

PENZANCE DRY DOCK (2009) LTD

PENZANCE DRY DOCK PENZANCE TR18 4BW

GROUND INVESTIGATION REPORT

Contract: 24093

Date: July 2024

REGISTERED OFFICE

9 BROAD STREET TRURO CORNWALL TRI IJD UK

KARN GEOSERVICES LTD Registered in the UK & Wales Company Registration No. 13414537

GROUND INVESTIGATION REPORT

carried out at

PENZANCE DRY DOCK

PENZANCE TR18 4BW

Prepared for

PENZANCE DRY DOCK (2009) LTD c/o MBA Consulting Boscawen House Chapel Hill Truro TR1 3BN

Contract: 24093

Date: July 2024

EXECUTIVE SUMMARY

The following information provides a summary of the main findings of the investigation (ref: 24093/GIR dated July 2024). No reliance should be placed on this summary alone, the referenced report must be read and understood in its entirety to put the information contained herein into context.

Commissioning	Kana Casaan jaas I taluwas sama jasis na diku Pananas Dau Dask I tal			
Commissioning and	Karn Geoservices Ltd was commissioned by Penzance Dry Dock Ltd			
purpose of assessment	to carry out a Geoenvironmental and Geotechnical Investigation			
	Report (GIR) at Penzance Dry Dock (2009) Ltd, Wharf Road,			
	Penzance, TR18 4BW and grid reference SW 47570 30090. The			
	overall aim of the project was to assess land contamination			
	sources and geotechnical constraints to the proposed			
	development.			
	DESK-BASED ASSESSMENT			
Site description and	At the time of the walkover survey the site comprised a dry dock			
proposed development	and shipbuilding yard. The site comprised the dry dock located in			
	the centre of the site and extending in a northwest - southeast			
	orientation. The remainder of the site comprised warehouse and			
	office buildings with associated areas of concrete hard standing.			
	It is understood the proposed development will comprise the			
	installation of a 50-tonne crane on steel rails within the dry dock			
	along with rectoration work improvements to the existing			
	along with restoration work, improvements to the existing			
	warehouse and onice buildings, and the demonstron and			
	construction of a new tollet block and carpentry building.			
History of site and	The site is first shown to comprise two dry docks along with three			
surrounding area	capstans. The southern boundary of the site crosses through a			
	bonded store. A number of other industrial buildings are present			
	around the southern and western boundaries as well as on the			
	eastern side of the site. The northern and eastern sides of the site			
	are covered by rock, showing high water mark and ordinary tide			
	lines. The 1877-1879 map labels a building in the south of the			
	site at a smithy.			
	From 1908 The two previously mentioned dry docks are no longer			
	shown and one graving dock is shown in the north of the site. The			
	northern and western parts of the site previously shown as			
	rock/foreshore are now shown as land. Extensions to the industrial			
	buildings in the southwest corner of the site have taken place. The			
	1936 plan shows additional industrial buildings in the southwest			
	of the site. The 1962–1963 man lists the buildings on site as a			
	works From the 1980 to 1999 man the site is now shown to			
	comprise of a shiphuilding yard and dry dock. No further			
	comprise of a simplification yard and uny dock. NO fulfiller			
	observable changes to the site nave been noted until the most			
	recently published map dated 2024			
Previous Site	No previous investigation reports were provided to KGL at the time			
Investigation Reports	of writing.			

Geology and environmental setting	The site is underlain by the Mylor Slate Formation described as Dark grey, locally green-grey slates, interbedded with thin bands and laminae of sandstone, graded and locally cross-bedded siltstone, basic lavas and sedimentary breccias. The metamorphic bedrock formed between 382.7 and 358.9 million years ago during the Devonian period. With reference to the current site use there has been significant previous construction, including infilling of historical dry docks on the site and therefore the presence of Made Ground is also likely.
Site reconnaissance	The research has identified evidence of potential hazards
findings	associated with underlying ground conditions, either natural or
	man-made, and therefore it is recommended that further work be
	carried out to confirm the presence, nature or extent of those
	hazards anticipated to impact on the site.
Geotechnical	The research has identified evidence of potential hazards
constraints	associated with underlying ground conditions, either natural or
assessment	man-made, and therefore it is recommended that further work be
	carried out to confirm the presence, nature or extent of those
	nazards anticipated to impact on the site.
initial conceptual site	Potentially complete contaminant linkages identified with a risk
model (CSM) and	with Made Cround background geochemistry Dry
premining TISK	dock/Ship/boathuilding vard and Radon onsite Uncertainties and
	data gans have been identified in the CSM at desk study stage and
	considered in the design of the intrusive investigation.
I	NTRUSIVE INVESTIGATION & ASSESSMENT
SI Scope	A ground investigation was commissioned to address the geo-
	environmental and geotechnical constraints identified within the
	preliminary investigation report. The investigation comprised
	windowless sampler boreholes and rotary boreholes followed by
	subsequent laboratory testing and reporting.
SI Factual Findings	The investigation confirmed the presence of Made Ground to a
	maximum depth of 5.96mbgl overlying the weathered and intact
	bedrock of the Mylor Slate Formation. The intact bedrock was
	encountered at depths between 3.90m and 5.95mbgl and
	comprised a weak becoming medium strong to strong with depth,
	partially weathered thinly laminated brown, grey, and dark grey
	MUDSTONE with occasional quartz and iron pyrite veining.
	Groundwater was encountered during the investigation and the
	levels varied significantly according to the tides.
Ketined Conceptual	The results of the site investigation and GQRA indicate that
Sile Model and	relevant contaminant linkages are absent based on the data
geoenvironmental	available and therefore the site is suitable for the proposed end
assessment	further assessment is considered to be required
	ruttier assessment is considered to be required.

Geotechnical	Based on the ground conditions encountered and subsequent
Assessment	laboratory testing it is considered that any proposed foundations
	around the existing dry dock (exploratory hole locations BH01–BH05
	& DP01) would require a piled foundation solution. However, the
	proposed replacement carpenter's workshop located in the south of
	the site can be founded on conventional strip foundations.
	The investigation within the existing warehouse buildings showed
	the concrete slab to be approximately 120mm to 130mm thick. It is
	understood the proposed development will include the replacement
	of the existing slab or construction of a new slab over the old slab.
	Given the nature of the Made Ground across the site it is
	recommended the old slab is removed and a new slab constructed.
	This is due to the variability of the underling material and potential
	for buried tanks to be present. Historical mapping and anecdotal
	evidence indicate tanks have been present in this area; however,
	there are no records of the exact location or them being removed
	leaving a residual risk as the tanks rust.
Recommendations -	The site lies within an area where any permanent structures will
including issues for	require full radon protection measures.
further assessment	

Author

Oliver Scott BSc (Hons) MSc CEng ACSM MIMMM FGS oliver@karn-geo.co.uk

Technical Reviewer

Lucy Quick BSc (Hons), ACSM, AIEMA, MCorIE, MIEnvSc, CEnv lucy@karn-geo.co.uk

Quality Reviewer Mike Austin BEng, ACSM, FGS, MCorIE, MIEnvSc, CEnv mike@karn-geo.co.uk

Applie

	Revision Control Sheet			
Revision Number	Date	Reason for Issue	Format*	
0	24/07/2024	First Issue	E	

* E = Electronic / H = Hard Copy

CONTENTS

EXECUTIVE SUMMARY

1.0	INTR 1.1	ODUCTION General	10 10
	1.2	Proposed Development	11
	1.3	Objectives	11
	1.4	Existing Reports	12
	1.5	Limitations	12
2.0	SITE 2.1	DETAILS Site Location	13 13
	2.2	Site Description	13
	2.3	Surrounding Land Uses	14
	2.4	Development Plans	14
3.0	DESK 3.1	BASED ASSESSMENT Geological Setting	15 15
4.0	SITE 4.1	INVESTIGATION STRATEGY & METHODOLOGY Introduction	16 16
	4.2	Objectives	16
	4.3	Selection of investigation methods	16
	4.4	Investigation Strategy	16
	4.5	Implementation of Investigation works	17
5.0	LABC 5.1	ORATORY TESTING Geotechnical Laboratory Testing	19 19
	5.2	Geoenvironmental Laboratory Testing	19
6.0	GRO 6.1	UND CONDITIONS ENCOUNTERED Strata Encountered	21 21
	6.2	Made Ground	21
	6.3	Mylor Slate Formation	22
	6.4	Groundwater	23
7.0	GEO ⁻ 7.1	FECHNICAL ASSESSMENT General	24 24
	7.2	Structural Details	24
	7.3	Foundation Recommendations - Dry Dock & Toilet Block	24
	7.4	Foundation Recommendations - Carpenters Workshop	25

	7.7	Excavations	27
	7.8	Chemical Attack on Buried Concrete	27
	7.9	Roads and Hardstanding	28
8.0	GEOE 8.1	ENVIRONMENTAL ASSESSMENT Refinement of the Conceptual Site Model	30 30
	8.2	Linkages for assessment	30
	8.3	Methodology and assessment of soil results	31
	8.4	Exposure to impacted soil by site users	31
	8.5	Data set 1 - Made Ground	31
	8.6	Data set 2 - weathered Mylor Slate Formation	32
	8.7	Summary of Data sets	32
	8.8	Inhalation Exposure of site users to asbestos fibres	32
	8.9	Protection of Services	32
9.0	PRELI 9.1	MINARY WASTE CLASSIFICATION Hazardous waste assessment	34 34
10.0	CON0 10.1	CLUSIONS Geoenvironmental Assessment	36 36
	10.2	Recommendations	36
	10.3	Other Considerations	37
	10.4	Archaeology	37
	10.5	Ecology	37
	10.6	Unexploded Ordnance (UXO)	37
11.0	REFE	RENCES	38
12.0	CONS	STRAINTS	41

APPENDIX 1 Figure A1.1 Figure A1.2	- - -	DRAWINGS Site Location Plan Exploratory Hole Location Plan
APPENDIX 2	- - -	SITE WORK Rotary Borehole Records Window Sample Borehole Records
APPENDIX 3 Test Report 73427	-	GEOTECHNICAL TESTS Results of Geotechnical Tests – Soils / Rock
APPENDIX 4 Test Report 24–19786 Test Report 24– 04623	- - -	GEOENVIRONMENTAL TESTS Results of Contamination Tests – Soils Results of Contamination Tests – Soils
APPENDIX 5	-	GEOENVIRONMENTAL ASSESSMENT General Notes on Chemical Contamination

1.0 INTRODUCTION

1.1 General

On the instructions of MBA Consulting, consulting engineers to, Penzance Dry Dock, a Geoenvironmental and Geotechnical Investigation was undertaken to determine ground conditions to enable foundation and road/hard standing design to be carried out, together with a geoenvironmental risk assessment and a review of gas emissions.

The site boundary and current site layout are shown in Appendix 1, Figures 1 and 2. The project was carried out to an agreed brief as set out in Karn Geoservices Ltd proposal (Ref. Q0704, dated April 2024).

This report should be read in conjunction with the Preliminary Investigation Report (PIR) which was reported under reference 24093/PIR in July 2024.

This report has been prepared for the sole use of the Client for the purpose described and no extended duty of care to any third party is implied or offered. Third parties using any information contained within this report do so at their own risk.

It is recommended that a copy of this report be submitted to the relevant authorities to enable them to carry out their own site assessment and provide any comments.

This report has been based, in part, on information supplied by others. The report has been prepared on the basis of that information being accurate.

The comments given in this report and the opinions expressed herein are based on the information received, the conditions encountered during site works, and on the results of tests made in the field and laboratory. However, there may be conditions prevailing at the site which have not been disclosed by the investigation and which have not been taken into account in the report.

The comments on groundwater conditions are based on observations made at the time the site work was carried out. It should be noted that groundwater levels vary owing to seasonal or other effects.

1.2 Proposed Development

It is understood the proposed development will comprise the installation of a 50tonne crane on steel rails within the dry dock along with restoration work, improvements to the existing warehouse and office buildings, and the demolition and construction of a new toilet block and carpentry building. A planned layout of the site has not been provided to KGL at the time of writing.

1.3 Objectives

The objective of the work is:

- to identify any land contamination and/or geotechnical constraints to the proposed development and to support discharge of relevant planning conditions and relevant building control requirements.
- to identify the need for any additional investigation or remediation works to demonstrate that the site is suitable for its proposed use.

The scope of this assessment has been developed in accordance with relevant British Standards and authoritative technical guidance as referenced through the report. The assessment of the contamination status of the site is in line with the technical approach presented in CLR 11 Model Procedures for the Management of Land Contamination (Environment Agency, 2004) and in general accordance with BS 10175: 2011 + A2 2017 (BSI, 2017). It is also compliant with relevant planning policy and guidance.

The scope of the intrusive investigation has been designed in line with the recommendations of BS5930:2015+A1:2020 Code of practice for ground investigations (BSi, 2020), which maintains compliance with BS EN 1997-1 and 1997-2 and their related standards. It has also been developed in general accordance with BS 10175: 2011 + A2 2017.

The scope of works for the assessment has included the following:

- design and implementation of an intrusive investigation, in situ testing, sampling, laboratory environmental and geotechnical testing.
- interpretation of data to develop a refined conceptual site model (CSM)
- generic quantitative risk assessment (GQRA) to evaluate potentially complete contaminant linkages identified in the refined CSM.

- identification of the need for further action, e.g. supplementary intrusive investigations/ monitoring, remediation works or other mitigation, if any.
- interpretation of ground conditions and geotechnical data to provide preliminary recommendations with respect to foundations and infrastructure design.
- preparation of this factual and interpretative report with recommendations for further works and/or remediation as necessary.

1.4 Existing Reports

No existing reports relevant to the site assessment have been provided to Karn Geoservices Ltd.

1.5 Limitations

The comments given in this report and the opinions expressed are based on the ground conditions encountered during the site work and on the results of tests made in the field and in the laboratory. However, there may be conditions pertaining to the site that have not been disclosed by the investigation and therefore could not be taken into account. In particular, it should be noted that there may be areas of made ground not detected due to the limited nature of the investigation or the thickness and quality of made ground across the site may be variable. In addition, groundwater levels and ground gas concentrations and flows may vary from those reported due to seasonal, or other, effects and the limitations stated in the data should be recognised.

Asbestos is often present in soils in discrete areas. Whilst asbestos-containing materials may have been locally encountered during the fieldworks or supporting laboratory analysis, the history of the site indicates that asbestos may be present in soils and could be encountered during more extensive ground works.

Preliminary geotechnical recommendations are presented, and these should be verified once proposed construction and structural design proposals are confirmed.

2.0 SITE DETAILS

2.1 Site Location

Site location details are presented below in Table 1.

Table I. Sile Location Details	Table	1: Site	Location	Details
--------------------------------	-------	---------	----------	---------

Site name	Penzance Dry Dock
Full site address and postcode	Penzance Dry Dock (2009) Ltd, Wharf Road, Penzance, TR18 4BW
National Grid Reference	SW 47570 30090

2.2 Site Description

The site boundary and current site layout are shown on Figure 2. The site is irregular in shape and covers an area of c. 0.43 hectares. At the time of the walkover survey the site comprised a dry dock and shipbuilding yard.

The site comprised the dry dock located in the centre of the site and extending in a northwest – southeast orientation. The remainder of the site comprised warehouse and office buildings with associated areas of concrete hard standing.

The site was generally level with the exception of the drydock. The dry dock was approximately 5–6m deep. The dry dock was open / the gates had been removed at the time of the walkover survey and therefore surface water was present on the site.

The western part of the site is largely covered by buildings comprising a large warehouse building used for boat building, repairs, and maintenance. The buildings steel framed and clad with corrugated metal sheeting. Other buildings across the site included offices, a carpenters building, and storage buildings. These buildings were constructed of stone or block, with a mixture of pitched and flat roofs. A toilet block in the north of the site was observed to be subsiding and this is likely due to the degradation of an underlying tank.

2.3 Surrounding Land Uses

The site is located in Penzance, within a predominantly residential and industrial setting. Immediate surrounding land uses are described in Table 2.

North	Abbey Basin
South	Residential and commercial properties
East	Quay Road with Penzance Harbour beyond
West	Residential and commercial properties

Table 2: Surrounding Land Uses

2.4 Development Plans

No proposed development plans have been provided to KGL at the time of the writing.

No details of the proposed ground levels have been provided therefore for the purpose of this report it has been assumed that the current levels will remain unchanged.

3.0 DESK BASED ASSESSMENT

3.1 Geological Setting

Details of the geology underlying the site the site have been obtained from the relevant BGS sheet and are characterised by the succession recorded in Table 3.

Strata	Description	Estimated thickness	Permeability
Made Ground	Although not shown on the geological maps, there is likely to be Made Ground on the site associated with the previous development. The composition, thickness, and extent of any Made Ground is unknown without intrusive investigation.	<5m	Unknown
Mylor Slate Formation	The geological map shows the site to be underlain by the Mylor Slate Formation described by the BGS as Dark grey, locally green-grey slates, interbedded with thin bands and laminae of sandstone, graded and locally cross-bedded siltstone, basic lavas and sedimentary breccias. The Mylor Slate Formation is often encountered as cohesive and granular soils overlying the bedrock which may be at some depth below ground level.	~2km	Secondary A Aquifer

Table	3:	Summary	of	Site	Geology
-------	----	---------	----	------	---------

Relevant information sources: BGS Geoindex \boxtimes BGS borehole logs \square Previous SI reports \square

4.0 SITE INVESTIGATION STRATEGY & METHODOLOGY

4.1 Introduction

Karn Geoservices Ltd carried out intrusive investigation works between the 7th and 13th of June 2024 followed by the subsequent laboratory testing and reporting.

4.2 Objectives

The specific objectives of the investigation were as follows:

- to establish the ground conditions underlying the site including the extent and thickness of any Made Ground
- to investigate specific potential sources of contamination identified in initial CSM
- to determine groundwater depth
- to assess geotechnical properties of soils

4.3 Selection of investigation methods

The techniques adopted for the investigation were chosen with consideration of the objectives and site constraints, which are described below.

A windowless sampler rig was chosen for the site based on the anticipated geology and access requirements. The windowless sampler enabled the collection of in-situ geotechnical data and the opportunity to collect suitable samples.

A multipurpose rotary drill rig was used for the boreholes to allow dynamic sampling with insitu testing followed by rotary coring. The rotary rig allowed for good coverage of the site within the time frame and penetration of the rock to prove depths.

Prior to intrusive works, utility service plans were obtained and buried service clearance undertaken in line with Karn Geoservices Ltd health and safety procedures.

