,Rd			
		PASS -	Design buck	ling resistance e	xceeds desig	n compressio
Check design at start of spar	1					
	<u>-</u>					
Check shear - Section 6.2.6			Design sha) /	4 4 1.51
Design shear force	V _{y,Ed} = 1.4 kN		0	ar resistance	V _{pl,y,Rd} = 20	4.4 KIN
		DΛ	V _{y,Ed} / V _{pl,y,R}	shear resistance	avcaads das	ian shoar for
		1.4	55 - Desigin	Shear resistance		ign shear ford
Check design at end of span						
Check shear - Section 6.2.6						
Design shear force	V _{y,Ed} = 1.4 kN		-	ar resistance	V _{pl,y,Rd} = 20	4.4 kN
			V _{y,Ed} / V _{pl,y,R}			
		PA	SS - Design	shear resistance	exceeds des	ign shear ford
Check bending moment - Sec	ction 6.2.5					
Design bending moment	M _{y,Ed} = 4.3 kNm		-	sistance moment	M _{c,y,Rd} = 58	.2 kNm
			$M_{y,Ed} / M_{c,y,F}$			
	PASS - De	sign bend	ling resistan	ce moment exce	eds design be	ending mome
Check buckling resistance -	Section 6.3.2.1					
Buckling resistance moment	M _{b,y,Rd} = 58.2 kNm		M _{y,Ed} / M _{b,y,F}			
	PASS - De	sign buck	ling resistan	ce moment exce	eds design be	ending mome
Check bending and axial force	e - Section 6.2.9					
Maximum longitudinal stress		$\sigma_{y,Ed}$ = M _{y,}	_{Ed} / W _{el.y} + N _E	_{Ed} / A = 28 N/mm ²		
Limiting longitudinal stress - Eq	J.6.42	$\sigma_{y,lim}$ = f _y /	γ _{M0} = 355 N/r	mm²		
		$\sigma_{y,\text{Ed}}$ / $\sigma_{y,\text{lin}}$	n = 0.078			
			-	stress is less tha	n limiting lon	gitudinal stres
Interaction formula - eq.6.2	$N_{Ed} / N_{c,Rd} + M_{y,Ed} /$	-				
	P	ASS - Utili	sation of cor	mbined bending	and axial forc	e is acceptab
Interaction factors k _{ij} for men	-		deformation	ns - Table B.2		
Interaction formulae	max(0.054, 0.09) =				<u>.</u> .	
		PASS - (combined be	ending and comp	pression chec	ks are satisfie
Consider Combination 2 - 1.0	G + 1.0W (Service)					
Check design 1730 mm along	a span					
Check y-y axis deflection - Se Maximum deflection	ection 7.2.1 δ _y = 0.9 mm		Allowable d	eflection	δ _{y,Allowable} =	10 mm
	oy – U.9 IIIII				Oy,Allowable =	
			δy / δy,Allowabl	le = 0.093 Iowable deflectio	n avcada da	sian doflootid
			FA33 - Al		m exceeds de	sign denectio
Column 2 design						
Section details	UC 152x152x23 (B	S4-1)				
	UC 152x152x23 (B S355 f _y = 355 N/mm ²	S4-1)	Modulus of	elasticity .tensile strength	E = 210000 f _u = 470 N/r	

	Project				Job Ref.		
BAYLISS		Willington S	60	000			
CONSULTING	Section				Sheet no./rev.		
Civil and Structural Engineering Consultants		Structural	Calculations		48		
01332 292192	Calc. by	Date	Chk'd by	Date	App'd	Date	
	TGB	01.06.23					

Column 2 results summa	ſ¥	Unit	Capacity	Maximum	Utilisation	Result	
Shear resistance (y-y)		kN	204.4	1.4	0.007	PASS	
Bending resistance (y-y)	ding resistance (y-y)		58.2	4.3	0.073	PASS	
Compression resistance		kN	524.3	5.7	0.011	PASS	
	_						
Comb. bending and axial	force				0.090	PASS	
Deflection (y-y)		mm	10	0.9	0.093	PASS	
Lateral restraint Both flanges have lateral rest Classification of cross sect							
Internal compression parts	Class 1		Outstan	d flanges	Class 3		
					Sect	ion is class	
Check compression - Section	on 6.2.4 N _{Ed} = 5.7 kN		Docian	registered of contion	N	- 1020 2 41	
Design compression force	NEd - 3.7 KIN		Design resistance of section $N_{c,Rd} = N_{pl,Rd} = 1038$ N _{Ed} / N _{c,Rd} = 0.005				
		PAS	SS - Design comp	ression resistance	exceeds design	compressi	
Check y-y axis flexural bucl	kling resistanc	e - Sect	ion 6.3.1.1				
Design buckling resistance	N _{b,y,Rd} = 868.	7 kN	N _{Ed} / N _b	_{,y,Rd} = 0.007			
			PASS - Design b	uckling resistance	exceeds design	compressi	
Check z-z axis flexural buck	ling resistanc	e - Secti	on 6.3.1.1				
Design buckling resistance	N _{b,z,Rd} = 524.	3 kN		,z,Rd = 0.011		-	
			_	uckling resistance	exceeas aesign (compressi	
Check torsional and torsion		-					
Design buckling resistance	N _{b,T,Rd} = 671.	8 KIN		_{,T,Rd} = 0.008	ovcoods dosian		
			FASS Design D		exceeus uesigii i	comprocei	
				Ū	-	compressi	
	an			5	-	compressi	
Check shear - Section 6.2.6	_			-		-	
Check shear - Section 6.2.6	<u>an</u> V _{y,Ed} = 1.4 kM	1	-	shear resistance	V _{pl,y,Rd} = 204. 4	-	
Check shear - Section 6.2.6	_	1	V _{y,Ed} / V	shear resistance	V _{pl,y,Rd} = 204. 4	4 kN	
Check shear - Section 6.2.6 Design shear force	V _{y,Ed} = 1.4 kM	1	V _{y,Ed} / V	shear resistance	V _{pl,y,Rd} = 204. 4	4 kN	
Check shear - Section 6.2.6 Design shear force Check design at end of spa	V _{y,Ed} = 1.4 kM	1	V _{y,Ed} / V	shear resistance	V _{pl,y,Rd} = 204. 4	4 kN	
Check shear - Section 6.2.6 Design shear force <u>Check design at end of spa</u> Check shear - Section 6.2.6	V _{y,Ed} = 1.4 kM		V _{y,Ed} / V PASS - Des	shear resistance _{pl.y.Rd} = 0.007 ign shear resistanc	V _{pl,y,Rd} = 204.4 e exceeds design	4 kN n shear for	
Check shear - Section 6.2.6 Design shear force <u>Check design at end of spa</u> Check shear - Section 6.2.6	V _{y,Ed} = 1.4 kM		V _{y,Ed} / V PASS - Des i Design	shear resistance _{pl.y.Rd} = 0.007 <i>ign shear resistanc</i> shear resistance	V _{pl,y,Rd} = 204. 4	4 kN n shear for	
Check shear - Section 6.2.6 Design shear force <u>Check design at end of spa</u> Check shear - Section 6.2.6	V _{y,Ed} = 1.4 kM		V _{y,Ed} / V PASS - Des Design V _{y,Ed} / V	shear resistance pl.y.Rd = 0.007 ign shear resistance shear resistance pl.y.Rd = 0.007	V _{pl,y,Rd} = 204.4 e exceeds design V _{pl,y,Rd} = 204.4	4 kN n shear for 4 kN	
Check design at start of spa Check shear - Section 6.2.6 Design shear force Check design at end of spa Check shear - Section 6.2.6 Design shear force	V _{y,Ed} = 1.4 kM <u>n</u> V _{y,Ed} = 1.4 kM		V _{y,Ed} / V PASS - Des Design V _{y,Ed} / V	shear resistance _{pl.y.Rd} = 0.007 <i>ign shear resistanc</i> shear resistance	V _{pl,y,Rd} = 204.4 e exceeds design V _{pl,y,Rd} = 204.4	4 kN n shear for 4 kN	
Check shear - Section 6.2.6 Design shear force <u>Check design at end of spa</u> Check shear - Section 6.2.6	V _{y,Ed} = 1.4 kM <u>n</u> V _{y,Ed} = 1.4 kM	l	V _{y,Ed} / V PASS - Desi Design V _{y,Ed} / V PASS - Desi	shear resistance pl.y.Rd = 0.007 ign shear resistance shear resistance pl.y.Rd = 0.007	V _{pl,y,Rd} = 204.4 e exceeds design V _{pl,y,Rd} = 204.4 e exceeds design	4 kN n shear for 4 kN n shear for	

