MILNES ASSOCIATES Structural Engineers

The Maples, Station Road, Blackminster.WR11 7TF 07778 033623 darren@milnes-associates.com

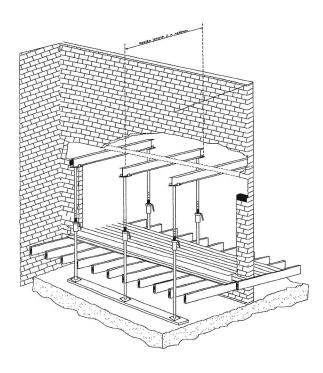
Job No.9714 - Weston Turville Village Hall - Bi-folds - May'24

Kg/m sq. Service KN/m sq. **Loadings Sheet**

ROOF / CEILING

DL

LL 0.75 125 DL 1.25


CAVITY WALL

DL

350

DL 3.50

- 1) Provide 25mm sharp sand/cement dry pack between new steels and existing masonry.
- 2) These calculations are to be approved by Building Control, suggest building notice.
- 3) Openings in cement based mortar walls formed with a disc cutter, refer to engineer where lime based.
- 4) Pad-stones to be precast concrete or engineering brick as specified with min 150mm bearings.
- 5) Condition of existing masonry to be inspected by engineer where forming pad stones at bearing points if soft or lime based brickwork, partial rebuilding or rebuilding of piers may be necessary.
- 6) All new steels to be supplied with two coats zinc phosphate.
- 7) Steels supporting floors encased for half hour fire resistance (2 layer plaster board or intumescent paint).
- 8) Temporary needle propping requirements @ 1.0m cts set 500mm from each side of wall onto solid base.

9) All works to be carried out in accordance with the CDM regulations with the appointment of a CDM co-ordinator if required and preparation of pre-tender health & safety plan with risk assessment:-

BRIEF DESCRIPTION OF WORK Domestic alterations.

MAIN HAZARDS

- Danger of falling masonry during demolition
- Temporary works for new openings.

WT VILLAGE HAVE

JOB 9714

02

		Kal/an	
BS5950	BI-FOLDS	6400	0 4
	GABLE	3.5 , 1.8	\$ 6.5
	ROOF/CEILIRG	1.25,2-5,2,3/	8 2.5 [1]2
B)->	SITECTS 3-5 305-165 US	S USE	B)
355628	PAOSTONES	COS 1-0 N/M	- 7
	38 103/100	11-0- 380 mm	SEE PACE 6
And the second			
TREATE PARTY OF THE PARTY OF TH			
			By: DMM

Milnes Associates Structural Engineers	Project Weston Turville Village Hall				Job no. 9714	
	Calcs for bi-folds			Start page no./Revision		
	Calcs by	Calcs date May'24	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.08

Support conditions

Support A Vertically restrained

Rotationally free

Support B Vertically restrained

Rotationally free

Applied loading

Beam loads Dead full UDL 2.5 kN/m

Dead trapezoidal load 6.5 kN/m from 3250 mm to 3250 mm

Imposed full UDL 2 kN/m Dead self weight of beam × 1

Analysis results

Maximum moment $M_{max} = 69.2 \text{ kNm}$ $M_{min} = 0 kNm$ Maximum shear $V_{max} = 38.3 kN$

 $V_{min} = -38.4 \text{ kN}$

Deflection Maximum reaction at support A δ_{max} = **8.4** mm $R_{A \text{ max}} = 38.3 \text{ kN}$ $\delta_{min} = 0 \text{ mm}$

Unfactored dead load reaction at support A

 $R_{A Dead} = 20 kN$

 $R_{A min} = 38.3 kN$

Unfactored imposed load reaction at support A

R_{A_Imposed} = **6.4** kN

Maximum reaction at support B

 $R_{B \text{ max}} = 38.4 \text{ kN}$

 $R_{B min} = 38.4 kN$

Unfactored dead load reaction at support B Unfactored imposed load reaction at support B

 $R_B Dead = 20.1 kN$ R_{B_Imposed} = 6.4 kN

Section details

Section type UKB 305x165x54 (Tata Steel Advance)

Steel grade S275

From table 9: Design strength py

Thickness of element max(T, t) = 13.7 mmDesign strength $p_v = 275 \text{ N/mm}^2$ Modulus of elasticity E = 205000 N/mm²

Lateral restraint

Span 1 has lateral restraint at supports only

Effective length factors

Effective length factor in major axis $K_x = 1.00$ Effective length factor in minor axis $K_y = 1.00$

Effective length factor for lateral-torsional buckling $K_{LT.A} = 1.20 + 2 \times D$