4.4 Investigation Strategy

The ground investigation was carried out using intrusive ground investigation techniques in general accordance with the recommendations of BS5930:2015+ A1:2020 Code of practice for ground investigations, which maintains compliance with

BS EN 1997-1 and 1997-2 and their related standards. Whilst every attempt was made to record full details of the strata encountered in the boreholes, techniques of hole formation and sampling will inevitably lead to disturbance, mixing or loss of material in some soils and rocks.

The investigation strategy involved targeted boreholes focussing on the area of the proposed alterations.

The constraints to the investigation were as follows:

- Access limitations
- Buried services
- Existing buildings and hard standing
- Exploratory hole WS03 due UXO scan anomalies.

Details of the investigation locations, installations and rationale are presented in Table 4. Five rotary boreholes were drilled across the site to a maximum depth of 12.40mbgl and five windowless sampler boreholes were drilled to a maximum depth of 3.00mbgl before all exploratory holes were backfilled with the available arisings.

Table 4: Exploratory hole and location rationale

Investigation type	Number	Designation	Rationale examples below
Boreholes by	5	WS01 - WS05	To prove the geological succession
dynamic/ windowless			beneath the site, obtain geotechnical
sampling methods			data, and
Boreholes by dynamic	5	BH01 - BH05	To accurately determine the depths to
sampling and rotary			bedrock and collect suitable samples
coring			for laboratory testing.

4.5 Implementation of Investigation works

The exploratory holes were logged by an engineer in general accordance with the recommendations of BS 5930:2015+A1:2020 (which incorporates the requirements of BS EN ISO 14688–1, 14688–2 and 14689–1). The fieldwork was supervised full-time by an engineering geologist.

Samples collected were typically classed a Category 'C' in accordance with BSI (2007), and assessment of strength and consistency were undertaken using traditional field techniques as described in BSI (2002). Soils have been logged, generally in accordance with BSI (2004). Where relevant, the bedrock was logged in accordance with BSI (2003).

The soil sampling and analysis strategy was designed to characterise each encountered soil strata, permit an assessment of the potential contaminant linkages identified and investigate the geotechnical characteristics. In addition, samples were taken to allow for geo-environmental and geotechnical testing to be undertaken.

Soils collected for laboratory analysis were placed in a variety of containers appropriate to the anticipated testing suite required. They were dispatched to the laboratory in cool boxes under chain of custody documentation. Samples were stored in accordance with the Karn Geoservices Ltd quality procedures to maintain sample integrity and preservation and to minimise the chance of cross contamination.

The profiles of strata, or other features, were recorded as excavation proceeded and measurements taken from ground level. Trial pits were entered where safe to do so to allow logging, in-situ testing and sampling. Subsoil samples were taken where appropriate for subsequent laboratory examination and analyses.

The locations of the exploratory holes are shown on the Exploratory Hole Location Plan, enclosed as Appendix 1. Exploratory hole records are enclosed in Appendix 2, and in addition to detailed strata descriptions give information on any groundwater, stability and samples recovered.

5.0 LABORATORY TESTING

5.1 Geotechnical Laboratory Testing

Details of the geotechnical laboratory testing undertaken on selected samples obtained during the site investigation are detailed below in Table 5.

Table 5: Summary	∕ of	Geotechnical	Laboratory	Testing
------------------	------	--------------	------------	---------

Test	Number of Samples
Particle Size Distribution (PSD) by wet sieving	2
Liquid and Plastic (Atterberg) Limits	1
Moisture Content	1
pH & water-soluble sulphate - Soils	6
Point Load Testing	28
Uniaxial Compressive Strength	1

Laboratory testing was undertaken, where appropriate, in accordance with BS 1377–2:2022 Method of Tests for Soils for Civil Engineering Purposes or, where superseded, by the relevant part of BS EN ISO 17892:2014 Geotechnical investigation and testing – Laboratory Testing of Soil. Tests carried out in order to classify the concrete class required on–site have been undertaken following the procedures within BRE SD1:2005. The test results are enclosed as Appendix 3. All testing was undertaken in UKAS accredited laboratories.

5.2 Geoenvironmental Laboratory Testing

Details of the geoenvironmental laboratory testing undertaken on selected samples obtained during the site investigation are detailed below in Table 6. Laboratory testing was undertaken at a UKAS accredited laboratory with ISO17025 and MCERTS accredited test methods were specified where applicable for geoenvironmental testing and as shown in the laboratory test certificates appended.

Test	Number of Samples
Metal & metalloid suite: Arsenic, Boron (water soluble), Cadmium,	11
Chromium (total & hexavalent), Copper, Lead, Mercury, Nickel,	
Selenium, Zinc	
Speciated Polycyclic Aromatic Hydrocarbons (USEPA 16)	11
Total petroleum hydrocarbons (TPH) - total C10-C40	5
Total petroleum hydrocarbons (TPH) - CWG bandings	6
Organic matter contents	11
Asbestos screens	11
Phenols - total monohydric	11
BTEX & MTBE	11
Tributyltin (TBT)	2
pH Value & Moisture Content	11

Table 6: Summary of Geoenvironmental Laboratory Testing

The geo-environmental laboratory test results are enclosed as Appendix 4.

6.0 GROUND CONDITIONS ENCOUNTERED

6.1 Strata Encountered

The sequence of the strata encountered during the investigation generally confirms the anticipated geology as interpreted from the geological map.

Interpolation of strata depths between locations should be undertaken with caution, particularly for depths of Made Ground where structures are still present at the time of the investigation.

For the purpose of discussion, the ground conditions encountered during the fieldworks are summarised in Table 7 below:

Stratum	Depth End	countered (m)	Strata Thickness (m)	
Stratum	From	То		
Made Ground	0.00	0.40 - 5.95	0.40 to 5.95	
Mylor Slate Formation	0.40 to 5.95	>12.401	Unproven	
Notes: ¹ Base of strata not encountered				

Table 7: Summary of Strata Encountered

6.2 Made Ground

Made Ground was encountered at every exploratory hole location to a maximum depth of 5.95mbgl and varied in composition. The Made Ground generally comprised a concrete slab overlying reworked natural soils.

The thickness of Made Ground across the site varied but overall, the greatest thicknesses were encountered in the northeast of the site around the dry dock and thinnest in the south of the site.

The concrete slab thickness within the existing workshop buildings was recorded as 0.12m to 0.13m thick. The boreholes positioned around the existing dry dock recorded concrete thicknesses between 0.20m and 0.60m.

The underlying reworked natural soils were encountered up to a maximum depth of 5.95mbgl and comprised various colours of sandy clayey gravels and sandy gravelly clays. The reworked natural gravel comprised a sub-angular to sub-rounded fine to coarse mudstone, along with anthropogenic material including concrete, brick, wood,

charcoal, slag, and foreign lithologies. Timber sleepers were encountered at exploratory hole location BH03.

Standard Penetration Tests (SPT) were undertaken at regular intervals within the windowless sampler and rotary boreholes. The tests within the Made Ground recorded 'N60' values between 5 and >50 reflecting the poorly sorted and variable nature of the stratum.

6.3 Mylor Slate Formation

The Mylor Slate Formation was encountered at depths between 0.40m and 5.95mbgl and varied in composition. Exploratory holes BH01, BH02, BH04, WS03, WS04, and WS05 encountered weathered soils to depths between 5.00m and 5.60mbgl. Exploratory holes BH03, BH05, WS01, and WS02 encountered the intact bedrock directly below the Made Ground.

The weathered soils generally comprised a greyish brown clayey sandy GRAVEL with the exception of exploratory hole WS04 where the soils were recovered as a gravelly sandy CLAY. The gravel component was described as an angular to sub-rounded fine to coarse mudstone.

Standard Penetration Tests within the weathered Mylor Slate Formation recorded 'N60' values between 11 and >50 indicating the relative density of the material to be medium dense to very dense. The SPT values generally increased with depth reflecting the anticipated weathering profile.

Two samples of the weathered soils were dispatched to the laboratory for geotechnical classification testing. Particle Size Distribution (PSD) tests showed the material to comprise 4–55% Gravel, 9–33% Sand, and 12–87% Clay/Silt fractions.

A sample of cohesive soil from exploratory hole WS04 at 2.80m-3.00mbgl was scheduled for Atterberg Limit Testing. The test returned a 'NP' or Non-Plastic value, classifying the soil as being of no volume change potential in accordance with NHBC Standards Chapter 4.2.

The intact bedrock was encountered at depths between 3.90m and 5.59mbgl within the rotary boreholes. The intact bedrock generally comprised a weak becoming medium

strong to strong with depth, partially weathered thinly laminated brown, grey, and dark grey MUDSTONE with occasional quartz and iron pyrite veining. The core was noted to be locally disaggregated around some of the quartz veins.

The fractures were typically very closely to closely spaced smooth planar and locally stepped dipping sub horizontal to 40° with occasional steeper fractures dipping 70–80°. Fractures were generally tight, but some fracture surfaces showed orangish brown surface staining and locally some minor (<2mm) clay infill.

The core was sub-sampled and suitable samples recovered from depths between 5.23m and 12.54mbgl were scheduled for point load testing (axial and diametrical) and one Uniaxial Compressive Strength (UCS) test. The UCS test was undertaken on a sample obtained from BH04 at a depth of 8.20m and 8.38mbgl and recorded a maximum strength value of 16.1MPa before a single shear failure occurred.

Fourteen samples were scheduled for point load tests with both axial and diametrical tests undertaken on all samples. The results have been converted to Uniaxial Compressive Strength (UCS) using a conservative conversion factor of 22 and range between 0.66MPa and 87.5MPa for the axial tests, and 0.22MPa and 38.7MPa for the diametrical tests.

The rock testing provides a snapshot of rock strength; however, caution must be used when interpreting from rock strength testing of weathered bedrock. The samples obtained for testing are likely to be the best examples because the weaker/ lower strength samples would be too fragile and poor quality for testing. Hence, it is not a true representation of the overall rock strength.

6.4 Groundwater

Groundwater was encountered during the intrusive investigation works as detailed on the logs in Appendix 2. Groundwater was encountered at depths generally ranging from 4.00m and 11.50mbgl. The variation in depth is attributed to tidal changes affecting the groundwater level at the time of the strike.

It should be noted that groundwater levels might fluctuate for a number of reasons including seasonal and tidal variations. On-going monitoring would be required to establish both the full range of conditions and any trends in groundwater levels.

7.0 GEOTECHNICAL ASSESSMENT

7.1 General

Based on the guidance given in BS EN 1997-1:2004, the proposed development may be classed as Geotechnical Category 2, a 'conventional types of structure or foundation with no exceptional risk, difficult ground, or loading conditions'.

Geotechnical Category 2 designs will normally involve quantitative geotechnical analysis, the data for which may be obtained from routine field and laboratory testing procedures.

The intention of this assessment is to determine the geotechnical properties of the strata encountered, and to review their influence on the ground engineering options for the proposed development.

7.2 Structural Details

It is understood that the proposed development is to involve the installation of a 50tonne crane on steel rails within the dry dock along with restoration work, improvements to the existing warehouse and office buildings, and the demolition and construction of a new toilet block and carpentry building.

No specific structural details were provided at the time of preparation of this report; therefore, the following recommendations fall outside of the Eurocode 7 legislation.

7.3 Foundation Recommendations - Dry Dock & Toilet Block

Based on the ground conditions encountered and subsequent laboratory testing it is considered that any proposed foundations around the existing dry dock (exploratory hole locations BH01-BH05 & DP01) would require a piled foundation solution.

It is recommended that short bored and cast piles are taken through any Made Ground and weathered soils and emplaced within the intact Mylor Slate Formation with a minimum 3m rock socket. Based on the rotary boreholes the piles will be approximately 8-9m in length including the rock socket. The carrying capacity of piles depends not only on their size and the ground conditions. but also, on their method of installation. Pile design and installation are continuously evolving processes and state-of-the-art techniques are often employed before they reach the public domain, perhaps several years down the line. Therefore, it is recommended that specialist Piling Contractors be contacted as to the suitability and carrying capacity of their piles in the ground conditions pertaining to the site.

The exploratory holes encountered variable Made Ground to depths between 3.90m and 5.95mbgl and included cobbles of altered mudstone, basic igneous rock (elvan / greenstone), and anthropogenic material such as wooden sleepers. The difficulties in drilling through this type of material are likely to be similar for the piling contractor. It must be noted that groundwater was encountered during the investigation and may affect the installation of piles.

7.4 Foundation Recommendations - Carpenters Workshop

Based on the ground conditions encountered and subsequent laboratory testing it is considered that the proposed replacement carpenter's workshop located in the south of the site can be founded on conventional strip foundations.

Strip foundations for the carpenter's workshop must be taken through any Made Ground and emplaced within uniform granular soil of the Mylor Slate Formation at a minimum depth of 1.00mbgl unless intact rock is encountered at a shallower depth. Based on exploratory hole WS05 located close to the existing carpenter's workshop weathered granular soils are present below 0.50mbgl.

7.5 Shallow Foundations

The recommendations for the design and construction of shallow foundations in relation to the ground conditions are set out in Table 8.

Design/construction considerations	Design/construction recommendations
Founding stratum	Granular or intact Mylor Slate Formation
Depth	Foundations should be taken to a minimum depth of 1.00m below the final or existing ground level, whichever is lower, and at least 0.2m into the founding stratum below any overlying Made Ground or to any greater depth required in respect of the special design considerations given below. If bedrock is encountered at the southern part of the site (yet to be demolished) then the bedrock must be chased across the site so foundations are sat within uniform stratum.
Allowable bearing capacity	Strip foundations with a width of 0.60m and constructed on the granular or intact Mylor Slate Formation at a minimum depth of 1.00m may be designed using an allowable bearing capacity of 120kPa. This can be increased to 250kPa if the foundation is emplaced on the intact bedrock. The allowable bearing capacity includes a partial factor on bearing resistance of 3 against bearing capacity failure. Total settlements associated with the allowable bearing pressure are anticipated to be less than 25 mm.
Special design conside	erations
Variable founding soils	Owing to the significant lateral and vertical variability of the founding strata, consideration should be given to incorporating appropriate reinforcement into the strip foundations to minimise the risk of future differential foundation movements.
Construction considerations	All foundation excavations should be inspected, and any made ground and soft, organic or otherwise unsuitable materials removed and replaced with mass concrete.

Table 8: Design and Construction of Shallow Foundations

7.6 Ground Floor Slabs

The investigation within the existing warehouse buildings showed the concrete slab to be approximately 120mm to 130mm thick. It is understood the proposed development will include the replacement of the existing slab or construction of a new slab over the old slab.

Given the nature of the Made Ground across the site it is recommended the old slab is removed and a new slab constructed. This is due to the variability of the underling material and potential for buried tanks to be present. Historical mapping and anecdotal evidence indicate tanks have been present in this area; however, there are no records of the exact location or them being removed leaving a residual risk as the tanks rust.

If the new slab is to be constructed on top of the existing slab, there are potential future risks associated with the underlying ground conditions that cannot be mitigated and therefore the client must be aware of the residual risk.

7.7 Excavations

Generally, the boreholes remained stable during excavation however given the nature of the Made Ground it is recommended that excavation support systems are made available during the groundwork stage of the development

Entry into any excavations must not be undertaken without provision of suitable shoring and support and dewatering or suitable regrading and battering of side slopes to safe angles.

Excavations in the south / southwest of the site may encounter intact bedrock close to the surface. Depending on the extent of excavations in this area a breaker or ripper tooth could be required.

7.8 Chemical Attack on Buried Concrete

This assessment of the potential for chemical attack on buried concrete at the site is based on BRE Special Digest 1: Concrete in aggressive ground, which represents the most up-to-date guidance on this topic currently available in the UK.

Based on testing results, Table 9 gives the characteristic pH, water-soluble content values for soils from each of the geological units and groundwater encountered on-site.

Stratum	рН	Water Soluble Sulphate (mg/l)
Mylor Slate Formation	8.4 - 9.5	22 - 240

Table 9: Characteristic pH and water-soluble sulphate values

Based on the results above and following the steps outlined in the BRE guidance, the Design Sulphate Classes and Aggressive Chemical Environment for Concrete classifications are summarised in Table 10.

Table 10: Concrete design class

Stratum	Groundwater	Water Soluble Sulphate		
	Croundrater	DS Class	AC Class	
Mylor Slate Formation	Mobile	DS-1	AC-1	

7.9 Roads and Hardstanding

In-situ DCP testing was undertaken across the site to establish the CBR values of the material underlying the existing concrete slab. The tests were undertaken within the windowless sampler boreholes and rotary borehole BH03. The results of in-situ testing are summarised in Table 11 below:

Test location	Material type	Minimum CBR value (%)	Maximum CBR value (%)
DCP-1 (WS01)	Undifferentiated Made Ground and Natural	0	145
DCP-2 (WS02)	Made Ground	9	50
DCP-3 (WS03)	Made Ground	26	115
DCP-4 (WS04)	Made Ground	8	20
DCP-5 (WS05)	Made Ground	35	35
DCP-6 (BH03)	Made Ground	13	42

Table 11: Summary of CBR values derived from in-situ DCP tests

The DCP testing indicates variable ground conditions underlying the existing concrete slab. Some of the maximum values are anomalously high and this is likely to be cause by cobbles or anthropogenic material within the Made Ground. Based on the testing it is recommended that the underlying formation level is carefully compacted, and any soft spots removed and replaced with well–compacted granular fill prior to constructing the new slab.

The sub-grade condition at the time of construction should be confirmed by testing at the final formation level by in situ CBR testing.

The sub-grade soils can be regarded as non-frost-susceptible, based upon the criteria given in Appendix 1 of TRRL (1970) Report Road Note 29. When the sub-grade is frost-susceptible the thickness of sub-base must be sufficient to give a total thickness of non-frost-susceptible pavement construction over the soil of not less than 450 mm.

8.0 GEOENVIRONMENTAL ASSESSMENT

8.1 Refinement of the Conceptual Site Model

A Preliminary Investigation Report undertaken by Karn Geoservices Ltd (ref: 24093/PIR, dated July 2024) identified a moderate risk of contamination associated with the sites previous use, elevated heavy metals, Made Ground and a moderate risk of gas ingression from Radon.

8.2 Linkages for assessment

In line with CLR11 (Environment Agency, 2004), there are two stages of quantitative risk assessment, generic (GQRA) and detailed (DQRA). The GQRA comprises the comparison of soil, groundwater, soil gas and ground gas results with generic assessment criteria (GAC) that are appropriate to the linkage being assessed. This comparison can be undertaken directly against the laboratory results or following statistical analysis depending upon the sampling procedure that was adopted.