BAYLISS	Project	v	Villington S	Sport Pavillion		Job Ref.	6000
CONSULTING	Section		5			Sheet no./rev.	
and Structural Engineering Consultants			Structural	Calculations			49
01332 292192	Calc. by	Date		Chk'd by	Date	App'd	Date
	TGB	01	1.06.23				
	PASS	S - Des	ian bendi	ina resistance	moment ex	xceeds design be	ndina mon
Check buckling resistance -			5	J		J	J
Buckling resistance moment	M _{b,y,Rd} = 58.2 k	Nm		M _{y,Ed} / M _{b,y,Rd}	= 0.073		
			ign buckl			xceeds design be	nding mon
Check bending and axial for	ce - Section 6.2	.9					
Maximum longitudinal stress			$\sigma_{y,Ed} = M_{y,E}$	d / W _{el.y} + N _{Ed}	/ A = 28 N/m	im²	
Limiting longitudinal stress - Ec	q.6.42	c	$\sigma_{y,lim} = f_y / \gamma_{y,lim}$	_{имо} = 355 N/mr	n²		
		c	$\sigma_{ m y,Ed} / \sigma_{ m y,lim}$	= 0.078			
				-	ess is less	than limiting long	itudinal stı
Interaction formula - eq.6.2	N _{Ed} / N _{c,Rd} + M						
						ng and axial force	e is accepta
Interaction factors k _{ij} for mer	-			deformations	- Table B.2		
Interaction formulae	max(0.054, 0.0	,					
			PASS - C	ombinea ben	aing and co	ompression check	is are satis
Consider Combination 2 - 1.0)G + 1.0W (Serv	<u>vice)</u>					
Check design 1730 mm along	<u>g span</u>						
Check y-y axis deflection - So	ection 7.2.1						
Maximum deflection	δ _v = 0.9 mm			Allowable def	lection	$\delta_{\rm V,Allowable} = 1$	l 0 mm
	- ,			$δ_y$ / $δ_{y,Allowable}$:		-),	
						ction exceeds des	sign deflec
Beam 1 design						ction exceeds des	sign deflec
<u>Beam 1 design</u> Section details	UB 254x146x3	1 (BS	4-1)			ction exceeds des	sign deflec
Section details	UB 254x146x3 S355	1 (BS4	4-1)		wable defle	ction exceeds des E = 210000	-
Section details Steel grade		-	4-1)	PASS - Allo	wable defle asticity	E = 210000	N/mm²
Section details Steel grade	S355	-	4-1)	PASS - Allo Modulus of el	wable defle asticity	E = 210000	N/mm²
Section details Steel grade	S355 f _y = 355 N/mm ²	-	4-1) Capacit	PASS - Allo Modulus of el Nominal ult.te	wable defle asticity	E = 210000	N/mm²
Section details Steel grade Nominal yield strength	S355 f _y = 355 N/mm ²	2		PASS - Allo Modulus of el Nominal ult.te	wable defle asticity nsile strengt	E = 210000 th f _u = 470 N/m	N/mm ² 1m ²
Section details Steel grade Nominal yield strength Beam 1 results summary	S355 f _y = 355 N/mm ²	2 Jnit	Capacit	PASS - Allo Modulus of el Nominal ult.te	wable defle asticity msile strengt aximum	E = 210000 th f _u = 470 N/m	N/mm ² 1m ²
Section details Steel grade Nominal yield strength Beam 1 results summary Shear resistance (y-y)	S355 f _y = 355 N/mm ²	² Jnit (N	Capacit 335.5	PASS - Allo Modulus of el Nominal ult.te y Ma	wable defle asticity nsile strengt aximum	E = 210000 fu = 470 N/m Utilisation 0.014	N/mm ² 1m ² Resul
Section details Steel grade Nominal yield strength Beam 1 results summary Shear resistance (y-y) Bending resistance (y-y)	S355 fy = 355 N/mm k	2 Jnit (N	Capacit 335.5 42.2	PASS - Allo Modulus of el Nominal ult.te y Ma 4.8 8.2	wable defle asticity nsile strengt aximum	E = 210000 fu = 470 N/m Utilisation 0.014 0.196	N/mm ² 1m ² Resul PASS PASS
Steel grade Nominal yield strength Beam 1 results summary Shear resistance (y-y) Bending resistance (y-y)	S355 f _y = 355 N/mm ²	2 Jnit (N	Capacit 335.5 42.2	PASS - Allo Modulus of el Nominal ult.te y Ma 4.8 8.2	wable defle asticity nsile strengt aximum	E = 210000 fu = 470 N/m Utilisation 0.014 0.196	N/mm 1m ²