 $K_{LT.B} = 1.20 + 2 \times D$

	Project				Job no.	
	Weston Turville Village Hall				9714	
Milnes Associates	Calcs for				Start page no./Revision	
Structural Engineers	bi-folds			4		
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	D	May'24				

Classification of cross sections - Section 3.5

 $\varepsilon = \sqrt{[275 \text{ N/mm}^2 / p_y]} = 1.00$

Internal compression parts - Table 11

Depth of section d = 265.2 mm

d / t = 33.6 \times ϵ <= 80 \times ϵ

Class 1 plastic

Outstand flanges - Table 11

Width of section b = B/2 = 83.5 mm

b/T = $6.1 \times \varepsilon \le 9 \times \varepsilon$

Class 1 plastic

Section is class 1 plastic

Shear capacity - Section 4.2.3

Design shear force $F_V = max(abs(V_{max}), abs(V_{min})) = 38.4 \text{ kN}$

d / t < 70 \times ϵ

Web does not need to be checked for shear buckling

Shear area $A_v = t \times D = 2452 \text{ mm}^2$

Design shear resistance $P_v = 0.6 \times p_y \times A_v = 404.6 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment $M = max(abs(M_{s1_max}), abs(M_{s1_min})) = 69.2 \text{ kNm}$ Moment capacity low shear - cl.4.2.5.2 $M_c = min(p_y \times S_{xx}, 1.2 \times p_y \times Z_{xx}) = 232.7 \text{ kNm}$

Effective length for lateral-torsional buckling - Section 4.3.5

Effective length for lateral torsional buckling $L_E = 1.2 \times L_{s1} + 2 \times D = 8301 \text{ mm}$

Slenderness ratio $\lambda = L_E / r_{yy} = 211.131$

Equivalent slenderness - Section 4.3.6.7

Buckling parameter u = 0.889Torsional index x = 23.612

Slenderness factor $v = 1 / [1 + 0.05 \times (\lambda / x)^2]^{0.25} = 0.669$

Ratio - cl.4.3.6.9 $\beta_W = 1.000$

Equivalent slenderness - cl.4.3.6.7 $\lambda_{LT} = \mathbf{u} \times \mathbf{v} \times \lambda \times \sqrt{[\beta_W]} = \mathbf{125.569}$ Limiting slenderness - Annex B.2.2 $\lambda_{L0} = 0.4 \times (\pi^2 \times \mathbf{E} / p_y)^{0.5} = \mathbf{34.310}$

 $\lambda_{LT} > \lambda_{L0}$ - Allowance should be made for lateral-torsional buckling

Bending strength - Section 4.3.6.5

Robertson constant $\alpha_{LT} = 7.0$

Perry factor $\eta_{LT} = max(\alpha_{LT} \times (\lambda_{LT} - \lambda_{L0}) / 1000, 0) = 0.639$

Euler stress $p_E = \pi^2 \times E / \lambda_{LT}^2 = 128.3 \text{ N/mm}^2$

 $\phi_{LT} = (p_y + (\eta_{LT} + 1) \times p_E) / 2 = 242.6 \text{ N/mm}^2$

Bending strength - Annex B.2.1 $p_b = p_E \times p_y / (\phi_{LT} + (\phi_{LT}^2 - p_E \times p_y)^{0.5}) = 89.1 \text{ N/mm}^2$

Equivalent uniform moment factor - Section 4.3.6.6

Moment at quarter point of segment $M_2 = 49.8 \text{ kNm}$ Moment at centre-line of segment $M_3 = 69.2 \text{ kNm}$ Moment at three quarter point of segment $M_4 = 50 \text{ kNm}$ Maximum moment in segment $M_{abs} = 69.2 \text{ kNm}$

Maximum moment governing buckling resistance $M_{LT} = M_{abs} = 69.2 \text{ kNm}$

Equivalent uniform moment factor for lateral-torsional buckling

 m_{LT} = max(0.2 + (0.15 × M₂ + 0.5 × M₃ + 0.15 × M₄) / M_{abs}, 0.44) = **0.917**

	Project Weston Turville Village Hall				Job no. 9714	
Milnes Associates Structural Engineers	Calcs for bi-folds			Start page no./Revision 5		
	Calcs by	Calcs date May'24	Checked by	Checked date	Approved by	Approved date

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment

 $M_b = p_b \times S_{xx} = \textbf{75.3 kNm}$

 $M_b / m_{LT} = 82.2 \text{ kNm}$

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads

Limiting deflection

 δ_{lim} = L_{s1} / 360 = 17.778 mm

Maximum deflection span 1

 $\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 8.372 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit

9)·1X