Following the refinement of the initial CSM, the potentially complete contaminant linkages that require further assessment and the methodology of assessment are presented in Table 12.

Potentially relevant contaminant linkage	Assessment method
Soil	
Oral, dermal and inhalation exposure	Human health GAC in Appendix 5 for a commercial
with impacted soil, soil vapour and dust	end-use based on the existing and proposed use of
by future site users	the site.
Inhalation exposure of future site users	Qualitative assessment based on the asbestos
to asbestos fibres	minerals present, their form, concentration,
	location and the nature of the proposed
	development.
Contaminants permeating potable water	Comparison of soil data to UKWIR (2010) guidance
supply pipes	on plastic water supply pipes.
Water	

Table 12: Linkages for GQRA

Potentially relevant contaminant linkage	Assessment method
Migration of contaminants to secondary	The potential for migration has been considered
aquifer	qualitatively using soil results.
Ground Gas	
Concentrations of Radon gas entering	Full Radon barriers will be required in permanent
and accumulating in enclosed spaces or	structures within the proposed development.
small rooms in new buildings, which	
could affect future site users.	

8.3 Methodology and assessment of soil results

The analysis of laboratory results relating to soil samples submitted for testing, including leachate analysis, is included in the following sections.

8.4 Exposure to impacted soil by site users

In order to assess the soil results against the appropriate GAC, the soil results have been split into appropriate data sets relevant to the oral, dermal and inhalation linkage.

The datasets being considered in the assessment are:

- Data set 1 Made Ground
- Data set 2 Mylor Slate Formation

As an initial assessment of each dataset, all soil results in each dataset have been directly compared against the GAC for commercial end use.

8.5 Data set 1 - Made Ground

All made ground results have been compared with the commercial end use GAC. A soil organic matter (SOM) of 6 % has been selected since laboratory results within the Made Ground range from 0.76 % to 20%. The geo-environmental laboratory test results are enclosed as Appendix 4.

Results indicate that all contaminants are below the commercial end use GAC therefore it is considered that a relevant contaminant linkage does not exist. The results of the chemical testing show that levels of TPH were observed in exploratory hole WS04 at 2.50m and WS05 at 1.20m, above the limit of detection of 10mg/kg for total hydrocarbons. However, this was the result of total TPH testing, rather than speciated TPH analysis. Other exploratory holes which were tested for speciated hydrocarbons, while noted above the limits of detection, did not exhibit levels elevated above the individual fractions. Based on this information, we would conclude that the level of total TPH in WS04 and WS05, would also not contain levels above the speciated hydrocarbon fractions, and therefore we do not consider further speciated testing would be required.

8.6 Data set 2 - weathered Mylor Slate Formation

All weathered Mylor Slate Formation results have been compared with the commercial end use GAC. A soil organic matter (SOM) of 1% has been selected since laboratory results within the weathered Mylor Slate Formation range from 0.79% and 1.3%. The geo-environmental laboratory test results are enclosed as Appendix 4.

Results indicate that all contaminants are below the commercial end use GAC therefore it is considered that a relevant contaminant linkage does not exist.

8.7 Summary of Data sets

All samples of Made Ground and the weathered Mylor Slate Formation are below the GAC for a commercial end use. Based on the above assessment, no potentially significant risks associated with the soil contamination have been identified and it is considered that the site may be regarded as suitable for the proposed end use.

8.8 Inhalation Exposure of site users to asbestos fibres

The visual inspection at the laboratory identified no materials suspected of potentially containing asbestos and the scheduled laboratory screening for asbestos found no detectable asbestos fibres within the samples tested.

8.9 **Protection of Services**

For initial assessment purposes, the results of the investigation have been compared with the GAC presented in *UKWIR Report 10/WM/03/21. Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites* (UKWIR, 2010).

The results indicate that a relevant linkage may exist associated with organic contaminants (mineral oils $C_{11}-C_{20}$ and $C_{21}-C_{40}$ bands) therefore pollutant polyethylene (PE) water supply pipes are expected to be unsuitable for use on the development.

It should be noted that at the time of this investigation the future routes of water supply pipes had not been established, hence the investigation and sampling strategy may not be fully compliant with UKWIR recommendations.

9.0 PRELIMINARY WASTE CLASSIFICATION

In accordance with the definition provided in the Waste Framework Directive (WFD), materials are only considered waste if 'they are discarded, intended to be discarded or required to be discarded, by the holder'. Naturally occurring soils are not considered waste if reused on the site of origin for the purposes of development. Soils such as made ground that are not of clean and natural origin (irrespective of whether they are contaminated or not) and other materials such as recycled aggregate, do not become waste until the criteria above are met.

Excavation arisings from the development may therefore be classified as waste if surplus to requirements or unsuitable for reuse. The site owner has a duty to ensure that any waste produced from the site, or soil imported to the site is handled safely and within the law.

One of the ways this can be achieved is set out in the Definition of Waste: Development Industry Code of Practice (DoWCoP) (CL:AIRE, March 2011). This builds on the Environment Agency guidance document Definition of waste: developing greenfield and brownfield sites (2006).

The handling, re-use or disposal of waste is regulated by the Environment Agency. The Agency will take into account the use of the DoWCoP in deciding whether to regulate materials as waste. If materials are dealt with in accordance with the DoWCoP, the Agency considers that those materials are unlikely to be waste at the point when they are to be used for the purpose of land development. This may be because the materials were never discarded in the first place, or because they have been submitted to a recovery operation and have been completely recovered so that they have ceased to be waste.

9.1 Hazardous waste assessment

Technical Guidance WM3 (EA, 2018) sets out in Appendix D requirements for waste sampling. It is a legal requirement to correctly assess and classify waste. The level of sampling should be proportionate to the volume of waste and its heterogeneity. The preliminary assessment provided below is based only upon the available sample results and may not be sufficient to adequately classify the waste.

Should there be a requirement for off-site disposal, the waste should be tested for a broad suite of contaminants and subject to the appropriate WAC test and disposed of within the appropriately licensed landfill. Note that it is ultimately for landfills to confirm what wastes they are able to accept within the constraints of their permit.

10.0 CONCLUSIONS

In accordance with good practice, data gaps and uncertainties in the refined CSM have been identified at this stage. These are summarised in Table 13 along with the likely implications.

Table 13: Summar	y of	Data	Gaps	and	Uncertainties
------------------	------	------	------	-----	---------------

Data gap/ uncertainty	Details	Implications
Asbestos not found in samples	Although not encountered	Vigilance should be
tested	to date, asbestos	maintained for any
	containing material (ACM)	potential ACM or fibrous
	could still be present in	material during below
	discrete locations	ground works

10.1 Geoenvironmental Assessment

The key findings of the geoenvironmental assessment are as follows:

- All samples of Made Ground and the weathered Mylor Slate Formation are below the GAC for a commercial end use. Based on the above assessment, no potentially significant risks associated with the soil contamination have been identified and it is considered that the site may be regarded as suitable for the proposed end use.
- The British Geological Survey, in conjunction with the Radiation Protection Division of the Health Protection Agency, indicates the site to lie within a Radon Affected Area. Therefore, if any new permanent structures are to be built, the guidance recommends that full radon protective measures should be installed in line with the Building Research Establishment, Report BR211

10.2 Recommendations

The results of the site investigation and GQRA indicate that relevant contaminant linkages are absent based on the data available and therefore the site is suitable for the proposed end use. Although not encountered to date, localised sources of contamination could still be present, although they are unlikely to be widespread. Data gaps and uncertainties have been considered and no further assessment is considered to be required.
Should unforeseen contamination be encountered during the development then specialist advice should be sought to determine the appropriate course of action.

10.3 Other Considerations

There are several other areas of research which are beyond the scope of this report. All or none of the following may be applicable to the site, either on the outcome of consultation with a regulatory body or as a result of the research for this Preliminary Investigation. They include:

10.4 Archaeology

Should the site be situated on or within an area of archaeological sensitivity, the advisor to the relevant local authority should be consulted. The requirement for an archaeological report may be identified within a planning condition, if appropriate, for the site.

10.5 Ecology

There may be a requirement for a detailed ecological report, dependant on the type or size of the development, or due to evidence identified during the site reconnaissance or desk study. This requirement may be identified within a planning condition, if appropriate, for the site

10.6 Unexploded Ordnance (UXO)

There may be a requirement for a UXO report, dependant on the site location, historical use and surrounding site history, as well as the type or size of the development. This requirement may be identified within a planning condition.

11.0 REFERENCES

- 11.1 CLR 3, '*Documentary research on industrial sites*', Report by RPS Consultants Ltd, DoE, 1994
- 11.2 CLR 11, '*Model Procedures for the Management of Land Contamination*' Report by Defra and the Environment Agency, 2004
- BS 10175: 2011 'Investigation of potentially contaminated sites. Code of practice', British Standards Institute, 2011
- 11.4 GPLC1, 'Guiding principles for land contamination', Environment Agency, 2010
- 11.5 CLR 2, '*Guidance on preliminary site inspection of contaminated land*', Report by Applied Environmental, DoE, 1994
- 11.6 British Geological Survey website, Geology of Britain Viewer, http://mapapps.bgs.ac.uk/geologyofbritain/home.html
- 11.7 HPA-RPD-033, '*Indicative Atlas of Radon in England and Wales*', Health Protection Agency, 2007
- 11.8 BR211, 'Radon: Protective measures for new dwellings'. BRE, 2007
- 11.9 C552, '*Contaminated Land Risk Assessment, A Guide to Good Practice*', CIRIA, 2001
- 11.10 Multi-Agency Geographic Information for the Countryside website, http://www.magic.gov.uk
- 11.11 Standards, 'Land Quality Managing Ground Conditions', Chapter 4, NHBC, 2010
- 11.12 The Environmental Protection Act, Part IIA, Section 78, 1990
- 11.13 Environment Act 1995, Section 57, DoE, 1995
- 11.14 Planning Policy Statement 23: Planning and Pollution Control, ODPM, 2004
- 11.15 Science Report SC050021/SR2, '*Human health toxicological assessment of contaminants in soil*'. Environment Agency, 2009
- 11.16 Science Report SC050021/SR3, 'Updated technical background to the CLEA model'. Environment Agency, 2009

- 11.17 AGS Interim Guidance (2013), 'Site investigation and asbestos risk assessment for the protection of site investigation and geotechnical laboratory personnel', February.
- 11.18 Baker, K., Hayward, H., Potter, L., Bradley, D. and McLeod, C. (2009), CIRIA Report C682. The VOCs Handbook. Investigating, assessing and managing risks from inhalation of VOCs at land affected by contamination (London: CIRIA).
- 11.19 British Standards Institution (BSI) (1990), 'BS 1377:1990. Methods of test for soils for civil engineering purposes'.
- 11.20 British Standards Institution (2015), 'BS 5930:2015. Code of practice for ground investigations'.
- 11.21 British Standard Institution (BSI) (2019), 'BS 8485:2015+A1:2019. Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings'.
- 11.22 British Standards Institution (2011), 'BS 10175:2011 + A2:2017. Investigation of potentially contaminated sites: Code of practice'.
- 11.23 British Standards Institution (2013), BS8576:2013. Guidance on investigations for ground gas permanent gases and volatile organic compounds (VOCs).
- 11.24 Building Research Establishment (2005), BRE Special Digest 1: Concrete in aggressive ground.
- 11.25 Card G, Wilson S, Mortimer S. 2012. A Pragmatic Approach to Ground Gas Risk Assessment. CL:AIRE Research Bulletin RB17. CL:AIRE, London, UK. ISSN 2047-6450 (Online).
- 11.26 Chartered Institute of Environmental Health (CIEH) and CL:AIRE (2008), Guidance on Comparing Soil Contamination Data with a Critical Concentration (London: CIEH).
- 11.27 CIRIA (2014). Good practice on the testing and verification of protection systems for buildings against hazardous ground gases.
- 11.28 Environment Agency (2018), 'Technical Guidance WM3. Guidance on the classification of and assessment of waste, 1st Edition, v.1.1, May 2018.

- 11.29 Environment Agency (2004), Model Procedures for the Management of Contaminated Land. Contaminated Land Report Number 11 (CLR11), September (Bristol: Environment Agency).
- 11.30 Norbury, D. (2010), Soil and Rock Description in Engineering Practice (Caithness: Whittles).
- 11.31 Part IIA of the Environmental Protection Act (Contaminated Land Regulations (England) 2002 (London: HMSO).
- 11.32 Rudland, D. J., Lancefield, R. M. and Mayell, P. N. (2001), CIRIA C552. Contaminated Land Risk Assessment: A Guide to Good Practice (London: CIRIA).
- 11.33 Stone, K., Murray, A., Cooke, S., Foran, J., Gooderham, L., (2009) CIRIA C681, Unexploded Ordnance (UXO). A guide or the construction industry.
- 11.34 Transport and Road Research Laboratory (1970), 'TRRL Road Note 29 (Appendix 1). Road pavement design'.
- 11.35 Transport and Road Research Laboratory (1984), 'TRRL Report LR1132 (Table C1)'.
- 11.36 UK Water Industry Research (2010) UKWIR Report 10/WM/03/21. Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites (London: UKWIR).

12.0 CONSTRAINTS

This report and the site investigation carried out in connection with the report (together the "Services") were compiled and carried out by KARN GEOSERVICES LTD (KARN GEOSERVICES LTD) for Penzance Dry Dock Ltd (the "client") in accordance with the terms of a contract [KARN GEOSERVICES LTD Standard Terms and Conditions] amend if work not done under KARN GEOSERVICES LTD standard terms between KARN GEOSERVICES LTD and the "client", dated 30th April 2024. The Services were performed by KARN GEOSERVICES LTD with the skill and care ordinarily exercised by a reasonable environmental consultant at the time the Services were performed. Further, and in particular, the Services were performed by KARN GEOSERVICES LTD taking into account the limits of the scope of works required by the client, the time scale involved and the resources, including financial and manpower resources, agreed between KARN GEOSERVICES LTD and the client.

Other than that, expressly contained in paragraph 1 above, KARN GEOSERVICES LTD provides no other representation or warranty whether express or implied, in relation to the Services.

Unless otherwise agreed in writing the Services were performed by KARN GEOSERVICES LTD exclusively for the purposes of the client. KARN GEOSERVICES LTD is not aware of any interest of or reliance by any party other than the client in or on the Services. Unless expressly provided in writing, KARN GEOSERVICES LTD does not authorise, consent or condone any party other than the client relying upon the Services. Should this report or any part of this report, or otherwise details of the Services or any part of the Services be made known to any such party, and such party relies thereon that party does so wholly at its own and sole risk and KARN GEOSERVICES LTD disclaims any liability to such parties. Any such party would be well advised to seek independent advice from a competent environmental consultant and/or lawyer.

It is KARN GEOSERVICES LTD's understanding that this report is to be used for the purpose described in the introduction to the report. That purpose was a significant factor in determining the scope and level of the Services. Should the purpose for which the report is used, or the proposed use of the site change, this report may no longer be valid and any further use of or reliance upon the report in those circumstances by the client without KARN GEOSERVICES LTD 's review and advice shall be at the client's sole and own risk. Should KARN GEOSERVICES LTD be requested to review the report after the date of this report, KARN GEOSERVICES LTD shall be entitled to additional payment at the then existing rates or such other terms as agreed between KARN GEOSERVICES LTD and the client.

The passage of time may result in changes in site conditions, regulatory or other legal provisions, technology or economic conditions which could render the report inaccurate or unreliable. The information and conclusions contained in this report should not be relied upon

in the future without the written advice of KARN GEOSERVICES LTD. In the absence of such written advice of KARN GEOSERVICES LTD, reliance on the report in the future shall be at the client's own and sole risk. Should KARN GEOSERVICES LTD be requested to review the report in the future, KARN GEOSERVICES LTD shall be entitled to additional payment at the then existing rate or such other terms as may be agreed between KARN GEOSERVICES LTD and the client.

The observations and conclusions described in this report are based solely upon the Services which were provided pursuant to the agreement between the client and KARN GEOSERVICES LTD. KARN GEOSERVICES LTD has not performed any observations, investigations, studies or testing not specifically set out or required by the contract between the client and KARN GEOSERVICES LTD. KARN GEOSERVICES LTD is not liable for the existence of any condition, the discovery of which would require performance of services not otherwise contained in the Services. For the avoidance of doubt, unless otherwise expressly referred to in the introduction to this report, KARN GEOSERVICES LTD did not seek to evaluate the presence on or off the site of asbestos, invasive plants, electromagnetic fields, lead paint, heavy metals, radon gas or other radioactive or hazardous materials, unless specifically identified in the Services.

The Services are based upon KARN GEOSERVICES LTD's observations of existing physical conditions at the Site gained from a visual inspection of the site together with KARN GEOSERVICES LTD's interpretation of information, including documentation, obtained from third parties and from the client on the history and usage of the site, unless specifically identified in the Services or accreditation system (such as UKAS ISO 17020:2012 clause 7.1.6):

a. the Services were based on information and/or analysis provided by independent testing and information services or laboratories upon which KARN GEOSERVICES LTD was reasonably entitled to rely

b. the Services were limited by the accuracy of the information, including documentation, reviewed by KARN GEOSERVICES LTD and the observations possible at the time of the visual inspection

c. the Services did not attempt to independently verify the accuracy or completeness of information, documentation or materials received from the client or third parties, including laboratories and information services, during the performance of the Services.

KARN GEOSERVICES LTD is not liable for any inaccurate information or conclusions, the discovery of which inaccuracies required the doing of any act including the gathering of any information which was not reasonably available to KARN GEOSERVICES LTD and including the doing of any independent investigation of the information provided to KARN GEOSERVICES

LTD save as otherwise provided in the terms of the contract between the client and KARN GEOSERVICES LTD.

The intrusive environmental site investigation aspects of the Services is a limited sampling of the site at pre-determined locations based on the known historic/operational configuration of the site. The conclusions given in this report are based on information gathered at the specific test locations and can only be extrapolated to an undefined limited area around those locations. The extent of the limited area depends on the properties of the materials adjacent and local conditions, together with the position of any current structures and underground utilities and facilities, and natural and other activities on-site. In addition, chemical analysis was carried out for a limited number of parameters [as stipulated in the contract between the client and KARN GEOSERVICES LTD] [based on an understanding of the available operational and historical information,] and it should not be inferred that other chemical species are not present.

Any site drawing(s) provided in this report is (are) not meant to be an accurate base plan, but is (are) used to present the general relative locations of features on, and surrounding, the site. Features (intrusive and sample locations etc) annotated on-site plans are not drawn to scale but are centred over the approximate location. Such features should not be used for setting out and should be considered indicative only.