Check compression - Section 6.2.4

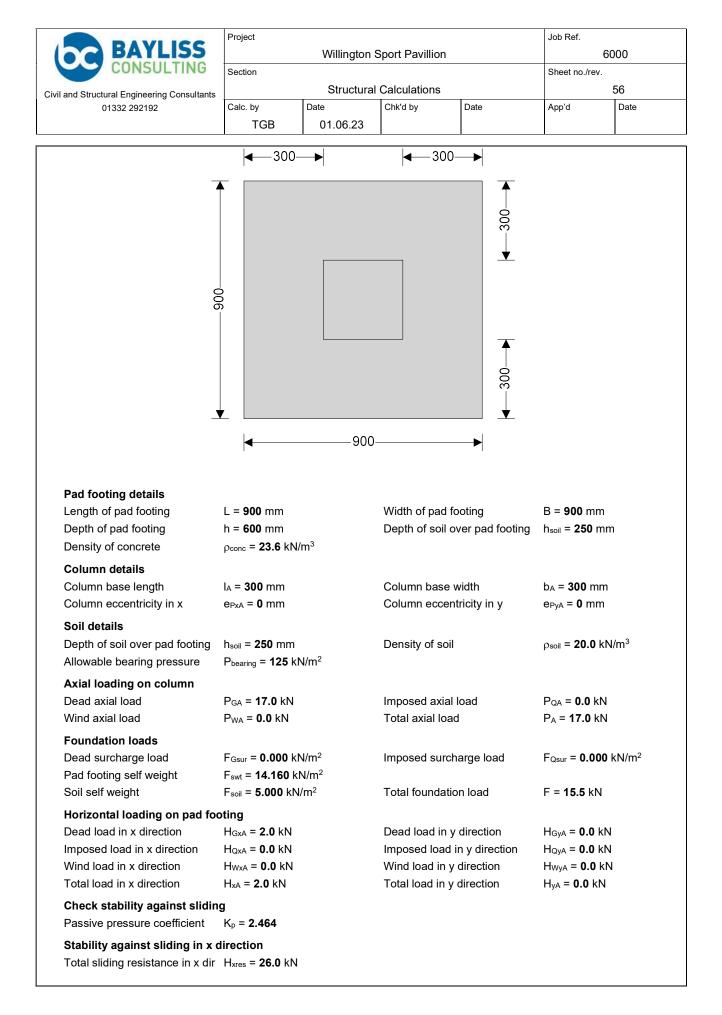
Design compression force N_{Ed} = 1.4 kN