APPENDIX 1

DEVELOPMENT DRAWINGS

	Shipbuilding	Part Part Part Part Part Part Part Part	3.6m	
KARN GEOSERVICES LTD	Title: Site Location Plan			
www.karn-geo.co.uk info@karn-geo.co.uk	Site: Penzance Dry Docks		[
	Client: Penzance Dry Docks	I	Job No: 24093	
	Figure: 1	Date Drawn: 18-07-2024		Scale: NTS

e BHO4	WSQ2 WSQ3	POI BHO3 B		
	Title: Exploratory Hole Location Plan			
www.karn-geo.co.uk	Site: Penzance Dry Docks			
KARN	Client: Penzance Dry Docks		Job No: 24093	
	Figure: 2	Date Drawn: 18-07-2024		Scale: NTS

APPENDIX 2

SITE WORK

Drilling Log

Projec	t Name:	Penzance	Dry D	Dock			C	Client: c/c	MBA Con	sulting				Date: 13/06	6/2024		
ocatio	on: Penz	ance					C	Contracto	r:								
Projec	t No. : 24	4093					C	Crew Nar	ne: Celtic E	Drilling				Drilling Equ	uipment: Con	nacchio Ge	o 205
Во	rehole N	lumber		Hole	е Туре БЦ	е			Level		Logge	ed I	Ву	S	Scale	Pa	ge Number
Well	Water	Sa	ample	e and li	n Situ	u Tes	ting		Depth	Level		d l	VIA	Stra	tum Descript	tion	
	Strikes	Depth (m)	Туре		Re	sults		(m)	(m)		~	MADE G	ROUND: Cor	ncrete.		
•												*					
									0.50			*	MADE G	ROUND: Bla	ck locally dark	brown claye	y sandy
		0.90		ES								*	mudston	e, concrete, b	basic igneous	rock, and brid	xk.
		1.20		SPT	N	=4 (1,	1/1,1,	1,1)				*	1.00m: W	lood.			
		1.50		ES					1.40			*	MADE G	ROUND: Ora	angish brown s	slightly sandy	slightly
												*	sub-roun	ded basic igr	neous rock.	e sub-anguia	
		2 20		SDT	N	-0 (1	2/1 2	12)				*					2
		2.20		JE I		-9(1,	2/1,2,	4,2)	2.40			*	MADE G	ROUND: Gre	evish brown loo	cally brown s	liahtly
		2.60		ES								\otimes	clayey sa rounded	andy gravel o mudstone.	f fine to coarse	e sub-angula	r to sub-
												*					3
		3.20 3.30		SPT ES	N=	=16 (3	,3/6,4	,3,3)				*					
												*					
												*					1
		4.20		SPT	N=	=16 (3	,3/4,3	,3,6)				*					4
									4.50			<u> </u>	Yellowish	n brown slight	tly sandy sligh	tly gravelly cl	ay.
		4.80		ES										5	, , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
		5 20		SPT	50 (2	5 for ´	100mr	n/50 for					-				5
		5.30 - 5	.60		100	25 16	mm) 0		5.20 5.30				ODEX Mediur	CASING n strong to a	strong locally	/ weathered	l dark
		5.70 - 5	.80	C									grey ar MUDS	nd light grey TONE. Frac	/ bonded lam ctures are clo	inated sely space	Ь
				11									smooth browni	n planar dip sh staining	ping 0-20 de on fracture s	grees. Loca urfaces. No	ilised 5 infill. 6
				3									Mylor S	Slate Forma	ition		
									6.60				Quartz	vein disago	gregated loca	alised browr	nish
		5.60 - 8	.40		40	41	23		0.70				coloura Format	ation arounc tion	l quartz vein.	. Mylor Slat	e / 7
													Mediur grey ar	n strong to nd light grey	strong locally / bonded lam	/ weathered	ldark
													MUDS	TONE. Frac	ctures are clo ping 0-20 de	sely space grees. Loca	d lised
				-									browni Mylor S	sh staining Slate Forma	on fracture s	urfaces. No	o infill.
				Э													8
													Quartz coloura	vein disago ation around	gregated loca d quartz vein.	alised brown . Mylor Slate	nish e
		800 0	05	C									Format Strong	tion locally part	ially weather	ed dark gre	y and
		8.50 - 10	0.00	C	100	86	57						locally are clo	brownish gi selv spaceo	rey MUDSTC d smooth plai	DNE. Fractu nar dipping	ures 9 0-20
									9.30 9.42				degree fracture	s. Órangish es. Mylor Sl	brown surfa	ice staining	on
	Hole D'-	l		Type/FI	TCR	SCR	RQD	D/R/(SPT)		Chinallin			indotain		laske t	and Origination	
Depth I	Base	Diameter	Dept	th Base	Diame	ter amete	r	Depth Top	Depth Ba	se Dura	ation		Tool	Depth Top	Depth Base	Inclination	n Orientation

KARN

Rotary Core Log

Projec	t Name:	Penzance	Dry D	ock			C	Client: c/	o MBA Cor	nsulting			Date: 13/06/202	4			
Locatio	on: Penz	ance					C	Contract	or:								
Projec	t No. : 24	093					C	Crew Na	me: Celtic	Drilling			Drilling Equipme	ent: Coma	cchio G	eo 205	
Bo	rehole N BH01	umber		Hole E	е Тур ЗН	е			Level		Logged AC+OS/	By MA	Scale 1:50		Pa	age Numb Sheet 2 of	er 2
Well	Water	Depth (m)	n	Type /FI	C	orin	g RQD	Diameter Recovery (SPT)	Depth (m)	Level (m)	Legend		Stratum I	Descriptio	on		
								_				Strong locally are clo degree	y locally partially v brownish grey M bsely spaced smo es. Orangish brov	weathered IUDSTON ooth plana vn surface	l dark gi E. Frac r dippin e stainin	rey and ctures g 0-20 g on	10
		10.36 - 10 10.00 - 11	0.46 1.50	C 8	100	96	70					10.70m:	Quartz vein	-			11
**************************************								-	11.50			11.35m:	<i>Quartz vein</i> End of Boreh	- iole at 11.50	00m		12
																	13
																	14
																	15
																	16
																	17 –
																	18
			-	Type/FI	TCR	SCR	RQD	D/R/(SPT)									19
Hole Depth Bas	Diameter se Diamete	Casing Depth Base	Diamete Diame	er ter Dep	oth Top	Depth	Chisel Base	ling Duration	Tool De	Inclinat	ion and Orienta Base Inclinatio	ation Orientation	Depth Top Depth Base	Drilling e Type	Flush Colour	Min (%)	Max (%)
Rema	rke																
Grour	idwater	encounte	red a	t 11.5	0mb	gl.										AG	S

Drilling Log

	0 E 0 1 E 7 V 1 C 3	3																
Project	t Name:	Penzance	Dry [Dock			C	Client: c/c	MBA Con	sulting				Date: 13/0	6/2024			
Locatio	on: Penz	ance					0	Contracto	r:									
Project	t No. : 24	093					C	Crew Nar	ne: Celtic I	Drilling				Drilling Eq	uipment: Cor	nacchio Ge	eo 205	
Bo	rehole N BH02	umber		Hole	е Туре ЗН	e			Level		Logge OS/M	ed B A+A	By C	5	Scale 1:50	Pa	ge Numbe heet 1 of 2	er
Wall	Water	Sa	ample	e and li	n Situ	u Tes	ting		Depth	Level		a	.0	Stre		tion		·
vven	Strikes	Depth (m)	Туре		Re	sults	;	(m)	(m)	Legen	u xx						
													MADE	SROUND: CO	ncrete.			
									0.60				MADE C	GROUND: rev	vorked greyish	brown local	ly brown	
		1.00		ES									to sub-ro	ounded muds	tone.	Coarse sub	angulai	1 -
		1 60		SPT	N	-7 (2	2/2 1	2 2)										
		1.70		ES		-1 (2,	,2/2,1	,2,2)										
																		2 –
		2.40		50														
		2.40 2.60		SPT	N	=7 (1.	,2/2,2	,1,2)										
						. ,		,										
		3.00		ES														3 –
		3.60		SPT	N	=7 (1,	,2/2,2	,1,2)										
		3.80		ES														
	_	4.20		ES														4
									4 50									
		4.60		SPT	54 (3	3,3/54	for 2	25mm)	4.50				Grey sa fine to c	ndy clayey G oarse mudsto	RAVEL of ang	ular to sub-ai d Mvlor Slate	ngular e	
													Formatio	on.		5		5
									5.00				Predo light g	minantly no revish brow	n-intact very n and dark b	weak to we rown thinly	eak	
													lamina	ated MUDST	ONE. Mylor	Slate Form	ation	
		5.00 - 6.	.50		80	50	7					_						
									6 10									6
									0.10			_	Weak brown	to medium : thinly lamin	strong light g ated MUDS	rey and red	ldish tures	
				-				-					are clo	osely space	d sub-horizo	ntal 70-80 d	legree	111
									6 90				brown	staining an	d clay smear	ing. Mylor S	Slate	
		6.98 - 7. 6.50 - 7.	.12 .70	С	100	91	78		0.50				Forma Mediu	ation m strong da	rk arev thinly	/ laminated	/	7 -
													MUDS	STONE. Fra	ctures are cl	osely space	ed sub-	
		7.60 - 7.	.74	с									norizo space	ntal 30 degr d sub-horizo	ee planar sn ontal 70 degr	nooth, wide ee planar	iy	111
												_	smoot fractur	h. All with or res_Mylor S	rangish brow late Formatio	n staining c	on	
													naotai	oo. myior o				8
		770 0	30		04	70	E 4					,≣	M- !!		nle aureur 41-1-1	(lowing to)		
		1.10-9.	.30		94	19	54						MUDS	TONE. Fra	ctures are clo	y laminated osely space	ed sub-	
													horizo	ntal 30 degr d sub-horizo	ee planar sn ontal 70 deor	nooth, wide ee planar	ly	۵
									9.10				smoot	h. All with o	rangish brow	n staining c	on	
													tractur 9.40-9.80	es. Mylor S Om: Non Inte	ate ⊢ormatio act	סרו		
		ator	1	Type/FI	TCR	SCR	RQD	D/R/(SPT)		Chicolline						and Origination	20	
Depth B	Base	Diameter	Dept	th Base	Diamer	ameter	r	Depth Top	Depth Ba	ise Dura	ation	•	Tool	Depth Top	Depth Base	Inclination	Orienta	ation
Rema	rks																	
Ground	water end	ountered at	4.00r	nbgl.														

Rotary Core Log

Projec	t Name: I	— ^{>} enzance D	ry Dock			C	Client: c/	o MBA Co	nsulting			Date: 13/06/2024			
Locatio	on: Penza	ance				C	Contract	or:							
Projec	t No. : 24	093				C	Crew Na	me: Celtic	Drilling			Drilling Equipment: 0	Comacchio	Geo 205	
Во	rehole N BH02	umber	Hol	е Туре ВН	e			Level		Logged OS/MA+	By -AC	Scale 1:50		Page Numb Sheet 2 of	er 2
Well	Water	Depth (m)	Type /FI	C	orin	g RQD	Diameter Recovery (SPT)	Depth (m)	Level (m)	Legend		Stratum Desc	cription		
		9.30 - 10.8	30	100	74	56					Mediu MUDS horizo space smoot fractur	m strong dark grey th STONE. Fractures are ntal 30 degree planar d sub-horizontal 70 de h. All with orangish br res. Mylor Slate Forma	inly lamina closely sp smooth, w egree plan rown stainin ation	ated vaced sub- videly ar ng on	10
	1						_	10.80				End of Borehole a	t 10.800m		11
															13
															14
															15
															16
															17
															18
			Type/FI	TCR	SCR	ROD	D/R/(SPT)								19
Hole Depth Ba	Diameter se Diameter	Casing Dia	ameter De	pth Top	Depth I	Chisel Base	ling Duration	Tool De	I Inclina epth Top Dep	tion and Orienta th Base Inclinatio	ation Orientation	Depth Top Depth Base T	Drilling Flush Type Colo	ur Min (%)	Max (%)
Remo	rks														
Grour	ndwater	encountere	ed at 4.00)mbgl	I.									AG	S

Drilling Log

	GEQIERVIC		_											L			
Project	Name:	Penzance	Dry [Dock			C	Client: c/	o MBA Cor	nsulting				Date: 13/06	6/2024		
Locatio	on: Penz	ance					0	Contract	or:								
Project	No. : 24	1093					0	Crew Na	me: Celtic	Drilling				Drilling Equ	ipment: Con	nacchio Ge	eo 205
Во	rehole N BH03	umber }		Hole E	э Тур ЗН	е			Level		Lo OS	gged S.MA+	By AC	S 1	cale :50	Pa S	ge Number heet 1 of 2
Well	Water Strikes	Sa Dopth (ample	and l	n Sit	u Tes	ting		Depth (m)	Level (m)	Leg	gend		Stra	tum Descript	tion	
		Deptil	(11)	туре		Re	suns	•	()				MADE G	GROUND: Cor	ncrete.		
		0.40		FS					0.22				MADE G	ROUND: Bla	ck locally oran	gish greyish	ı brown
		0.40							0.60				to sub-ro	ounded igneou	is rock and m	udstone.	o-angular
		0.70		ES									MADE G dark bro	GROUND: Bro wn clayey sar	wn locally ora idy gravel of fi	ngish brown ne to coarse	over e sub-
		4.00		0.07		40.44	0/4						angular	to sub-rounde	d igneous roc	k and muds	tone. 1
		1.20		ES	N	=12 (1	,2/1,4	1,4,3)									
		1.80		ES													
		2 20		ES					2.10				MADE	ROUND: rew	orked brown l	ocally orang	2 ish
		2.20		SPT	N	l=4 (1	,2/1,1	,1,1)					brown sl	lightly clayey s	sandy gravel o	f fine to coa	rse sub-
		2.60		ES									angulai		a maastone.		
		3.20		SPT		I=6 (2	.2/1.2	.2.1)									3
		2 50		E 0		- ()	,	, , ,									
		3.50		E3													
																	4
		4.20		SPT	N	=10 (3	,2/3,3	3,2,2)	4.20								
									4 50				NORLO				
		4.60		ES					4.75				MADE G gravelly	GROUND: Gre sand. Gravel	yish brown sli is fine to coar	ghtly clayey se sub-angi	slightly ular to
													Sub-rour	nded mudston GROUND: rew	e. orked brown s	lightly claye	y sandy 5
		5.10		ES									gravel of mudstor	f fine to coars	e sub-angular	to sub-roun	ded
		5.50		SPT	50 (4,2/50	for 1	50mm)	5 50						Moodon alo	nor	
									5.50				MADE	GROUND:	wooden sie	eper	
									5.95			*****	Weak	to medium s	trong light g	rey and reo	dish 6
													brown	thinly lamin	ated MUDST	ONE. Fra	ctures
		5.80 - 7	.00		100	100	50						steppe	ed and plana	r smooth wit	h orange a	ind
													brown Forma	staining and	l clay smear	ing. Mylor	Slate
								-					7.00-7.50	0m: Very we	ak		7
									7.50				Mediu	m strong ligh	nt grey thinly	laminated	
		7.00 - 8	.50		100	73	31						MUDS	TONE. Frac	tures closely	spaced s	ub- ional
		8.00 - 8	.10	С									quartz	veins <5mn	n. Mylor Slat	te Formatio	on 8
		8.50 - 10	0.00		100	72	60										9
· ·				Type/FI	TCR	SCR	RQD	D/R/(SPT)									
Depth F	Hole Diam Base	eter Diameter	Dept	Casing h Base	Diame Di	ter iamete	r	Depth To	p Depth R	Chiselling ase Dur	ation		Tool	Depth Top	Inclination Depth Base	and Orientati	on Orientation
Rema	rks		1											1		l	
Ground	water en	countered at	t 4.50r	nbal													

Rotary Core Log

Projec	t Name:	Penzanc	e Dry [Dock			C	Client: c/	o MBA Cor	nsulting			Date: 13	3/06/202	4			
Locati	on: Penz	ance					C	Contract	or:									
Projec	t No. : 24	1093					C	Crew Na	me: Celtic	Drilling			Drilling	Equipme	nt: Com	acchio G	Geo 205	
Bo	rehole N BH03	umber		Hole	э Тур зн	е			Level		Logge OS MA	d By A+AC		Scale		P	age Num	ber f 2
Well	Water	Dep (m	oth 1)	Type /FI	C TCR	orin	g RQD	Diameter Recovery (SPT)	Depth (m)	Level (m)	Legend	t l	S	tratum [Descript	tion		
		10.00 - 10.62 -	10.80 10.88	C	. 100	69	50	-				Med MUE horiz quar	ium strong DSTONE. F zonal 45 de tz veins <5	light gre Fractures egree pla 5mm. My	y thinly closely nar smc /lor Slate	aminate spaced s ooth occa e Format	d sub- isional ion	10
		10.80 -	12.40		100	100	68											11
·.·.·		12.44 -	12.54	с					12.40				En	d of Boreh	ole at 12.4	400m		
																		13
																		14
																		15
																		16
																		17
																		18
																		19
Hole	Diameter	Casin	g Diamet	Type/FI er	TCR	SCR	RQD Chisel	D/R/(SPT) ling	1	Inclina	tion and Orie	ntation			Drilli	ng Flush		
Depth Ba	se Diamete	r Depth Ba	ise Diam	eter Dep	oth Top	Depth I	Base	Duration	Tool De	epth Top Dep	th Base Inclina	tion Orientat	ion Depth Top	Depth Base	туре	Colour	Min (%)	Max (%)
Rema Grour	urks ndwater	encoun	tered a	at 4.50	mbg	 I.											AG	I S

Drilling Log

<u> </u>																		
Project	t Name:	Penzance	Dry [Dock			(Client: c/	o MBA Con	sulting				Date: 13/06	6/2024			
Locatio	on: Penz	ance					(Contracto	or:									
Project	t No. : 24	1093					(Crew Na	me: Celtic I	Drilling				Drilling Equ	ipment: Con	nacchio Geo	o 205	
Bo	rehole N	umber		Hole	е Тур	е			Level		Lo	gged	Ву	S	cale	Pag	je Number	
	BH04	 		E	ЗH						OS	5/MA+.	AC	1	1:50	Sh	eet 1 of 2	
Well	Water Strikes	Sa	ample	and I	n Sitı	u Tes	ting		Depth (m)	Level	Leg	end		Stra	tum Descrip	tion		
21.23D	Cunco	Depth (i	m)	Туре		Re	sults	5	(11)	()			MADE G	ROUND: Cor	ncrete.			
									0.20				MADE G	GROUND: Gre	yish brown sli	ightly clayey s	sandy	-
									0.50				gravel of igneous	rock and coars	e sub-angular crete.	to sub-round	ed	-
													MADE G clayey sa	ROUND: rew andy GRAVEI	orked dark bro _ of fine to coa	ownish grey s arse sub-angu	lightly Iar to	
		1.10		ES									sub-rour	nded igneous	rock and mud	stone.		1 -
		1.10		SPT	N	l=5 (1	,1/1,2	.,1,1)	1.20				MADE G	ROUND: rew	orked yellowis	sh brown clay	еу	-
													rounded	mudstone, br	ick and basic	igneous rock.		-
																		-
		2.10		SPT	N	l=6 (1	,1/2,1	,2,1)										2 -
		2.20		ES														-
																		3
		3.10		SPT	N	=14 (2	2,2/3,2	2,4,5)										3
		5.20							3.40				Grevish	brown sliahtly	clavev sandv	GRAVEL of f	fine to	_
		3.70		ES									coarse s	ub-angular to	sub-rounded	mudstone.		-
													vioution	ou mylor olut	o r onnation			4
		4.10 4.20		SPT ES	N	=12 (3	8,2/2,3	3,3,4)										
																		_
		4.70		ES														-
		5.40		0.07		<u></u>	0/4 4	0.40										5 —
		5.10		ES	IN=	20 (3	,3/4,4	,8,10)			<u>م</u>		Light bro	wnish black s	lightly clayey	sandy GRAV	EL of	
		5.60		SPT	50 (25 for	75m	n/50 for	5.40				Weather	oarse sub-ang ed Mylor Slat	jular to sub-ro e Formation	unded mudst	one.	-
		0.00		011	00 (1	75	imm)		5.60				Weak recove	brownish gro ered as an a	ey weathere ngular fine to	d MUDSTOI o coarse	NE	=
					-				6.08				GRAV	EL. Weathe	ered Mylor SI	ate Formatio	on	6 -
		5.60 - 7.	.00		91	61	40						Mediu	m strong to	strong partia	lly weathere	ed	3
													dark g grey m	rey MUDST nottling and i	ONE. Locali ייחוחסי Iron P	ised brownis yritre veining	sh a	-
				_									throug	hout. Fractu	ures smooth	planar close	ely	
		7.00 - 7 .	.14	С									stainin	ig on surface	es. Mylor Sla	ate Formatic	on	7 –
																		-
		7 00 9	50		100	07	200											-
		7.00 - 8.	.50		100	97	29											
		8.20 - 8.	.39	с														8 -
																		_
									8.65				Strong	partially we	athered dark	k grey		=
		8 50 - 10	00		100	03	56						MUDS	TONE with	fine (<5mm)	quartz veini	ng	9 —
		0.00 - 10	.00		100	55							localis	ed brown. M	lylor Slate Fo	ormation	are	
		9.43 - 9.	.51	С														_
	Holo Diam	eter		Type/FI	TCR	SCR	RQD	D/R/(SPT)		Chicolling					Inclination	and Oriontation	n	
Depth I	Base	Diameter	Dept	h Base	Di	iamete	r	Depth To	Depth Ba	ise Dura	ation		Tool	Depth Top	Depth Base	Inclination	Orientat	tion
Rema Ground	rks water end	countered at	4.00r	nbal.														

Rotary Core Log

Projec	t Name:	Penzance D	Dry Dock			C	Client: c/	o MBA C	onsultir	ng			Date: 13	6/06/2024	4			
Locatio	on: Penz	ance				C	Contract	or:										
Projec	t No. : 24	093				C	Crew Na	me: Celti	c Drillin	g			Drilling E	Equipme	nt: Com	acchio	Geo 205	
Bo	rehole N BH04	umber	Hol	е Тур ВН	е			Level			Logged OS/MA+	By AC		Scale 1:50			Page Nur Sheet 2	nber of 2
Well	Water	Depth (m)	Type /FI	TCR	orin	g RQD	Diameter Recovery (SPT)	Depth (m)	Le (r	vel n)	Legend		St	ratum D	Descript	tion		
							-					Strong MUDS and lo localis	g partially STONE wi cally band ed brown	weather ith fine (ds of red . Mylor \$	ed dark <5mm) o luction. Slate Fo	grey quartz v Fractur rmation	eining es are	10
		10.00 - 11 11.27 - 11	.50 .35 C	100	83	38		44.50										11
								11.50					Enc	l of Boreh	ole at 11.	500m		
																		12
																		13
																		14
																		15
																		16
																		17
																		18
			T	ТОР	900	POP												19
Hole	Diameter	Casing Di	ameter				ling		l In	clinatio	n and Orienta	ation			Drillir	ng Flush		
Depth Ba	se Diamete	r Depth Base	Diameter De	pth Top	Depth I	Base	Duration	Tool	Depth Top	Depth E	Base Inclination	n Orientation	Depth Top	Depth Base	Туре	Colou	r Min (%)	Max (%)
Der																<u> </u>		
Grour	ndwater	encounter	ed at 4.00)mbg	I.												A	⊥ GS

Drilling Log

Project	t Name [.]	Penzance	ן Drv ר)ock			0	Client: c/	o MRA Cons	ultina			Date: 03/00	0/2024		
Locatio	on: Penz	ance						Contracto	or:	anny			Date. 05/08	~~~~ ~		
Proiect	t No · 2/	093						Crew No	me: Celtic D	rilling			Drilling For	lipment: Cor	nacchio Geo	205
Bo	rehole N	umber		Hole	е Тур	е			Level	i9	Logge	d By	S	cale	Pag	e Number
	BH05			E	зн				T		AC+0	S/MA	1	:50	Sh	eet 1 of 2
Well	Water Strikes	Sa	ample	and I	n Sitı	u Tes	ting		Depth	Level	Legend		Stra	tum Descrip	tion	
	Ounces	Depth (<u>m)</u>	Туре		Re	sults	;	(11)	(11)		MADE	GROUND: Ma	cadam and co	ncrete	
									0.25			MADE	GROUND: ligh	t brownish loc	ally greyish b	rown
		0.70		50								slightly to sub-	/ sandy clayey o -rounded basic	gravel of fine t igneous rock	o coarse sub-	angular .
		0.70		ES								8				
		1.20		SPT	N	=11 (2	2,2/3,4	1,2,2)								1 -
		1.40		ES		,						8				
												8				
		1.90		ES								8				2 -
		2.20		SPT	N	=10 (1	,2/2,3	3,3,2)				8				
		2.50		ES								8				
		3 20		SPT	N:	=16 (7	3/2 3	3 4 7)	3 20			8				3 -
		5.20		011		-10 (7	,0/2,0	,,,,,,	0.20			MADE silt. Gr	GROUND: rew avel is fine to co	orked black s barse sub-ang	lightly gravelly jular to sub-ro	r sandy unded
		3.60		ES								3.30m:	one. <i>Wood</i>			
		3.90		SPT	50 (2	25 for	95mr 5mm)	n/50 for	3.90				X CASING.			4 -
						12			4.00			Pred grevi	ominantly nor ish brown and	i-intact very dark brown	weak light thinly lamina	ated
												MUD	STONE. Fra	ctures very o	closely space	ed .
		4.00 - 5	.50		100	87	0					medi	ium spaced 80) degree ste	epped smoot	h.
				-								Loca	illy non intact.	Mylor Slate	Formation	5 -
		5.23 - 5	.30	C												
																6 -
		5.50 - 7	.00		93	70	30									
		6.67 - 6	.79	С												
								-	7.00			Medi	ium strong da	rk grey thinly	laminated	7 -
				_								MUD horiz	STONE. Fraction STONE. Fraction Structure Stru	tures are clo ee planar sm	osely spaced nooth, widely	l sub-
		7.51 - 7	.63	С	100	05	01					spac	ed sub-horizo	ntal 70 degr angish brow	ee planar n staining or	, ·
		7.00 - 8	.50		100	95						fract	ures. Mylor S	late Formatio	on	8 -
									8.50			Quar	tz. Mylor Slat	e Formation		
									8.70			Wea brow	k to medium s n thinly lamina	trong light g ated MUDS1	rey and redo ONE. Frac	lish tures
		8.50 - 10	0.00		100	70	22					close	ely spaced sub	-horiztonal	70-80 degre	es 9 - d
												brow	n staining and	l clay smear	ing. Locally	non
<u></u>				Type/FI	TCR	SCR	RQD	D/R/(SPT)					. wyor Slate	rormation		
Depth E	Hole Diam Base	eter Diameter	Dept	Casing h Base	Diame Di	ter iamete	r	Depth To	p Depth Bas	Chiselling e Dura	tion	Tool	Depth Top	Inclination Depth Base	and Orientation	Orientation
_																
Rema	rks	opountors	d													

Rotary Core Log

Project	Name: I	— Penzance D	ry Dock		C	Client: c/	o MBA Con	sulting			Date: 03	8/09/2024	1			
Locatio	on: Penza	ance			C	Contract	or:									
Project	No. : 24	093			C	Crew Na	me: Celtic [Drilling			Drilling B	Equipme	nt: Coma	acchio G	eo 205	
Во	rehole Ni BH05	umber	Hole	е Туре ЗН			Level		Logged	Ву МА		Scale		Pa	age Numb Sheet 2 of	er 2
Well	Water	Depth (m)	Type /FI		oring SCR RQD	Diameter Recovery (SPT)	Depth (m)	Level (m)	Legend		St	ratum D	escripti	on		
Well	Water	Depth (m)	Type //Fl		Dring SCR RQD	Diameter Recovery (SPT)	Depth (m)	Level (m)	AC+OS/	MA Weak brown closely steppe brown intact.	St to mediuu thinly lan y spaced ed and pla staining Mylor SI End	1:50 rratum D m strong ninated N sub-horiz anar smo and clay <u>ate Form</u> of Boreho	Descripti light gre /UDSTC ztonal 70 oth with smearin nation ole at 10.0	on y and re NE. Fra)-80 deg orange a g. Locall 00m	Addish actures rees and ly non	2 10 11 12 13 14 15 16
Hole	Diameter	Casing Dia	Type/FI ameter	TCR \$	SCR RQD Chisel	D/R/(SPT)		Inclinati	on and Orienta	ation			Drillin	a Flush		18
Depth Bas	e Diameter	Depth Base	Diameter Dep	oth Top D	Depth Base	Duration	Tool Dep	bth Top Depth	Base Inclination	n Orientation	Depth Top	Depth Base	Туре	Colour	Min (%)	Max (%)
Groun	dwater	not encoun	itered.												AG	S

_	KARN

Probe Test Log

- 1							ſ	-1	OD	ΕI	e 51		y				
 Project	Name: P	enzanc	e Dry D)ock		Client:	c/o MBA	A Co	nsulting			Date	: 12/06/2	2024			
Locatio	n: Penzar	nce				Contrac	ctor:										
Project	No. : 240	93				Crew N	lame:					Drilli	ng Equip	oment:			
Borel	hole Num DP01	ıber	F	lole Typ DP	е		Level			Logge	ed By		Scal 1:50	e)	F	Page Nui Sheet 1	mber of 1
Denth	Legend		Strat		scriptio	'n			Number o	of Blows				-			
			onat									I					
0.5									14 14 7	19							
1.0								4 1 ³									
1.5 —								1									
2.0								3									
2.5 -								$\begin{bmatrix} 2 \\ 1 \\ 3 \\ 2 \end{bmatrix}$									
3.0								$\frac{\frac{2}{2}}{\frac{2}{2}}$									
3.5 -								22 1 20									
4.0								2 2 2 2 2 3									
4.5 -								2 2 3 3 3									
5.0									1	5	30 30 30 30						
5.5 -																	
6.0																	
6.5 -																	
7.0																	
7.5 –																	
8.0																	
8.5 -																	
9.0																	
9.5																	
Hole Di	iameter	Casing D	liameter		Chis	selling			Inclinatio	on and Ori	entation			Dril	lling Flush		
Depth Base	Diameter D	vepth Base	Diameter	Depth Top	Depth Base	Duration	Tool	Dept	h Top Deptr	Base Inclin	ation Orienta	ation Depth	Top Depth Ba	ase Type	e Colou	r Min (%) Max (%)
Domor																	
Ground	dwater n	ot enc	ounter	ed.												A	I GS

	KARN	J								-1	3	1		
Projec	t Name	Penzance [Dry Docl	ĸ	Client: c/	o MBA Co	onsulting			Date: 12/0	6/2024			
Locati	on: Pen	zance			Contract	or:								
Projec	ct No. : 2	4093			Crew Na	ıme: Karn	Geoserv	ices		Drilling Eq	uipment: Aı	rchway Dar	t 549	
Bor	ehole N WS01	umber	Hole V	Type VS		Level		Logged KC	Ву	S	cale :50	Page She	e Numbe eet 1 of 1	er
Well	Water	Sampl	e and Ir	n Situ Testir	ng	Depth	Level	Legend		Strat	um Descrip	tion		
	Surkes	Depth (m)	Туре	Resul	ts	0.13	(11)		MADE	GROUND: C	oncrete slab			
		0.25	SPT	N=50 (4,7/ 260mr	50 for	0.40			NO RE base o	COVERY - a	appears to be	e natural in tl	ne	-
		0.30	ES	200111		0110				End of	Borehole at 0	.400m		-
														- - 1 —
														-
														-
														2 -
														-
														-
														3 -
														-
														-
														4 —
														-
														-
														5 —
														-
														-
														6 —
														-
														-
														7 -
														-
														-
														-
														8 -
														-
														-
														9 —
														-
														-
														- 10 —
	Hole Diame	eter	Casing	Diameter			Chiselling				Inclination	and Orientatior	1	
Depth	Base [Diameter De	pth Base	Diameter	Depth Top	Depth Ba	ase Dura	ation	Tool	Depth Top	Depth Base	Inclination	Orienta	ation
Rema	arks													
Ground	dwater no	ot encountered	I.											
													AGS	

01055	VICES .			1					•	U	•		
Project Nam	ne: Penzan	ce Dry Doc	:k	Client: o	c/o MBA C	onsulting	9		Date: 12/0	06/2024			
Location: Pe	enzance			Contrac	ctor:								
Project No.	: 24093			Crew N	ame:				Drilling Eq	uipment:			
Borehole	Number	Hole	е Туре		Level		Logge	d By	S	cale	Page	e Numbe	er
WS	02	١	NS						1	1:50	She	et 1 of 1	1
Well Strike	er Sa	mple and I	n Situ Testii	ng	Depth (m)	Level	Legen	ł	Strat	tum Descrip	tion		
	Depth	(m) Type	Resul	ts	()	()		MADE	GROUND: B	Brown sandy	clayey grave	lof	
	0.20	ES	N=13 (4,6/5	5,3,3,2)				fine to	coarse sub-a one, basic igr	ngular to sub neous rock, a	o-rounded nd chert.		
					0.60			X MADE	GROUND: G	Greyish browr	n slightly clay	/ey	
	1.00	SPT	N=48	3	1 00			sandy	gravel of fine	to coarse su ck.	b-angular to	sub-	- - 1 -
			(10,15/16,12	2,10,10)					End of	Borehole at 1	.000m		
													-
													-
													2 -
													-
													-
													3 —
													-
													4 —
													-
													-
													5 —
													6
													_
													-
													7 -
													-
													8 -
													9 —
													-
													-
													10 —
Hole Dia	meter	Casing	Diameter	Depth T	Denth B	Chisellin	g ration	Tool	Depth Top	Inclination	and Orientation) Orient	ation
Deput base	Diameter	Depui Dase						1001			monnation	Onenta	auUII
Remarks			1	1	1	1	I		-1	1			
Groundwater	not encount	ered.										AGS	

		<u>.</u>								•	0			
Projec	t Name:	Penzance D	ry Doc	k	Client: c	c/o MBA Co	onsulting			Date: 12/0	6/2024			
Locatio	on: Pen	zance			Contrac	tor:								
Projec	t No. : 2	4093			Crew N	ame:				Drilling Eq	uipment:			
Bor	ehole N	umber	Hole	е Туре		Level		Logged	Ву	S	cale	Page	e Numbe	er
	Water	Sample	v e and l	vo n Situ Testir	na	Denth				1	:50	Sne	etion	
Well	Strikes	Depth (m)		Resul	ts	(m)	(m)	Legend		Strat	um Descrip	tion		
Well	Water Strikes	Sample Depth (m) 0.20 0.70	e and li Type ES SPT	50 (25 for 30 for 75m	ng ts 0mm/50 m)	Depth (m) 0.12 0.50 0.70	Level (m)	Legend	MADE (MADE (slightly (angular igneous) Grevish fine to c mudstor	Strat	um Descrip oncrete slab. lack locally g / gravel of fin ded mudston dy slightly cla ngular to sub ed Mylor Slat Borehole at 0.	tion reyish brown e to coarse e and basic yey GRAVE -rounded alt <u>e Formation</u> 700m	h sub- L of ered	
														8
														9 —
Denth F	Hole Diame	iter	Casing	Diameter Diameter	Denth Tr	Denth Br	Chiselling	tion	Tool	Denth Ton	Inclination	and Orientation	Orient	ation
			Dase	Dameter					1001	рериттор	ארש		Unenta	
rkema Ground	IFKS Iwater no	t encountered											AGS	

	GEOSCEVICE	4 A								•				
Projec	t Name:	Penzance D	ry Docl	к	Client: c	o MBA Co	onsulting			Date: 12/0	6/2024			
Locati	on: Pen	zance			Contrac	tor:								
Projec	rt No. : 2	4093			Crew N	ame:				Drilling Eq	luipment:			
Bor	ehole N	umber	Hole	Туре		Level		Logged	Ву	S	cale	Pag	e Numb	er 1
	Water	Sample	v and lu	vs n Situ Testir	na	Denth					1:50	Sn	eetior	
Well	Strikes	Depth (m)	Type	Resul	ts	(m)	(m)	Legend		Strat	um Descrip	otion		
Well	Water Strikes	Sample Depth (m) 0.30 1.00 1.40 2.00 2.50 2.80 - 3.00 3.00	SPT ES SPT ES SPT SPT	N=4 (1,1/1, N=4 (1,1/1, N=11 (2,2/3 50 (8,14/5 150mn	1,1,1) ,2,2,4)	Depth (m) 0.12 2.30 2.70 3.00	Level (m)	Legend	MADE MADE slightly angular do sub- Light br to coarse Format	Strat	um Descrip	cally black s arse sub-an / GRAVEL o inded fine to lylor Slate .000m	slightly gular f fine	
														9
Donth	Hole Diame	eter	Casing	Diameter	Donth T	Donth D	Chiselling	tion	Tocl	Depth Tar	Inclination	and Orientatio	n Oriart	ation
Depth		nameter Dep	IN Base	⊔ıameter	Depth To	pp Depth Ba	ase Dura		1001	Depth lop	Depth Base		Orient	ation
Ground	arks dwater no	ot encountered.											AGS	5