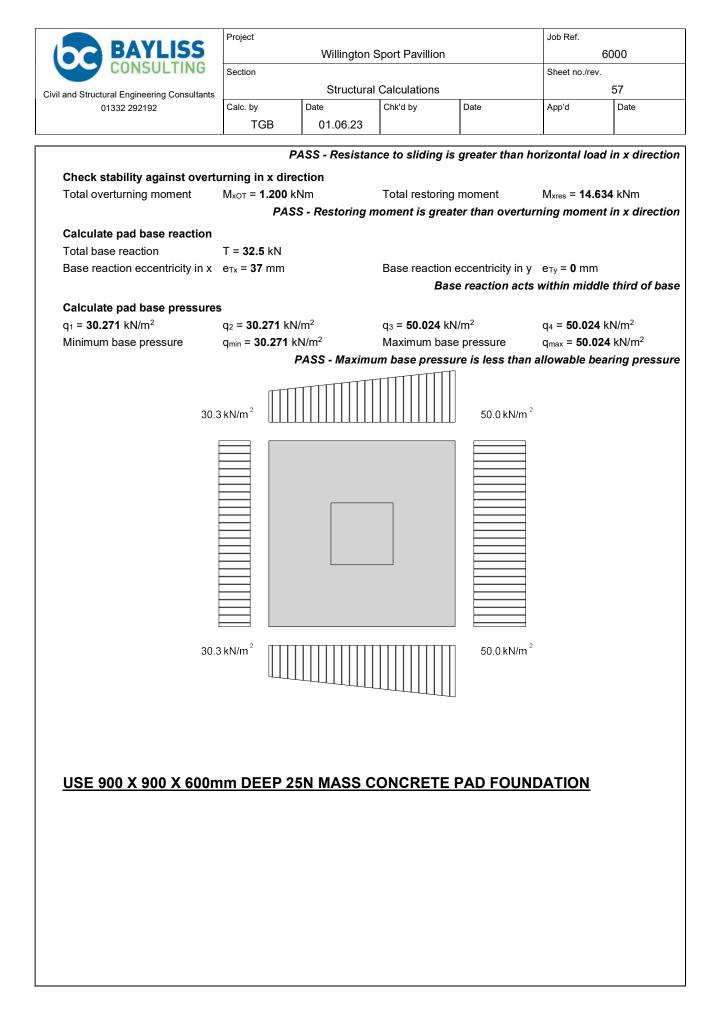
Design resistance of section

 $N_{c,Rd}$ = $N_{pl,Rd}$ = **1038.2** kN

A PAVI ICC	Project		_		Job Ref.		
BAYLISS CONSULTING		Willington S	Sport Pavillion			6000	
CONSOLTING	Section	<u>.</u>	0 + + <i>i</i>		Sheet no./rev		
and Structural Engineering Consultants	Only her	1	Calculations	Dete	App'd Date		
01332 292192	Calc. by	Date	Chk'd by	Date	App'd	Date	
	TGB	01.06.23					
			N _{Ed} / N _{c,Rd} = 0	.001			
		PASS - Desig	gn compressio	on resistance e	exceeds desig	n compress	
Check y-y axis flexural buckli	ng resistance -	Section 6.3.1.	1				
Design buckling resistance	N _{b,y,Rd} = 908 kN		$N_{Ed} / N_{b,y,Rd} =$	0.002			
		PASS -	Design bucklir	ng resistance e	xceeds desig	n compress	
Check z-z axis flexural buckli	ng resistance -	Section 6.3.1.	1				
Design buckling resistance	N _{b,z,Rd} = 121.5	Ň	$N_{Ed} / N_{b,z,Rd} =$	0.012			
		PASS -	Design bucklir	ng resistance e	xceeds desig	n compress	
Check torsional and torsional	l-flexural buckli	ng resistance	- Section 6.3.1	.1			
Design buckling resistance	N _{b,T,Rd} = 541.7	٢N	$N_{Ed} / N_{b,T,Rd} =$	0.003			
		PASS -	Design bucklir	ng resistance e	xceeds desig	n compress	
Check design at start of span							
Check shear - Section 6.2.6	•						
Design shear force	V _{v.Ed} = 4.8 kN		Design shear	resistance			
Design shear lorde	V y,Ed - 4.0 KIV		V _{y,Ed} / V _{c,y,Rd} =		V _{c,y,Rd} = V _{pl,y,Rd} = 204.4 k		
		PA		ear resistance	exceeds des	ian shear fo	
Check bending moment - Sec	tion 6 2 5		j -			J	
Design bending moment	M _{y,Ed} = 4.3 kNm	1	Rending resis	tance moment	M _{c,y,Rd} = 13	9 5 kNm	
Design benang memeri			M _{y,Ed} / M _{c,y,Rd}		Wic,y,Ru		
	PASS	- Design bend		moment exce	eds design b	ending mom	
Check buckling resistance - S	Section 6.3.2.1						
Buckling resistance moment	M _{b,y,Rd} = 42.2 kl	٧m	M _{y,Ed} / M _{b,y,Rd}	= 0.101			
Ū				moment exce	eds design b	ending mom	
Check bending and axial forc	e - Section 6.2.	9					
Bending and axial force check			$N_{Ed} / N_{v,lim} = 0$.01			
Allowance need not be ma					e moment ab	out the y-y a	
Interaction factors kij for men			-				
Interaction formulae	max(0.095, 0.1		derermatione				
		-	Combined ben	ding and comp	pression chec	ks are satisf	
				-			
Check design 4150 mm along	enan						
Check design 4150 mm along							
Check bending moment - Sec	tion 6.2.5		Den dia a secie		M - 42		
		I	-	tance moment	M _{c,y,Rd} = 13	9.5 kNm	
Check bending moment - Sec	tion 6.2.5 M _{y,Ed} = 8.2 kNm		M _{y,Ed} / M _{c,y,Rd}	= 0.059			
Check bending moment - Sec Design bending moment	tion 6.2.5 M _{y,Ed} = 8.2 kNm <i>PASS</i>		M _{y,Ed} / M _{c,y,Rd}				
Check bending moment - Sec Design bending moment Check buckling resistance - S	tion 6.2.5 M _{y,Ed} = 8.2 kNm <i>PASS</i> Section 6.3.2.1	- Design bend	M _{y,Ed} / M _{c,y,Rd}	= 0.059 moment exce			
Check bending moment - Sec Design bending moment	tion 6.2.5 M _{y,Ed} = 8.2 kNm <i>PASS</i> Section 6.3.2.1 M _{b,y,Rd} = 42.2 kl	- Design bend Nm	M _{y,Ed} / M _{c,y,Rd} ling resistance M _{y,Ed} / M _{b,y,Rd}	= 0.059 <i>moment exce</i> = 0.196	eds design b	ending mom	
Check bending moment - Sec Design bending moment Check buckling resistance - S Buckling resistance moment	tion 6.2.5 M _{y,Ed} = 8.2 kNm PASS Section 6.3.2.1 M _{b,y,Rd} = 42.2 kI PASS	- Design bend Nm - Design buckl	M _{y,Ed} / M _{c,y,Rd} ling resistance M _{y,Ed} / M _{b,y,Rd} ling resistance	= 0.059 moment exce = 0.196 moment exce	eds design b	ending mom	
Check bending moment - Sec Design bending moment Check buckling resistance - S Buckling resistance moment Interaction factors k _{ij} for mem	tion 6.2.5 M _{y,Ed} = 8.2 kNm <i>PASS</i> Section 6.3.2.1 M _{b,y,Rd} = 42.2 kl <i>PASS</i>	- Design bend Nm - Design buckl	M _{y,Ed} / M _{c,y,Rd} ling resistance M _{y,Ed} / M _{b,y,Rd} ling resistance	= 0.059 moment exce = 0.196 moment exce	eds design b	ending mom	
Check bending moment - Sec Design bending moment Check buckling resistance - S Buckling resistance moment	tion 6.2.5 M _{y,Ed} = 8.2 kNm PASS Section 6.3.2.1 M _{b,y,Rd} = 42.2 kI PASS	- Design bend Nm - Design buckl le to torsional 07) = 0.207	M _{y,Ed} / M _{c,y,Rd} ling resistance M _{y,Ed} / M _{b,y,Rd} ling resistance deformations	= 0.059 = moment exce = 0.196 = moment exce - Table B.2	eds design b eds design b	ending mom ending mom	
Check bending moment - Sec Design bending moment Check buckling resistance - S Buckling resistance moment Interaction factors k _{ij} for mem	tion 6.2.5 M _{y,Ed} = 8.2 kNm <i>PASS</i> Section 6.3.2.1 M _{b,y,Rd} = 42.2 kl <i>PASS</i>	- Design bend Nm - Design buckl le to torsional 07) = 0.207	M _{y,Ed} / M _{c,y,Rd} ling resistance M _{y,Ed} / M _{b,y,Rd} ling resistance deformations	= 0.059 moment exce = 0.196 moment exce	eds design b eds design b	ending mome ending mome	
Check bending moment - Sec Design bending moment Check buckling resistance - S Buckling resistance moment Interaction factors k _{ij} for mem	tion 6.2.5 M _{y,Ed} = 8.2 kNm <i>PASS</i> Section 6.3.2.1 M _{b,y,Rd} = 42.2 kl <i>PASS</i>	- Design bend Nm - Design buckl le to torsional 07) = 0.207	M _{y,Ed} / M _{c,y,Rd} ling resistance M _{y,Ed} / M _{b,y,Rd} ling resistance deformations	= 0.059 = moment exce = 0.196 = moment exce - Table B.2	eds design b eds design b	ending mom ending mom	
Check bending moment - Sec Design bending moment Check buckling resistance - S Buckling resistance moment Interaction factors k _{ij} for mem Interaction formulae	tion 6.2.5 M _{y,Ed} = 8.2 kNm <i>PASS</i> Section 6.3.2.1 M _{b,y,Rd} = 42.2 kl <i>PASS</i>	- Design bend Nm - Design buckl le to torsional 07) = 0.207	M _{y,Ed} / M _{c,y,Rd} ling resistance M _{y,Ed} / M _{b,y,Rd} ling resistance deformations	= 0.059 = moment exce = 0.196 = moment exce - Table B.2	eds design b eds design b	ending mome ending mome	