Project		Banzanaa D		k	Client					Dete: 12/0	6/2024			
	n: Pont			ĸ	Contrac	tor:	Jiisuluily				0/2024			
Droiget		4002			Crow N	amo:				Drilling Eg	uinmont			
Boreł	hole Ni	umber	Hole		Clewin	l evel			d Bv	Dinning Eq	cale	Pag	e Number	
	WS05		V	VS		20101				1	:50	She	et 1 of 1	
Well S	Nater Strikes	Sample	and I	n Situ Testir	ng	Depth (m)	Level (m)	Legend		Strat	um Descrip	tion		
Well S	Vater Strikes	Sample Depth (m) 0.30 1.00 1.20 1.50 - 1.70 1.70	Type ES SPT ES B SPT	N=9 (2,1/1, 50 (25 for 12) for 110m	ng ts 0,3,5) 5mm/50 m)	Depth (m) 0.13 0.50 1.40 1.70	Level (m)		MADE MADE sandy sub-ro MADE sandy rounde Light to coa Weath	Strat	um Descrip oncrete. lack locally b is fine to coa reyish brown to coarse su and basic ign clayey sandy ar to sub-rou ate Formatio Borehole at 1	tion rown gravell rse sub-ang slightly clay b-angular to leous rock. (GRAVEL of inded mudst n .700m	y ular to ey sub- 1 f fine one. 2 3 4 5 6 7 8 8 9	
Ho Depth Ba	ole Diame	ter Diameter Dep	Casing th Base	Diameter Diameter	Depth To	Depth Ba	Chiselling	ation	Tool	Depth Top	Inclination	and Orientation	10 Orientation	
Remar Groundw	ks vater no	t encountered.											LI AGS	

www.karn-geo.co info@karn-geo.co	PROJECT NAME PENZANCE DRY DOCK PROJECT NO. 24093 CLIENT P. D. D. DEPTH FROM 5.50~	SAMPLE NO. BHO3 DATE 18/0G/24 ENCINEER OAS/MA DEPTH TO 12.40	
	2m 0.3m 0.4m 0.5m 0.6m	0.7m 0.8m 0.9m L.0m	
8-40 			
Date Drawn:			
18/06/2024 Scale: NTS GEOSERVIO	Fitle: Core Photos Site: Penzance Dry Client: Penzance Dry	Dock y Dock	Job No: 24093

SEOSE www.karr info@karr	PRO. PRO. PRO. PRO. PRO. CLIE CLIE CLIE CLIE CLIE CLIE CLIE CLIE	IECT NAME DENZANCE DRY DOCK JECT NO. 24093 NT D.D. TH FROM 4.00 А 1 2 3 4 5 6 M 8 9 10 11 12 13 14 15 8 17 18 19 20 А 1 2 3 4 5 6 M 8 9 10 11 12 13 14 15 8 17 18 19 20	SAMPLE NO. BHO5 DATE 18/06/24 ENGINEER OAS/MA DEPTH TO 10.00 Bue Cyan Green Vellow Red Magenda V Cellow Saters		
					12.20 1
6.50 					
Date Drawn: 18/06/2024	Scale: NTS	Title: Core Photos			
KΛ	RN	Site: Penzance Dry	Dock		
GEOSE	RVICES	Client: Penzance Dr	y Dock	Job No: 24093	

UXO Risk Management Report

FIG Reference: 3930L Client: Karn Geoservices Project: Penzance Dry Dock Site Location: Wharf Road, Penzance, TR18 4BW Project Dates: 10-13 June 2024

www.fellowsint.com

Document Control

Version Date	Version	Author	Reviewer	Comments
17 Jun. 24	1.0	Vicky Harper	Carl Parnell MIEXPE	Original

Quality Check

Version Date	Version	Checked by	Comments
17 Jun. 24	1.0	Keith Rayment	QC / format check

Document Approval

	Reviewed by	Approved by
Signature	øM.	K. Reyman.
Print Name	Carl Parnell MIExpE	Keith Rayment
Date	17 June 2024	17 June 2024

Distribution

Date	Copy No.	Recipient	Format
17 Jun. 24	1	Karn Geoservices	PDF
17 Jun. 24	2	Fellows International Group Ltd.	PDF

1. Project Detail

0 Faultana ant	
Dates:	10-13 June 2024
Location:	Penzance Dry Dock
Survey Objectives:	To locate, using electromagnetic means, any Unexploded Ordnance [UXO] that could pose a risk to intrusive engineering ground investigation works.
Client:	Karn Geoservices

2. Equipment

UXO Locator: Ebinger Magnex 120LW Magnetometer

3. Method

A single Fellows UXO Survey Engineer using an Ebinger Magnex 120LW Magnetometer supported the intrusive engineering works in accordance with the approved Methodology and Risk Assessment documentation to identify possible UXO in the vicinity.

See GI Position Log for details.

4. Results

Commencing at 0800 on the dates listed above, Fellows provided UXO Engineer support on site during intrusive ground works.

No evidence of UXO was found in the cleared areas. A UXO Clearance Status Certificate is attached.

NOTE: Only the positions of the ground investigation listed on the GI Position Log are certified free from UXO. If it is intended to conduct intrusive ground engineering operations outside of these surveyed positions a danger from UXOs still exists and the site should be surveyed for any UXO contamination before any future groundwork starts.

5. Unexploded Bomb (UXB) Penetration Depth

The magnetometer survey depth at each GI position is individually assessed taking into account the estimated maximum penetration depth for a typical WWII aerial weapon in relation to the ground conditions encountered. Unless otherwise stated, the depth achieved is that considered sufficient to clear the position for UXBs.

UXO Clearance Status Certificate

Site Name: Penzance Dry Dock

FIG Ref: 3930L

Date of Certificate: 17 June 2024

The Unexploded Ordnance (UXO) clearance status for each GI position is indicated on the attached GI Position Log to the logged depth (referenced to ground level), subject to the limitations outlined below. The GI positions cleared were identified to the Fellows UXO Engineer by the onsite Engineer.

Fellows UXO Survey Engineer: David Francis

Limitations

Detection of a UXO depends on a sufficient magnetic susceptibility contrast between the UXO and its host materials. Significant degradation of the casing of such a device or highly magnetic soils may prevent detection under certain circumstances.

The radius of detection (from each GI position) for a particular type of UXO depends on several parameters including the sensor system used, the size and orientation of the device and the levels of ambient magnetic noise on the site. High levels of noise may prevent detection in certain areas.

GI Position Log

GI No.	Cleared Yes/No	Equipment Used	Survey Depth	Remarks
BH01	Yes	Ebinger Magnex 120LW Magnetometer	5.5m	No evidence of UXO contamination
BH02	Yes	Ebinger Magnex 120LW Magnetometer	5.5m	No evidence of UXO contamination
BH03	Yes	Ebinger Magnex 120LW Magnetometer	5.5m	No evidence of UXO contamination
BH04	Yes	Ebinger Magnex 120LW Magnetometer	5.5m	No evidence of UXO contamination
BH05	Yes	Ebinger Magnex 120LW Magnetometer	5m	No evidence of UXO contamination
WS01	Yes	Ebinger Magnex 120LW Magnetometer	3.7m	No evidence of UXO contamination
WS02	Yes	Ebinger Magnex 120LW Magnetometer	1.45m	No evidence of UXO contamination
				Drill refused at 0.5m
WS03	NO	Ebinger Magnex 120LW Magnetometer	0.5m	UXO scan shows anomalies below 0.5m
				Client advised WS abandoned
WS04	Yes	Ebinger Magnex 120LW Magnetometer	1.5m	No evidence of UXO contamination
WS05	Yes	Ebinger Magnex 120LW Magnetometer	1.7m	No evidence of UXO contamination

Fellows International Group Ltd 160 Ordnance Business Park Aerodrome Road Gosport Hampshire PO13 0FG

t. 08000 424 424 e. info@fellowsintgroup.com

APPENDIX 3

LABORATORY CERTIFICATES – GEOTECHNICAL TESTS

Contract Number: 73427

Client Ref: 24093 Client PO: 24093/OS

Client: Karn Geoservices Limited

Laboratory Report

Contract Title: **Penzance Dry Dock** For the attention of: **Mike Austin** Date Received: 25-06-2024 Date Completed: 09-07-2024 Report Date: 09-07-2024

This report has been checked and approved by:

Brendan Evans Office Administrator

Description	Qty
PSD Wet Sieve method BS 1377:1990 - Part 2 : 9.2 - * UKAS	2
Water Soluble Sulphate 2:1 extract Sub-contracted Test	6
pH value of soil Sub-contracted Test	6
Uniaxial Compressive Strength of Rock inc sample prep 54-165mm diameter cores ISRM Suggested Method for determining uniaxial compressive strength - @ Non Accredited Test	1
PSD Wet Sieve method BS 1377:1990 - Part 2 : 9.2 - * UKAS Water Soluble Sulphate 2:1 extract Sub-contracted Test pH value of soil Sub-contracted Test Uniaxial Compressive Strength of Rock inc sample prep 54-165mm diameter cores ISRM Sugested Method for determining uniaxial compressive strength - @ Non Accredited Test Determination of Point Load Value Axial or Diametrical including WC *Please note GSTL is not accredited for the water content of rock* ISRM Suggested Method for Point Load Strength -* UKAS 4 Point Liquid & Plastic Limit BS 1377:1990 - Part 2 : 4.3 & 5.3 - * UKAS Moisture Content BS 1377:1990 - Part 2 : 3.2 - * UKAS Disposal of samples for job Notes: Observations and Interpretations are outside the UKAS Accreditation *- denotes test included in laboratory scope of accreditation #- denotes test carried out by approved contractor @ - denotes non accredited tests This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This test reportcedificate as hall not be reported accredited for the accreditation.	28
4 Point Liquid & Plastic Limit BS 1377:1990 - Part 2 : 4.3 & 5.3 - * UKAS	1
Moisture Content BS 1377:1990 - Part 2 : 3.2 - * UKAS	1
Disposal of samples for job	1
Notes: Observations and Interpretations are outside the UKAS Accreditation * - denotes test included in laboratory scope of accreditation # - denotes test carried out by approved contractor @ - denotes non accredited tests	
This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This test report/certificate shall not be reproduced except in full, without the approval of GEO Site & Testing Services Ltd. Any opinions or interpretations stated - within this report/certificate are excluded from the laboratories UKAS accreditation.	

Approved Signatories:

Brendan Evans (Office Administrator) - Darren Bourne (Quality Senior Technician) - Paul Evans (Director) Richard John (Quality/Technical Manager) - Shaun Jones (Laboratory manager) - Shaun Thomas (Site Manager) Wayne Honey (HR & HSE Manager)

GENTL GEOTECHNICAL SITE & TESTING LABORATORIES	NATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377:1990 - Part 2 : 4.3 & 5.3)	
Contract Number	73427	
Project Name	Penzance Dry Dock	
Date Tested	02/07/2024	
	DESCRIPTIONS	

Sample/Hole Reference	Sample Number	Sample Type	D	epth (ı	m)	Descriptions
WS04		В	2.80	-	3.00	Off white slightly gravelly slightly sandy chalky CLAY/SILT
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
	_			-		
	_			-		
	_			-		
	_			-		
	_			-		
	_			-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		

Operator

Owain Davies

		20		NATU	JRAL M	OIST	ſURE, L	IQUID LII	MIT, PL	ASTIC L	IMIT ANI	D		
OTECHN	ICAL SITE	& TESTING			PLASTICITY INDEX (BS 1377:1990 - Part 2 : 4.3 & 5.3)									
Contr	act Nu	mber						73427						
Proje	ct Nam	е			Penzance Dry Dock									
Date	Tested							02/07/2024						
Sa R	mple/H eferen	ole ce	Sample Number	Sample Type	D	epth (r	n)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Pass 0.425 %	sing 5mm 6	Remarks
	WS04			В	2.80	-	3.00	16		NP		9	1	
						-								
						-								
						-								
						-								
						-								
						-								
						-								
						-								
						-								
						-								
						-								
						-								
						-								
						-								
						-								
						-								
mbol	s: NF	' : Non F	Plastic	# : Liquid Li	mit and Plat PLASTIC	stic Lir TY C	nit Wet Siev HART FO BS 59	ved R CASAGR 30:2015+A	ANDE CL 1:2020	ASSIFICA	TION			
	90													
	80		CL			СІ		СН	- C	v			CE	
	70													
	60													
	E 0													
1	50													
	40													

MH 60

Liquid Limit (%)

MV 80

0

Operator

Owain Davies

ML

20

М

40

ME

120

100

Cameron Thomas

TESTING 2788

Point Load Test CECOTECUMICAL SITE & TESTING LABORATORIES The complete ISRM suggested methods for rock characterization, testing and monitoring 1974-2006 Determining Point Load Strength

	Load Strength	
Contract Number	73427	
Project Name	Penzance Dry Dock	
Sample Type	Core	
Date Tested	25/06/2024	
	*Please note that GSTL is not accredited for the water content of rock	

								-									
Hole			\	Sample	Test	Туре		Platen	Failure	Equivalent	Delet Logal	Size	Point Load	Moisture	Description	Angle Between Plane	Type of Anisotropy
Reference	U	epin (i	m)	No	d/a/h/i	1//	width	Seperation	Load	Diameter	Point Load	Factor	Index	Content	Description	or Anisotropy & Core	(Bedding or Cleavage)
PH01	5 70		E 90		d	1//		00	1 70	-	0.22	1 20	0.20	1 5		AXIS	Cleavage)
BHUI	5.70	-	5.60		u			90	1.79	70.00	0.22	1.30	0.29	1.0	SILTSTONE		
BH01	5.70	-	5.80		a		90	43	9.64	70.20	1.96	1.16	2.28	1.8	SILISTONE		
BH01	8.90	-	9.05		d			90	0.41		0.05	1.30	0.07	5.6	SILISTONE		
BH01	8.90	-	9.05		а		90	75	0.45	92.71	0.05	1.32	0.07	5.5	SILTSTONE		
BH01	10.36	-	10.48		d			90	0.52		0.06	1.30	0.08	5.7	SILTSTONE		
BH01	10.36	-	10.48		а		90	66	1.78	86.97	0.24	1.28	0.30	5.2	SILTSTONE		
BH02	6.98	-	7.12		d			90	1.99		0.25	1.30	0.32	3.6	SILTSTONE		
BH02	6.98	-	7.12		а		90	54	0.22	78.66	0.04	1.23	0.04	3.6	SILTSTONE		
BH02	7.60	-	7.74		d			90	1.85		0.23	1.30	0.30	6.5	SILTSTONE		
BH02	7.60	-	7.75		а		90	85	0.19	98.69	0.02	1.36	0.03	5.6	SILTSTONE		
BH03	8.00	-	8.10		d			90	0.09		0.01	1.30	0.01	4.6	SILTSTONE		
BH03	8.00	-	8.10		а		90	54	2.93	78.66	0.47	1.23	0.58	4.4	SILTSTONE		
BH03	10.82	-	10.88		d			90	1.23		0.15	1.30	0.20	6.1	SILTSTONE		
BH03	10.82	-	10.88		а		90	78	1.22	94.54	0.14	1.33	0.18	6.5	SILTSTONE		
BH03	12.44	-	12.54		d			90	10.93		1.35	1.30	1.76	0.6	SILTSTONE		
BH03	12.44	-	12.54		a		90	54	20.06	78.66	3.24	1.23	3.98	1.1	SILTSTONE		
BH04	7.00	-	7.40		h			90	2.07		0.26	1.30	0.33	5.4	SILTSTONE		
BH04	7.00	-	7 14				۵n	48	1.50	74 16	0.20	1 10	0.35	8.6	SILTSTONE		
BH04	9.43	-	9.51		d		50	90	0.62	74.10	0.08	1.13	0.00	5.0			
BHOA	0.43		0.51				90	49	0.02	74.16	0.00	1.00	0.10	4.0		1	(
BH04	9.43	<u> </u>	9.51		a		90	48	0.95	/4.10	0.17	1.19	0.21	4.0			
BH04	11.27	-	11.35		d		00	90	0.08	00.07	0.01	1.30	0.01	1.8	SILISTONE		
BH04	11.27	-	11.35		a		90	42	3.67	69.37	0.76	1.16	0.88	2.6	SILISTONE		
BH05	5.23	-	5.30		d			90	0.16	00.50	0.02	1.30	0.03	3.9	SILISTONE		
BH05	5.23	-	5.30		a		90	32	0.33	60.56	0.09	1.09	0.10	4.0	SILISTONE		
BH05	6.67	-	6.79		a			90	0.56	70.00	0.07	1.30	0.09	8.8	SILISTONE		
BH05	6.67	-	6.79		a		90	54	0.41	78.66	0.07	1.23	0.08	11.4	SILISTONE		
BHUS	7.51	-	7.63		d		00	90	3.15	77.00	0.39	1.30	0.51	0.7	SILISTONE		
BHUD	7.51	-	7.63		а		90	53	1.28	77.93	0.21	1.22	0.26	0.5	SILISTONE		
		-															
		-						-									[
		-						-									[
		-															
		-															
		-															
		-						1									1
		-															
		-															
	1	-							1	1	1					1	
		-			1			1			1					İ	
		-															
		-															
		-															
		-															
		-															·
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															L
		-															L
		-															L
		-			ļ			ļ									
	L	-			L			ļ	L		L						
1	1	-	1	1	1	1		1	1	1	1	1					1

Key	Reported As
Width	(W) mm
Platen Separation	(D) mm
Failure Load	(P) kN
Equivalent Diameter	(De) mm
Point Load	(Is) MPa
Size Factor	(F)
Point Load Index	(ls(50)) MPa
Moisture Content	%
Description	SC

JKAS TESTING 2788

Oper	ator
Julian .	lones

GS EOTECHNICAL SITE & TESTIN	s	Determination of Unconfined Compressive Strength ISRM Suggested Methods Vol 16, No. 2, pp. 135-140 1979										
Contract Nun	nber											
Project Nar		Penzance Dry Dock										
Sample Preperation Date Tested												
Hole Reference	[Depth (m)	Diameter	Length	Initial Mass	Moisture Content	Bulk Density	Dry Density	Load Failure	Maximum Strength	Type of Failure
BH04	8.20		8.38	89.9	185.3	3020.0	1.3	2.57	2.53	101.9	16.1	Single Shear
												J. J
		_		-							-	
		1										
		_										
		_		-								
		_										
										1		
		-										
		_										
		_		-							-	
	1	_										
	1											
		Γ		T								
		1										
			1	1						1	1	
	1		1	1						<u> </u>		
	+		-	+								
	-											
		_								<u> </u>	<u> </u>	
	4			ļ						ļ	ļ	
Key		Repo	rted As									
Diameter		n	nm	1								
enath		 n	nm	1								
		11	 a	-								
			y	-								
Moisture Conter	nt		%	1								
Bulk Density		Mg	g/m ³									
Dry Density	1	Mo	g/m ³	1								
Load Epiluro			/N	1								
		r										

Operator

Maximum Strength

MPa

Julian Jones

GSTL

Unit 3-4 Heol Aur Dafen Ind Estate Dafen SA14 8QN

	Analytical Test Report:	L24/05844/GSL - 24-46863	
Your Project Reference:	Penzance Dry Dock 24093		
Your Order Number:	73427	Samples Received / Instructed:	28/06/2024 / 28/06/2024
Report Issue Number:	1	Sample Tested:	28/06 to 09/07/2024
Samples Analysed:	6 soil samples	Report issued:	09/07/2024

Signed

James Gane

Analytical Services Manager CTS Group

Notes:

General

Please refer to Methodologies page for details pertaining to the analytical methods undertaken.

Samples will be retained for 14 days after issue of this report unless otherwise requested.

Moisture Content was determined in accordance with CTS method statement MS - CL - Sample Prep, oven dried at <30 $^{\circ}$ C.

Moisture Content is reported as a percentage of the dry mass of soil, this calculation is in accordance with BS1377, Part 2, 1990, Clause 3.2

Where specification limits are included these are for guidance only. Where a measured value has been highlighted this is not implying acceptance or failure and certainty of measurement values have not been taken into account.

Uncertainty of measurement values are available on request.

Samples were supplied by customer, results apply to the samples as received.

Deviating Samples

On receipt samples are compared against our sample holding and handling protocols, where any deviations have been noted these are reported on our deviating sample page (if present)

Accreditation Key

UKAS = UKAS Accreditation, MCERTS = MCERTS Accreditation, u = Unaccredited, subUKAS - Subcontracted to a laboratory UKAS accredited for this test, subMCERTS - Subcontracted to a laboratory MCERTS accredited for this test

MCERTS Accreditation only covers the SAND, CLAY and LOAM matrices

Date of Issue: 29.05.2024

Issued by: J. Gane

Issue No: 4 Rev No: 10

Project Reference - Penzance Dry Dock 24093

Analytical Test Results - Chemical Analysis

Lab Reference			377210	377211	377212	377213	377214	377215
Client Sample ID			-	-	-	-	-	-
Client Sample Location			WS4	WS5	BH1	BH1	BH3	BH4
Client Sample Type			В	В	с	с	С	С
Client Sample Number			-	-	-	-	-	-
Depth - Top (m)			2.80	1.50	5.70	10.38	12.44	8.20
Depth - Bottom (m)			3.00	1.70	5.80	10.48	12.54	8.39
Date of Sampling			-	-	-	-	-	-
Time of Sampling			-	-	-	-	-	-
Sample Matrix			Other	Other	Other	Other	Other	Other
Determinant	Units	Accreditation						
Water soluble sulphate (as SO ₄)	(mg/l)	u	28	160	240	160	22	170
pH Value	pH Units	MCERTS	8.8	8.4	8.6	8.9	9.5	8.9

Project Reference - Penzance Dry Dock 24093

Sample Descriptions

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Description	Moisture Content (%)	Stone Content (%)	Passing 2mm test sieve (%)
377210	-	WS4	В	-	Light brown clayey silt	-	-	100
377211	-	WS5	В	-	Greyish brown gravelly clayey silt	-	-	82
377212	-	BH1	С	-	Dark grey mudstone	-	-	100
377213	-	BH1	С	-	Dark grey mudstone	-	-	100
377214	-	BH3	С	-	Grey mudstone	-	-	100
377215	-	BH4	С	-	Grey mudstone	-	-	100

Project Reference - Penzance Dry Dock 24093

Sample Comments

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Comments
377210	-	WS4	В	-	
377211	-	WS5	В	-	
377212	-	BH1	C	-	
377213	-	BH1	С	-	
377214	-	BH3	С	-	
377215	-	BH4	С	-	

Project Reference - Penzance Dry Dock 24093

Analysis Methodologies

Test Code	Test Name / Reference	Sample condition for analysis	Sample Preperation	Test Details
ANIONSS	MS - CL - Anions by Aquakem (2:1Extract)	Oven dried	Passing 2mm test sieve	Determination of Anions (inc Sulphate, chloride etc.) in soils by Aquakem. Analysis is based on a 2:1 water to soil extraction ratio
PHS	MS - CL - pH in Soils	As received	Passing 10mm test sieve	Determination of pH in soils using a pH probe (using a 1:3 soil to water extraction)
SAMPLEPREP	MS - CL - Sample Preparation	-	-	Preparation of samples (including determination of moisture content) to allow for subsequent analysis

Project Reference - Penzance Dry Dock 24093

Sample Deviations

Deviations are listed below against each sample and associated test method, where deviation(s) are noted it means data may not be representative of the sample at the time of sampling and it is possible that results provided may be compromised.

Observations on receipt

A - No date of sampling provided C - Received in inappropriate container

H - Contains headspace

T - Temperature on receipt exceeds storage temperature

R - Sample(s) received with less than 96 hours for testing to commence/complete, any result formally classed as deviating will be marked with an X against the applicable test (i.e. RX)

Observations whilst in laboratory

X - Exceeds sampling to extraction or analysis timescales

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	est	Deviations
377210	-	WS4	В	-		A
377211	-	WS5	В	-		A
377212	-	BH1	С	-		A
377213	-	BH1	С	-		A
377214	-	BH3	С	-		A
377215	-	BH4	С	-		A

APPENDIX 4

LABORATORY CERTIFICATES – GEOENVIRONMENTAL TESTS

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	24-19786-1		
Initial Date of Issue:	10-Jul-2024		
Re-Issue Details:			
Client	Karn Geoservice Ltd		
Client Address:	West Langarth Farm Penstraze Truro Cornwall TR4 8PH		
Contact(s):	Lucy Quick		
Project	24093 Penzance Dry Dock		
Quotation No.:	Q24-35202	Date Received:	21-Jun-2024
Order No.:		Date Instructed:	21-Jun-2024
No. of Samples:	13		
Turnaround (Wkdays):	14	Results Due:	10-Jul-2024
Date Approved:	10-Jul-2024	Subcon Results Due:	12-Jul-2024
Approved By:			

Details:

2183

Final Report

David Smith, Technical Director

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Results - Miscellaneous Solid

Client: Karn Geoservice Ltd	Chemtest Job No.:				24-19786	24-19786
Quotation No.: Q24-35202		Che	emtest S	Sample ID.:	1824801	1824806
Order No.:			Client S	ample Ref.:	ES2	ES3
		Client Sample ID.:			ES2	ES3
		Sample Location:				BH01
	Sample Type:				MISCSOLID	MISCSOLID
			Тор	Depth (m):	1.40	2.60
			Dat	e Sampled:	12-Jun-2024	13-Jun-2024
Determinand	Accred.	SOP	Units	LOD		
Tributyltin (TBT)	SN		mg/kg	0.0200000	See Attached	See Attached

<u> Results - Soil</u>

Client: Karn Geoservice Ltd			Che	mtest J	ob No.:	24-19786	24-19786	24-19786	24-19786	24-19786	24-19786	24-19786	24-19786
Quotation No.: Q24-35202		(Chemte	est Sam	ple ID.:	1824799	1824800	1824802	1824803	1824804	1824805	1824807	1824808
Order No.:			Clie	nt Samp	le Ref.:	ES1	ES1	ES3	ES1	ES2	ES1	ES5	ES1
			Cli	ent Sarr	ple ID.:	ES1	ES1	ES3	ES1	ES2	ES1	ES5	ES1
			Sa	ample L	ocation:	WS03	WS04	WS04	WS05	WS05	BH01	BH01	BH02
				Sampl	e Type:	SOIL							
				Top De	pth (m):	0.20	0.30	2.50	0.30	1.20	0.90	4.80	1.00
				Date Sa	ampled:	12-Jun-2024	12-Jun-2024	12-Jun-2024	12-Jun-2024	12-Jun-2024	13-Jun-2024	13-Jun-2024	13-Jun-2024
				Asbest	os Lab:	NEW-ASB							
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
АСМ Туре		U	2192		N/A	-	-	-	-	-	-	-	-
Asbestos Identification		U	2192		N/A	No Asbestos Detected							
Moisture		N	2030	%	0.020	7.8	11	7.4	14	8.5	12	22	11
Soil Colour		N	2040		N/A	Brown							
Other Material		Ν	2040		N/A	Stones	Stones	Stones	None	Stones	Stones	None	Stones
Soil Texture		Ν	2040		N/A	Loam	Loam	Loam	Sand	Loam	Clay	Clay	Loam
pH at 20C		М	2010		4.0	8.6	8.7	7.7	7.9	8.1	8.3	8.4	8.6
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	1.9	2.0	3.7	1.6	0.69	2.1	10	1.3
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	< 0.50		< 0.50		< 0.50		
Arsenic		М	2455	mg/kg	0.5	160	90	190	38	450	140	51	78
Cadmium		М	2455	mg/kg	0.10	0.42	< 0.10	< 0.10	0.46	< 0.10	0.28	0.85	< 0.10
Chromium		М	2455	mg/kg	0.5	170	63	60	39	49	120	39	35
Copper		М	2455	mg/kg	0.50	230	110	500	520	140	290	35	81
Mercury		М	2455	mg/kg	0.05	6.6	0.12	0.42	4.3	0.56	3.5	0.06	0.07
Nickel		М	2455	mg/kg	0.50	180	56	72	38	57	77	30	24
Lead		М	2455	mg/kg	0.50	800	42	880	280	120	830	31	56
Selenium		М	2455	mg/kg	0.25	1.5	1.4	2.4	0.53	2.4	1.6	1.0	2.0
Zinc		М	2455	mg/kg	0.50	510	210	220	280	170	680	160	93
Chromium (Trivalent)		N	2490	mg/kg	1.0	170	63	60	39	49	120	39	35
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter		М	2625	%	0.40	14	3.0	2.1	20	1.3	6.7	0.76	1.2
Total TPH >C6-C40	EH_1D_Total	М	2670	mg/kg	10			90		4000		< 10	< 10
Aliphatic TPH >C5-C6	EH_2D_AL_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Aliphatic TPH >C6-C8	EH_2D_AL_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Aliphatic TPH >C8-C10	EH_2D_AL_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Aliphatic TPH >C10-C12	EH_2D_AL_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0		130		< 1.0		
Aliphatic TPH >C12-C16	EH_2D_AL_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0		2800		< 1.0		
Aliphatic TPH >C16-C21	EH_2D_AL_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0		7000		< 1.0		
Aliphatic TPH >C21-C35	EH_2D_AL_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0		2000		< 1.0		
Aliphatic TPH >C35-C44	EH_2D_AL_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Total Aliphatic Hydrocarbons	EH_2D_AL_#1	N	2680	mg/kg	5.0	< 5.0	< 5.0		12000		< 5.0		
Aromatic TPH >C5-C7	EH_2D_AR_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Aromatic TPH >C7-C8	EH_2D_AR_#1	N	2680	mg/kg	1.0	40	41		43		41		
Aromatic TPH >C8-C10	EH_2D_AR_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Aromatic TPH >C10-C12	EH_2D_AR_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0		70		< 1.0		
Aromatic TPH >C12-C16	EH_2D_AR_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0		1900		< 1.0		

<u> Results - Soil</u>

Client: Karn Geoservice Ltd			Che	mtest J	ob No.:	24-19786	24-19786	24-19786	24-19786	24-19786	24-19786	24-19786	24-19786
Quotation No.: Q24-35202		(Chemte	est Sam	ple ID.:	1824799	1824800	1824802	1824803	1824804	1824805	1824807	1824808
Order No.:			Clie	nt Samp	le Ref.:	ES1	ES1	ES3	ES1	ES2	ES1	ES5	ES1
			Cli	ent Sam	ple ID.:	ES1	ES1	ES3	ES1	ES2	ES1	ES5	ES1
			Sa	ample Lo	ocation:	WS03	WS04	WS04	WS05	WS05	BH01	BH01	BH02
				Sampl	e Type:	SOIL							
				Top De	oth (m):	0.20	0.30	2.50	0.30	1.20	0.90	4.80	1.00
				Date Sa	ampled:	12-Jun-2024	12-Jun-2024	12-Jun-2024	12-Jun-2024	12-Jun-2024	13-Jun-2024	13-Jun-2024	13-Jun-2024
				Asbest	os Lab:	NEW-ASB							
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
Aromatic TPH >C16-C21	EH_2D_AR_#1	N	2680	mg/kg	1.0	11	< 1.0		2000		9.5		
Aromatic TPH >C21-C35	EH_2D_AR_#1	N	2680	mg/kg	1.0	11	< 1.0		1300		< 1.0		
Aromatic TPH >C35-C44	EH_2D_AR_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Total Aromatic Hydrocarbons	EH_2D_AR_#1	N	2680	mg/kg	5.0	62	41		5300		50		
Total Petroleum Hydrocarbons	EH_2D_Total_#1	N	2680	mg/kg	10.0	62	41		17000		50		
Benzene		М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Toluene		М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Ethylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
m & p-Xylene		М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
o-Xylene		М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0	< 1.0	< 1.0		< 1.0		< 1.0		
Naphthalene		М	2800	mg/kg	0.10	0.74	< 0.10	0.47	1.6	< 0.10	0.89	< 0.10	< 0.10
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10	< 0.10	0.56	< 0.10	< 0.10	0.44	< 0.10	< 0.10
Acenaphthene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene		М	2800	mg/kg	0.10	< 0.10	< 0.10	0.16	< 0.10	< 0.10	0.13	< 0.10	< 0.10
Phenanthrene		М	2800	mg/kg	0.10	1.1	< 0.10	3.5	2.1	< 0.10	3.7	< 0.10	< 0.10
Anthracene		М	2800	mg/kg	0.10	0.20	< 0.10	1.3	< 0.10	< 0.10	0.77	< 0.10	< 0.10
Fluoranthene		М	2800	mg/kg	0.10	1.5	< 0.10	13	2.7	0.56	12	0.69	< 0.10
Pyrene		М	2800	mg/kg	0.10	1.4	< 0.10	9.5	4.3	1.1	8.6	0.62	< 0.10
Benzo[a]anthracene		М	2800	mg/kg	0.10	0.89	< 0.10	7.1	< 0.10	< 0.10	6.2	0.49	< 0.10
Chrysene		М	2800	mg/kg	0.10	0.89	< 0.10	6.9	< 0.10	< 0.10	6.8	0.51	< 0.10
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	1.4	< 0.10	9.1	< 0.10	< 0.10	11	< 0.10	< 0.10
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	0.40	< 0.10	3.8	< 0.10	< 0.10	4.2	< 0.10	< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	0.84	< 0.10	5.8	< 0.10	< 0.10	7.1	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	0.76	< 0.10	5.3	< 0.10	< 0.10	6.6	< 0.10	< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10	< 0.10	1.3	< 0.10	< 0.10	1.1	< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	0.75	< 0.10	3.1	< 0.10	< 0.10	4.2	< 0.10	< 0.10
Total Of 16 PAH's		N	2800	mg/kg	2.0	11	< 2.0	71	11	< 2.0	74	2.3	< 2.0
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

<u>Results - Soil</u>

Client: Karn Geoservice Ltd			Che	mtest J	ob No.:	24-19786	24-19786	24-19786
Quotation No.: Q24-35202		Chemtest Sample ID.:			1824809	1824810	1824811	
Order No.:			Client Sample Ref.:			ES2	ES5	ES9
			Cli	ent Sam	ple ID.:	ES2	ES5	ES9
			Sa	ample Lo	ocation:	BH03	BH03	BH03
				Sampl	e Type:	SOIL	SOIL	SOIL
				Top De	pth (m):	0.70	2.20	5.10
				Date Sa	ampled:	13-Jun-2024	13-Jun-2024	13-Jun-2024
			-	Asbest	os Lab:	NEW-ASB	NEW-ASB	NEW-ASB
Determinand	HWOL Code	Accred.	SOP	Units	LOD			
АСМ Туре		U	2192		N/A	-	-	-
Asbestos Identification		U	2192		N/A	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
Moisture		N	2030	%	0.020	9.3	15	14
Soil Colour		N	2040		N/A	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones	Stones	Stones
Soil Texture		N	2040		N/A	Loam	Loam	Clay
pH at 20C		М	2010		4.0	8.7	8.8	8.9
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	1.3	4.7	7.2
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	< 0.50	
Arsenic		М	2455	mg/kg	0.5	100	43	150
Cadmium		М	2455	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Chromium		М	2455	mg/kg	0.5	67	27	53
Copper		М	2455	mg/kg	0.50	60	46	93
Mercury		М	2455	mg/kg	0.05	0.07	0.05	0.41
Nickel		М	2455	mg/kg	0.50	78	21	61
Lead		М	2455	mg/kg	0.50	34	35	62
Selenium		М	2455	mg/kg	0.25	0.84	0.54	1.2
Zinc		М	2455	mg/kg	0.50	150	59	250
Chromium (Trivalent)		Ν	2490	mg/kg	1.0	67	27	53
Chromium (Hexavalent)		Ν	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Organic Matter		М	2625	%	0.40	3.1	1.7	0.79
Total TPH >C6-C40	EH_1D_Total	М	2670	mg/kg	10			< 10
Aliphatic TPH >C5-C6	EH_2D_AL_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0	
Aliphatic TPH >C6-C8	EH_2D_AL_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0	
Aliphatic TPH >C8-C10	EH_2D_AL_#1	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	
Aliphatic TPH >C10-C12	EH_2D_AL_#1	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	
Aliphatic TPH >C12-C16	EH_2D_AL_#1	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	
Aliphatic TPH >C16-C21	EH_2D_AL_#1	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	
Aliphatic TPH >C21-C35	EH_2D_AL_#1	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	
Aliphatic TPH >C35-C44	EH_2D_AL_#1	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	
Total Aliphatic Hydrocarbons	EH_2D_AL_#1	Ν	2680	mg/kg	5.0	< 5.0	< 5.0	
Aromatic TPH >C5-C7	EH_2D_AR_#1	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	
Aromatic TPH >C7-C8	EH_2D_AR_#1	N	2680	mg/kg	1.0	43	57	
Aromatic TPH >C8-C10	EH_2D_AR_#1	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	
Aromatic TPH >C10-C12	EH_2D_AR_#1	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	
Aromatic TPH >C12-C16	EH_2D_AR_#1	Ν	2680	mg/kg	1.0	< 1.0	< 1.0	