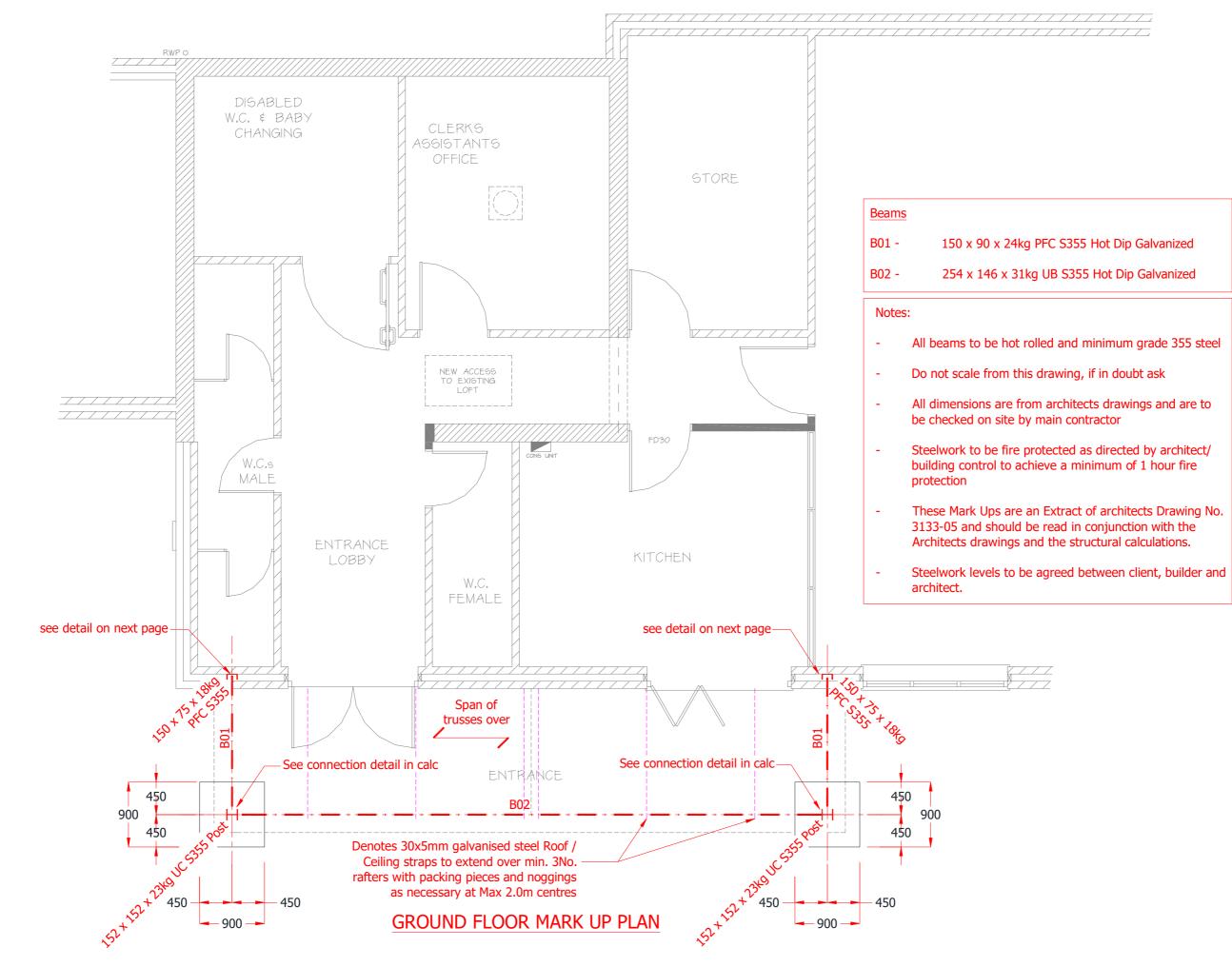
	Project				Job Ref.	
BAYLISS	,	Willington	Sport Pavillion		-	000
CONSULTING	Section				Sheet no./rev.	
il and Structural Engineering Consultants		Structura	I Calculations			51
01332 292192	Calc. by	Date	Chk'd by	Date	App'd	Date
	TGB	01.06.23				
		•	$V_{v,Ed} / V_{c,v,Rd} =$	0.024		
			37 37			
		PA	SS - Design she	ear resistance	exceeds desig	n shear for
Check bending moment - Se	ction 6.2.5					
Design bending moment	M _{y,Ed} = 4.3 kNm	I	Bending resista	ance moment	M _{c,y,Rd} = 139.	5 kNm
			$M_{y,Ed} / M_{c,y,Rd} =$	0.03		
	PASS	- Design bend	ding resistance	moment excee	eds design ben	ding mome
Check buckling resistance -	Section 6.3.2.1					
Buckling resistance moment	M _{b.v.Rd} = 42.2 kM	٧m	M _{v.Ed} / M _{b.v.Rd} =	0.101		
5			ling resistance		eds design ben	ding mome
Interaction factors kij for me	mbers susceptib	le to torsiona	I deformations -	Table B.2		
Interaction formulae	max(0.095, 0.1	12) = 0 112				
	max(0.035, 0.1	12) - U.IIZ				
	max(0.035, 0.1	,	Combined bend	ing and comp	ression checks	s are satisfi
Consider Combination 2 - 1.		PASS -	Combined bend	ing and comp	ression checks	s are satisfi
<u>Consider Combination 2 - 1.</u> Check design 4150 mm alon	<u>0G + 1.0W (Servi</u>	PASS -	Combined bend	ing and comp	ression checks	s are satisfi
	0G + 1.0W (Servi g span	PASS -	Combined bend	ing and comp	ression checks	s are satisfi
Check design 4150 mm alon	0G + 1.0W (Servi g span	PASS -	Combined bend		ression checks δ _{y,Allowable} = 23	
<u>Check design 4150 mm alon</u> Check y-y axis deflection - S	<u>0G + 1.0W (Servi</u> g span Section 7.2.1	PASS -		ection		

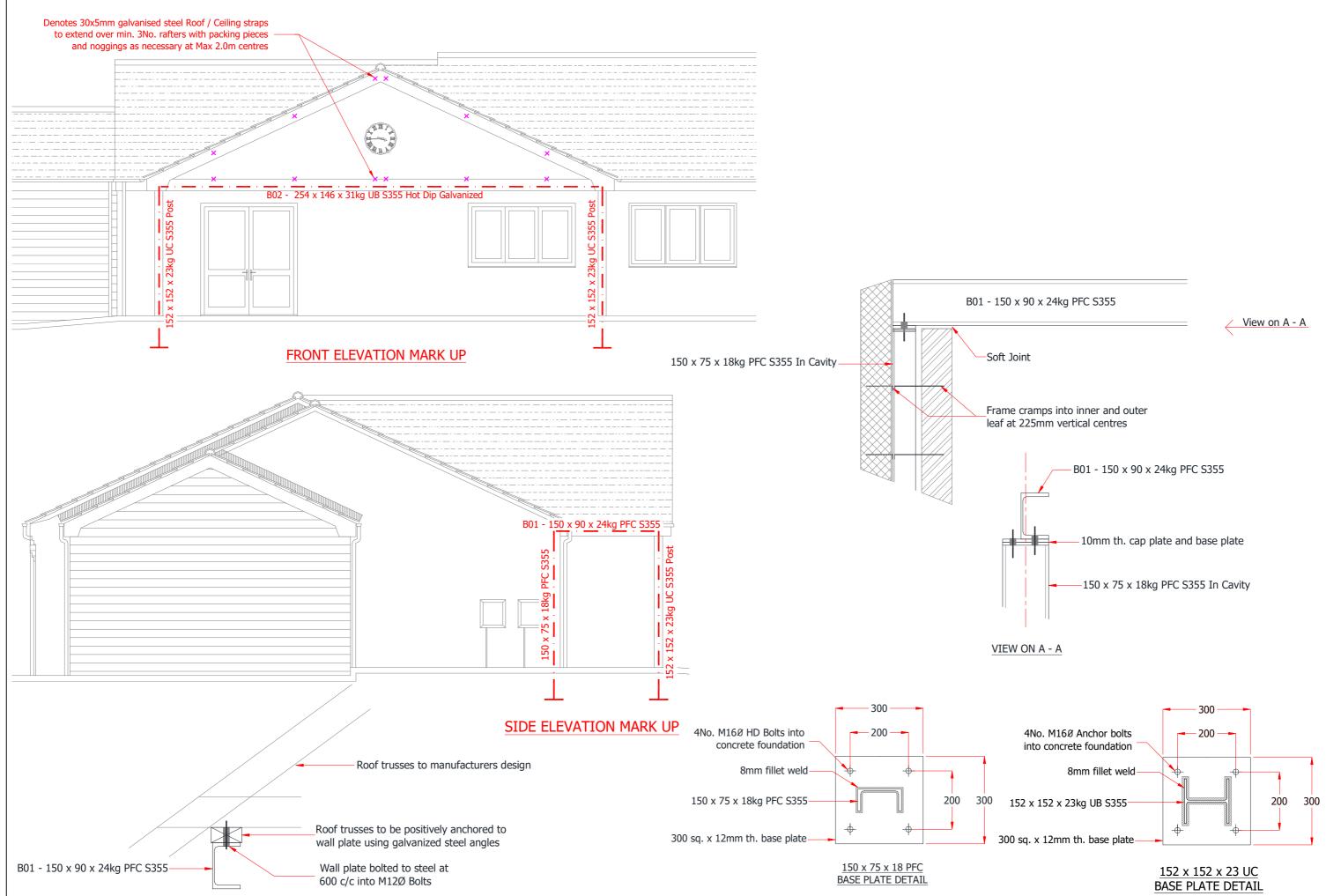

USE 152 X 152 X 23KG UC S355 POSTS AND 254 X 146 X 31KGUB S355 FOR B02


	Project				Job Ref.	
BAYLISS		Willington		6000		
CONSULTING	Section				Sheet no./re	ev.
Civil and Structural Engineering Consultants		Structural	Calculations			52
01332 292192	Calc. by	Date	Chk'd by	Date	App'd	Date
	TGB	01.06.23				
CONNECTION OF B02 TO PO	<u>ST</u>					
Connection Forces (ultimate)						
L. Dead + Live						
VI = - 5.7 kNm						
S = 6.5 kN						
*						
A = 1.9 kN Compression						
Dead + Live + Side Wind	1 * Governs					
VI = - 8.1 kNm						
5 = 7.1 kN						
A = 2.7 kN Comprossion						
A = 2.7 kN Compression						
3. Dead + Gable Wind						
VI = -4.3 kNm						
5 = 4.8 kN						
*						
A = 1.4 kN Compression						

BAYLISS Project Willington Sport Pavillion	Job Ref. 6000
CONSULTING Section	Sheet no./rev.
Structural Calculations	53
Other Structural Engineering Consultants Output Structural Calculations 01332 292192 Calc. by Date Chk'd by Date	App'd Date
TGB 01.06.23	
eam-Column Moment Connection 1	
0.025m	70.0
0.000m	20
8.0	
\wedge	V
UB 254x146x31 S355 (Slope 0.0000°)	
Design Code: BS 5950-1 : 2000 Design Summary	
Design Code: BS 5950-1 : 2000 Design Summary Item Combination Face Uti	lisation State
Design Code: BS 5950-1 : 2000 Design Summary Item Combination Face Uti Moment 1 A Shear 1 A	0.333 Pa 0.024 Pa
Design Code: BS 5950-1 : 2000 Design Summary Item Combination Face Uti Moment 1 A Shear 1 A Beam Stiffener 1 A	0.333 Pa 0.024 Pa Not Check 0.093 Pa
Design Code: BS 5950-1 : 2000 Design Summary Item Combination Face Uti Moment 1 A Shear 1 A Beam Stiffener 1 A Weld 1 A	0.333 Pa 0.024 Pa Not Check
Design Code: BS 5950-1 : 2000 Design Summary Item Combination Face Uti Moment 1 A Shear 1 A Beam Stiffener 1 A Weld 1 A Basic Details	0.333 Pa 0.024 Pa Not Check 0.093 Pa 0.750 Pa
Design Code: BS 5950-1 : 2000 Design Summary Item Combination Face Uti Moment 1 A Shear 1 A Beam Stiffener 1 A Beam Stiffener 1 A Basic Details Face A D. Combination Name Moment Shear Force Ax [kNm] (kN] (kN)	0.333 Pa 0.024 Pa Not Check 0.093 Pa 0.750 Pa ial Load Moment (Sharp End) [kNm]
Design Code: BS 5950-1 : 2000 Design Summary Item Combination Face Uti Moment 1 A Shear 1 A Beam Stiffener 1 A Beam Stiffener 1 A Basic Details Face A Dead + Live + Side Wind -8.1 7.1 2.7	0.333 Pa 0.024 Pa Not Check 0.093 Pa 0.750 Pa ial Load Moment (Sharp End) [kNm]
Design Code: BS 5950-1 : 2000 Design Summary Tace Uti Item Combination Face Uti Moment 1 A Shear 1 A Beam 1 A Stiffener 1 A Weld 1 A Basic Details - - Face A O. Combination Name Moment [kNm] Shear Force [kN] Ax Dead + Live + Side Wind -8.1 7.1 2.7	0.333 Pa 0.024 Pa Not Check 0.093 Pa 0.750 Pa ial Load Moment (Sharp End) [kNm]
Design Code: BS 5950-1 : 2000 Titem Combination Face Uti Moment 1 A Shear 1 A Beam 1 A Beam 1 A Stiffener 1 A Weld 1 A Basic Details Stiffener 1 A Beam Stiffener 1 A Beam 1 A A Beam Basic Details Eace A A Beasic Details Eace A Eace A Eace A Eace A O. Combination Name Moment [kNm] Shear Force [kN] Ax Dead + Live + Side Wind -8.1 7.1 2.7 Face A Item Value Units S.O.P. Level 0.0 m	0.333 Pa 0.024 Pa Not Check 0.093 Pa 0.750 Pa ial Load Moment (Sharp End) [kNm] 0.0
Design Code: BS 5950-1 : 2000 Design Summary Item Combination Face Uti Moment 1 A Shear 1 A Beam Stiffener 1 A Weld 1 A Basic Details Face A Dead + Live + Side Wind -8.1 7.1 2.7 Face A Item Value Units S.O.P. Level 0.0 m Beam angle, θ_b 0.0 °	0.333 Pa 0.024 Pa Not Check 0.093 Pa 0.750 Pa ial Load Moment (Sharp End) [kNm] 0.0
Design Code: BS 5950-1 : 2000 Design Summary Item Combination Face Utile Moment 1 A A Shear 1 A Beam Beam <td>0.333 Pa 0.024 Pa Not Check 0.093 Pa 0.750 Pa ial Load Moment (Sharp End) [kNm] 0.0</td>	0.333 Pa 0.024 Pa Not Check 0.093 Pa 0.750 Pa ial Load Moment (Sharp End) [kNm] 0.0
Design Code: BS 5950-1 : 2000 Design Summary Item Combination Face Uti Moment 1 A Shear 1 A Beam Stiffener 1 A Weld 1 A Basic Details Face A o. Combination Name Moment [kNm] Shear Force [kN] [kl Dead + Live + Side Wind -8.1 7.1 2.7 Face A Item Value Units S.O.P. Level 0.0 m Beam angle, θ_b 0.0 ° Overall joint depth 251.4 mm	0.333 Pa 0.024 Pa Not Check 0.093 Pa 0.750 Pa ial Load Moment (Sharp End) [kNm] 0.0
Design Code: BS 5950-1 : 2000 Design Summary Item Combination Face Uti Moment 1 A Shear 1 A Beam Stiffener 1 A Weld 1 A Basic Details Face A o. Combination Name Moment [kNm] Shear Force Ax [kN] [kl] Dead + Live + Side Wind -8.1 7.1 2.7 Face A Item Value Units S.O.P. Level 0.0 m Beam angle, θ _b 0.0 ° Overall joint depth 251.4 mm Section geometry Design Combination: Dead + Live + Side Wind Moment Capacity Face A, critical Item Value Units	0.333 Pa 0.024 Pa Not Check 0.093 Pa 0.750 Pa ial Load Moment (Sharp End) [kNm] 0.0
Design Code: BS 5950-1 : 2000 Design SummaryItem Combination IFace UtiMoment1AShear1ABeam1AStiffener1AWeld1ABasic Details Face AShear ForceAxCombination NameMoment [kNm]Shear Force [kNm]AxDead + Live + Side Wind-8.17.12.7Face AItem Value UnitsS.O.P. Level0.0Beam angle, θ_b 0.0 0.0 Overall joint depth251.4mmSection geometryDesign Combination: Dead + Live + Side Wind Moment Capacity Face A, criticalValue UnitsItemValue stateUnitsItemValue stateUnitsTension bolt resistance, $\Sigma P_r + N$ 148.5kN	0.333 Pa 0.024 Pa Not Check 0.093 Pa 0.750 Pa cial Load Moment (Sharp End) [kNm] 0.0 Remarl
Design Code: BS 5950-1 : 2000 Design Summary Item Combination Face Uti Moment 1 A A Shear 1 A Beam A Beam 1 A Beam A Stiffener 1 A A Weld 1 A Basic Details Face A Design Combination Name Moment [kNm] Shear Force [kN] Ax Dead + Live + Side Wind -8.1 7.1 2.7 Face A 1 7.1 2.7 Face A 0.0 m Beam angle, θ_b 0.0 m So.P. Level 0.0 m Beam angle, θ_b 0.0 ° Sction geometry 251.4 mm Section geometry Design Combination: Dead + Live + Side Wind Moment Capacity Face A, critical Item Value Units Itemsion bolt resistance, $\Sigma P_r + N$ 148.5 kN	0.333 Pa 0.024 Pa Not Check 0.093 Pa 0.750 Pa cial Load Moment (Sharp End) [kNm] 0.0 Remarl
Design Code: BS 5950-1 : 2000 Design Summary Item Combination Face Uti Moment 1 A Shear 1 A Beam Stiffener 1 A Basic Details Face A o. Combination Name Moment [kNm] [kN] (kN] [k1] Dead + Live + Side Wind -8.1 7.1 2.7 Face A Item Value Units S.O.P. Level 0.0 m Beam angle, θ_b 0.0 ° Overall joint depth 251.4 mm Section geometry Design Combination: Dead + Live + Side Wind Moment Capacity Face A, critical Item Value Units Tension bolt resistance, ΣP_r + N 148.5 kN Column web resistance, P_c 133.5 kN Beam flange bearing, P_c 624.5 kN	0.333 Pa 0.024 Pa Not Check 0.093 Pa 0.750 Pa cial Load Moment (Sharp End) [kNm] 0.0 Remarl
Design Code: BS 5950-1 : 2000Design SummaryItemCombinationFaceUtiMoment1AShear1ABeam1ABasic Details1ABasic DetailsAFace A1ADead + Live + Side Wind-8.17.12.7Face AItemValueUnitsSO.P. Level0.0mBeam angle, θ_b 0.0mSection geometryDesign Combination: Dead + Live + Side Wind251.4mmSection geometryDesign Combination: Dead + Live + Side WindMoment CapacityFace AItemValueUnitsTension bolt resistance, $\Sigma P_r + N$ 148.5kNColumn web resistance, $\Sigma P_r + N$ 148.5kNColumn web resistance, P_c 133.5kNBeam flange bearing, P_c 624.5kNCompression force, F_c 133.5kN	0.333 Pa 0.024 Pa Not Check 0.093 Pa 0.750 Pa cial Load Moment (Sharp End) [kNm] 0.0 Remarl
Design Code: BS 5950-1 : 2000 Design Summary Item Combination Face Uti Moment 1 A Shear 1 A Beam 1 A Beam 3 Stiffener 1 A Basic Details Face A Dead + Live + Side Wind -8.1 7.1 2.7 Face A Item Value Units S.O.P. Level 0.0 m Beam angle, θ_b 0.0 ° Dverall joint depth 251.4 mm Section geometry Design Combination: Dead + Live + Side Wind Amment Capacity Face A, critical Item Value Units Ethem Units Source A, critical Item Value Units Source A, critical Item Value Units Section geometry Design Combination: Dead + Live + Side Wind Amment Capacity Face A, critical Item Value Units Source A, critical Item Value Units Source A, critical Item Value Combination: Dead + Live + Side Wind Amment Capacity Face A, critical Item Value Value Vinits Source Capacity Face A, critical Item Source Suppose Su	0.333 0.024 Not Cha 0.093 0.750 (Sharp End) [kNm] 0.0 Rema

BAYLISS CONSULTING	Project	Willington S	Sport Pavillion		Job Ref. 60 Sheet no./rev.	000
ivil and Structural Engineering Consultants 01332 292192	Calc. by TGB	Structural Date 01.06.23	Calculations Chk'd by	Date		54 Date
Item			alue Units			Remarks
Utilisation ratio Pass Shear Capacity		().333			
Face A, critical Item		Value	Unito			Remarks
Bearing strength, p _b Shear capacity, V _c Shear force, V Utilisation ratio			N/mm² kN			Remarks
Pass Beam Web Capacity						
Face A, critical Item			Utilisatio	n		Status
Beam web Not applicable Stiffener Checks Face A, critical				-		Not applicable
Item			Utilisa	tion		Status
Beam flange (top) Beam flange (bottom) Weld Checks				0.093		Not Checkeo Pass
Face A, critical Item				Utilisation		Status
Tension flange weld (beam btm. flang				0.324		Pass
Compression flange weld (beam top f Tension web weld Shear web weld	lange)			0.750 0.692 0.040		Pass
						Pass Pass Pass
Tension web weld Shear web weld				0.692		Pass
Tension web weld Shear web weld				0.692		Pas
Tension web weld Shear web weld				0.692		Pas
Tension web weld Shear web weld				0.692		Pas
Tension web weld Shear web weld				0.692		Pas
Tension web weld Shear web weld				0.692		Pas
Tension web weld Shear web weld				0.692		Pas
Tension web weld Shear web weld				0.692		Pas
Tension web weld Shear web weld				0.692		Pas
Tension web weld Shear web weld				0.692		Pas
Tension web weld Shear web weld				0.692		Pas
Tension web weld Shear web weld				0.692		Pas
Tension web weld Shear web weld				0.692		Pas
Tension web weld Shear web weld				0.692		Pas
Tension web weld Shear web weld				0.692		Pas
Tension web weld Shear web weld				0.692		Pas
Tension web weld Shear web weld				0.692		Pas
Tension web weld Shear web weld				0.692		Pas


BAYLISS	Project	Willington	Sport Pavillion			Job Ref.	6000
CONSULTING	Section			Sheet no./re			
Civil and Structural Engineering Consultants	- · ·	1	Structural Calculations				55
01332 292192	Calc. by TGB	Date 01.06.23	Chk'd by	by Date		App'd	Date
FOUNDATION LOADS							
Load Combination							
				Δ	1		
a. Dead + Live	V =	15.4 kN 🕁			5.4 kN		
	H =	1.4 kN ◀─			1.4 kN -	→	
	M =	0 kNm	N	1 = 0	kNm		
b. Dead + Live + Side Wind	V =	14.6 kN 🗸	V	= 1	6.9 kN	,	
* Governs	H =	0.9 kN 🗲	н		1.9 kN -		
	M =	0 kNm	Ν	1 = 0	kNm		
c. Dead + Gable Wind	V =	7.5 kN 🖌	v	= 7	.5 kN		
	H =	1.4 kN 🗲	Н	= -	1.4 kN-	→	
	M =	0 kNm	Ν	1 = 0	kNm		
FOUNDATION TO 152	<u>X 23KG UC</u>	<u>POSTS</u>					
PAD FOOTING ANALYSIS	& DESIGN	N (BS8110)					
PAD FOOTING ANALYSIS AN	D DESIGN (BS	8110-1:1997)					
						Tedds calo	culation version 2.0.07



	Project						Job Ref.	
BAYLISS		Wil	lington S	port Pavilli	on			6000
CONSULTING	Section						Sheet no./re	ev.
Civil and Structural Engineering Consultants	Structural Calculations							58
01332 292192	Calc. by	Date		Chk'd by	Date	е	App'd	Date
	TGB	01.0	06.23					
CHECK FACTOR OF SAFETY AG		т						
		<u>.</u>						
Dead load from roof and frame =	9.2	+	1.9			= 11.1 kN	1↓	
							·	
Swt Concrete Base =	24	х	0.9 ²	x	0.6	= 11.6 kN	ı↓	
Overburden =	19	х	0.9 ²	x	0.20	<u>= 3.1 kN</u>	<u>⊥</u> ↓	
						= 25.8 kN		
							•	
Uplift from Wind =	7.76/	2				= 3.88 kN	↓	
							I	
∴ F. O . S =	25.8/	3.88				<u>= 6.65 O</u> ł	<	

∴ UPLIFT DOES NOT OCCUR