Results - Soil

Client: Karn Geoservice Ltd			Che	mtest Jo	ob No.:	24-19786	24-19786	24-19786
Quotation No.: Q24-35202		(Chemte	st Sam	ple ID.:	1824809	1824810	1824811
Order No.:			Client Sample Ref.:			ES2	ES5	ES9
			Cli	ent Sam	ple ID.:	ES2	ES5	ES9
			Sa	ample Lo	ocation:	BH03	BH03	BH03
				Sample	e Type:	SOIL	SOIL	SOIL
				Тор Dep	oth (m):	0.70	2.20	5.10
				Date Sa	ampled:	13-Jun-2024	13-Jun-2024	13-Jun-2024
				Asbest	os Lab:	NEW-ASB	NEW-ASB	NEW-ASB
Determinand	HWOL Code	Accred.	SOP	Units	LOD			
Aromatic TPH >C16-C21	EH_2D_AR_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0	
Aromatic TPH >C21-C35	EH_2D_AR_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0	
Aromatic TPH >C35-C44	EH_2D_AR_#1	N	2680	mg/kg	1.0	< 1.0	< 1.0	
Total Aromatic Hydrocarbons	EH_2D_AR_#1	N	2680	mg/kg	5.0	43	57	
Total Petroleum Hydrocarbons	EH_2D_Total_#1	N	2680	mg/kg	10.0	43	57	
Benzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	
Toluene		М	2760	µg/kg	1.0	< 1.0	< 1.0	
Ethylbenzene		М	2760	µg/kg	1.0	< 1.0	< 1.0	
m & p-Xylene		М	2760	µg/kg	1.0	< 1.0	< 1.0	
o-Xylene		М	2760	µg/kg	1.0	< 1.0	< 1.0	
Methyl Tert-Butyl Ether		М	2760	µg/kg	1.0	< 1.0	< 1.0	
Naphthalene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluorene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Phenanthrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Anthracene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluoranthene		М	2800	mg/kg	0.10	< 0.10	0.47	0.33
Pyrene		М	2800	mg/kg	0.10	< 0.10	0.37	0.28
Benzo[a]anthracene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Chrysene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's		N	2800	mg/kg	2.0	< 2.0	< 2.0	< 2.0
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2010	pH Value of Soils	pH at 20°C	pH Meter	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <30°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.	
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3-band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID	
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection	
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS	
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1-Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"
- SOP Standard operating procedure
- LOD Limit of detection

This report shall not be reproduced except in full, and only with the prior approval of the laboratory.

Any comments or interpretations are outside the scope of UKAS accreditation.

The Laboratory is not accredited for any sampling activities and reported results relate to the samples 'as received' at the laboratory.

Uncertainty of measurement for the determinands tested are available upon request .

None of the results in this report have been recovery corrected.

All results are expressed on a dry weight basis.

The following tests were analysed on samples 'as received' and the results subsequently corrected to a dry weight basis EPH, VPH, TPH, BTEX, VOCs, SVOCs, PCBs, Phenols.

For all other tests the samples were dried at \leq 30°C prior to analysis.

All Asbestos testing is performed at the indicated laboratory .

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1.

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt. All water samples will be retained for 14 days from the date of receipt. Charges may apply to extended sample storage.

Water Sample Category Key for Accreditation

DW - Drinking Water GW - Ground Water LE - Land Leachate NA - Not Applicable

Report Information

- PL Prepared Leachate
- PW Processed Water
- **RE Recreational Water**
- SA Saline Water
- SW Surface Water
- TE Treated Effluent
- TS Treated Sewage
- UL Unspecified Liquid

Clean Up Codes

- NC No Clean Up
- MC Mathematical Clean Up
- FC Florisil Clean Up

HWOL Acronym System

- HS Headspace analysis
- $\mathsf{E}\mathsf{H}$ $\mathsf{Extractable}$ hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by Florisil, silica gel
- 1D GC Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatic only
- 2D GC-GC Double coil gas chromatography
- #1 EH_2D_Total but with humics mathematically subtracted
- #2 EH_2D_Total but with fatty acids mathematically subtracted
- + Operator to indicate cumulative e.g. EH+EH_Total or EH_CU+HS_Total

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Certificate of Analysis

Report No.:	24-04623-1
Issue No.: Date of Issue	1 10/07/2024
Customer Details:	Chemtest Ltd, Depot Road, Newmarket, Suffolk, CB8 0AL, United Kingdom
Customer Contact:	Joanne Ould
Customer Order No.:	27239
Customer Reference:	Not Supplied
Quotation Reference:	Q24-02233 (Issue: 9)
Description:	2 geo samples
Date Received:	26/06/2024
Date Started:	26/06/2024
Date Completed:	08/07/2024
Test Methods:	Details available on request (refer to SOP code against relevant result/s)
Notes:	None
	· have

Approved By:

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service.

This certificate shall not be reproduced except in full without the prior written approval of the laboratory.

Observations and interpretations are outside of the scope of UKAS accreditation.

Results reported herein relate only to the items supplied to the laboratory for testing.

Results on an Interim Report are not dry-weight corrected.

Where the laboratory is not responsible for the sampling, results apply to the sample(s) as they were received.

The laboratory shall not be responsible for any information that is supplied by the customer that may affect the validity of results.

rpsgroup.com

RPS Environmental Management Limited trading as RPS Mountainheath. Registered in England No. 01756175.

13 St Martins Way, Bedford, Bedfordshire, MK42 0LF. T +44 1462 480 400

A member of the RPS Group plc. Terms and conditions apply - copy on request

David Long, LIMS Manager

Results Summary

Determinand tributyltin (TBT)

Report No.: 24-04623-1

Customer Reference: Not Supplied

Customer Order No: 27239

		Customer Sample No			1824801	1824806
	Customer Sample ID				WS04	BH01
		RPS Sample No 60256 6025				
		Sample Type GEO GEO				GEO
	Sample Matrix			SOIL	SOIL	
			Sa	mpling Date	12/06/2024	13/06/2024
CAS No	Codes	SOP	RL	Units		
36643-28-4	N	S395LL	2	kg as cation	< 2.0	< 2.0

Deviating Samples

Report No.: 24-04623-1

Customer Reference: Not Supplied

Customer Order No: 27239

Our policy on Deviating Samples has been implemented in accordance with UKAS Policy on Deviating Samples (TPS63). RPS is not responsible for the integrity of samples as received, unless RPS personnel performed the sampling. Samples submitted may be declared to be deviating. Where applicable the analysis method remains UKAS accredited, however results reported for a deviating sample may be compromised. Where no sampling date was supplied, samples have been declared to be deviating. If the date can be supplied, results may be reissued if assessed not deviating. Where the sample container used was unsuitable or broken, the sample is flagged as deviating and re-sampling/re-submisson may be required.

RPS No.	Customer No.	Customer ID	Date Sampled	Containers Received	Deviating	Reason for Deviation
60256	1824801	WS04	12/06/2024	250 mL amber glass jar	No	
60257	1824806	BH01	13/06/2024	250 mL amber glass jar	No	

Report No.: 24-04623-1

Туре	Matrix Code	Description
Food	CEREALPROD	Cereals, grains & products
Food	DRIEDFRUIT	Dried fruits
Food	FRIEDBAKED	Fried or baked food
Food	LEGUME	Legumes
Food	MEAT	Meat
Food	POWDERED	Powdered food
Food	PULSE	Pulses (dried legumes)
Food	VEGETABLES	Vegetables
Gas	TDTUBE	TD Tube
Gas	TENAX	Tenax Tube
Gas	TUBE	Tube
Gas	VAPOUR	Gas
Geological	SED_MAR	Marine Sediment
Geological	SED_RIV	River Sediment
Geological	SLUDG_SOL	Sludge (solid only)
Geological	SOIL	Soil
Liquid	BEVERAGE	Beverage
Liquid	BLOOD	Blood
Liquid	CONDENSATE	Condensate
Liquid	FOAM_LIQ	Liquid foam
Liquid	FORMULATN	Formula
Liquid	LEACHATE	Leachate
Liquid	OIL/GREASE	Oil or grease
Liquid	SLUDG_LIQ	Sludge (liquid only)
Liquid	SOLVENT	Solvent
Liquid	URINE	Urine
Sludge	SLUDG_WHL	Sludge for bulk route
Solid	BADGE	Badge
Solid	BEDDING	Bedding
Solid	BIOTA	Biota (general)
Solid	BIOTA_F	Biota (fish)
Solid	BIOTA_SF	Biota (shellfish)
Solid	CONSTRCTN	Construction materials
Solid	FABRIC	Fabrics & furnishing materials
Solid	FEED	Animal feed
Solid	FERTILISER	Fertiliser
Solid	FILTER	Filter
Solid	FOAM	Solid foam material
Solid	PACKAGING	Packaging material
Solid	PAPER	Paper
Solid	PLANT	Plant (vegetation)
Solid	POWDER	Powder
Solid	SWAB	Swab
Water	BAL	Ballast Water
Water	BIL	Bilge Water
vvater		
vvater	EFFLUENI	
Water	MINEW	
Water		Solt Water
Water	SALIW ew/	Salt water
vvater		
		i ap vvater
vvater	VV	water

Report No.: 24-04623	-1
Key Code	Description
N	Not Accredited Test
U	UKAS Accredited Test - UKAS accreditation is only implied if the report carries the UKAS logo
UF	UKAS Flexible Scope Test
М	MCERTS Accredited Test - MCERTS accreditation is only implied if the report carries the MCERTS logo
0	Marine Management Organisation (MMO) Validated
SN	Subcontracted to approved laboratory not accredited for the test
SU	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
SIN	Subcontracted to internal RPS Group laboratory not accredited for the test
SIU	Subcontracted to internal RPS Group laboratory UKAS Accredited for the test
SIM	Subcontracted to internal RPS Group laboratory MCERTS/UKAS Accredited for the test
*	Modified standard method
I/S (in results)	Insufficient Sample
U/S (in results)	Unsuitable Sample
S/C (in results)	See Comments
ND (in results)	Not Detected
DW (in units)	Results are expressed on a dry weight basis
L (in results)	Result is outside normal limits
Sample Type	Sample Retention and Disposal Period
Foodstuff	1 month (if frozen) from the issue date of this report
Waters	2 weeks from the issue date of this report
Other Liquids	1 month from the issue date of this report
Solids / Soils	1 month from the issue date of this report
Sediments	1 month from the issue date of this report

Note: Sample retention may be subject to agreement with the customer for particular projects

Where the dry solids value of a sample is low (<50%), reporting limits are automatically raised for all determinants analysed on an as-received basis.

Soil Typing	Description
Туре 1	Clay - Brown
Type 2	Clay - Grey/Black
Туре 3	Sand
Type 4	Top Soil (Standard)
Туре 5	Top Soil (High Peat)
Туре 6	Made Ground (>50% Clay)
Туре 7	Made Ground (>50% Sand)
Туре 8	Made Ground (>50% Top Soil)
Туре Х	Other

Dev code	Description
D	No sampling date provided.
Т	No sampling time provided.
Z	Temperature of samples exceeded in transit/storage.
V	Excessive headspace for volatile determinands.
Р	Sample submitted without required preservative(s).
С	Incorrect container.
Н	Holding time exceeded (sampling to extraction).
Х	Holding time exceeded (sampling to receipt).

Note: Where the following information is included in this certificate, it has usually been supplied by the customer: Customer Sample ID, Sample Location, Sample Depth, Sampling Date and Sampling Time. The laboratory shall not be responsible for any information that is supplied by the customer that may affect the validity of results.

APPENDIX 5

GEOENVIRONMENTAL ASSESSMENT

		Generic Assessment Criteria for Commercial end use					
KARN		1% SOM (mg/kg)	2.5% SOM (mg/kg)	6% SOM (mg/kg)	Primary Data Source		
	Arsenic	640	640	640	C4SL DEFRA 2014		
	Boron	240000	240000	240000	S4UL LQM/CIEH 2015		
	Beryllium	12	12	12	S4UL LQM/CIEH 2015		
	Chromium (III)	8600	8600	8600	S4UL LQM/CIEH 2015		
	Chromium (VI)	49	49	49	S4UL LQM/CIEH 2015		
als I	Copper	68000	68000	68000	S4UL LQM/CIEH 2015		
Aeta	Lead	2300	2300	2300	C4SL DEFRA 2014		
	Mercury (Horganic) Mercury (Elemental)	58	58	58	S4UL LOM/CIEH 2015		
	Mercury (Methyl)	320	320	320	S4UL LQM/CIEH 2015		
	Nickel	980	980	980	S4UL LQM/CIEH 2015		
	Selenium	12000	12000	12000	S4UL LQM/CIEH 2015		
	Zinc	730000	730000	730000	S4UL LOM/CIEH 2015		
	Acenaphthene	84000	97000	100000	S4UL LQM/CIEH 2015		
	Acenaphthylene	29000	30000	30000	S4UL LQM/CIEH 2015		
	Anthracene	150000	150000	150000	S4UL LQM/CIEH 2015		
	Benzo(a)anthracene	49	56	62	S4UL LQM/CIEH 2015		
	Benzo(b)fluoranthene	44	44	45	S4ULLOM/CIFH 2015		
	Benzo(ghi)perylene	3900	4000	4000	S4UL LQM/CIEH 2015		
	Benzo(k)fluoranthene	1200	1200	1200	S4UL LQM/CIEH 2015		
	Chrysene	350	350	350	S4UL LQM/CIEH 2015		
	Dibenz(a,h)anthracene	3.5	3.6	3.6	S4UL LQM/CIEH 2015		
	Fluoranthene	63000	68000	23000	S4UL LQM/CIEH 2015		
	Indeno(1,2,3-cd)pyrene	500	510	510	S4UL LQM/CIEH 2015		
	Naphthalene	190	460	1100	S4UL LQM/CIEH 2015		
	Phenanthrene	22000	22000	23000	S4UL LQM/CIEH 2015		
	Pyrene Coal Tar (BaP)	54000	54000	54000	S4UL LQM/CIEH 2015		
	TPH-CWG - Aliphatic >FC5 - FC6	3200	5900	12000	S4UL LOM/CIEH 2015		
	TPH-CWG - Aliphatic > EC6 - EC8	7800	17000	40000	S4UL LQM/CIEH 2015		
	TPH-CWG - Aliphatic >EC8 - EC10	2000	4800	11000	S4UL LQM/CIEH 2015		
suo	TPH-CWG - Aliphatic >EC10 - EC12	9700	23000	47000	S4UL LQM/CIEH 2015		
arb	TPH-CWG - Aliphatic > $EC12 - EC16$	59000	82000	90000	S4UL LQM/CIEH 2015		
	TPH-CWG - Aliphatic >EC10 - EC33 TPH-CWG - Aliphatic >EC35 - EC44	1600000	1700000	1800000	S4UL LOM/CIEH 2015		
h H	TPH-CWG - Aromatic >EC5 - EC7	26000	46000	86000	S4UL LQM/CIEH 2015		
 .v	TPH-CWG - Aromatic >EC7 - EC8	56000	110000	180000	S4UL LQM/CIEH 2015		
nat	TPH-CWG - Aromatic >EC8 - EC10	3500	8100	17000	S4UL LQM/CIEH 2015		
- Aroi	TPH-CWG - Aromatic >EC10 - EC12 TPH-CWG - Aromatic >EC12 - EC16	16000	28000	34000	S4UL LQM/CIEH 2015		
	TPH-CWG - Aromatic >EC12 - EC10 TPH-CWG - Aromatic >EC16 - EC21	28000	28000	28000	S4UL LQM/CIEH 2015		
atic	TPH-CWG - Aromatic >EC21 - EC35	28000	28000	28000	S4UL LQM/CIEH 2015		
l da	TPH-CWG - Aromatic >EC35 - EC44	28000	28000	28000	S4UL LQM/CIEH 2015		
₹	Aliphatic + Aromatic >EC44 - EC70	28000	28000	28000	S4UL LQM/CIEH 2015		
	Benzene	65000	47	90	C4SL DEFRA 2014		
	Ethylbenzene	4700	13000	27000	S4UL LOM/CIEH 2015		
≥ 	m-xylene	62000	14000	31000	S4UL LQM/CIEH 2015		
L A	p -xylene	59000	14000	30000	S4UL LQM/CIEH 2015		
	o-xylene	6600	150000	33000	S4UL LQM/CIEH 2015		
	MTBE (Methyl Tertiary Butyl Ether)	75000	12100	22400	CL:AIRE SOIL GAC 2010		
	Tetrachloroethene	19	42	95	S4UL LQM/CIEH 2015		
les	1,1,1 Trichloroethane	660	1300	3000	S4UL LQM/CIEH 2015		
alke	1,1,1,2 Tetrachloroethane	270	250	560	S4UL LQM/CIEH 2015		
8 8	Tetrachloromethane (Carbon Tetrachlo	270	63	1100	S4UL LQM/CIEH 2015		
lkan	1,2-Dichloroethane	0.67	0.97	1.7	S4UL LQM/CIEH 2015		
oroa	Trichloroethene	1.2	2.6	5.7	S4UL LQM/CIEH 2015		
5	Trichloromethane	99	170	350	S4UL LQM/CIEH 2015		
	Vinyl Chloride (cloroethene)	0.059	0.077	0.12	S4UL LQM/CIEH 2015		
	Aldrin	170	170	170	SAUL LOM/CIEH 2015		
	Dieldrin Atrazino	1/0	1/0	1/0	S4UL LQM/CIEH 2015		
es l	Dichlorvos	140	140	140	S4UL LOM/CIFH 2015		
cid	Alpha - Endosulfan	5600	7400	8400	S4UL LQM/CIEH 2015		
esti	Beta - Endosulfan	6300	7800	8700	S4UL LQM/CIEH 2015		
<u>م</u>	Alpha -Hexachlorocyclohexanes	170	180	180	S4UL LQM/CIEH 2015		
	Beta -Hexachlorocyclohexanes	65	65	65	S4UL LQM/CIEH 2015		
	Gamma -Hexachlorocyclohexanes	67	69	70	S4UL LQM/CIEH 2015		

	2,4,6 Trinitrotoluene	1000	1000	1000	S4UL LQM/CIEH 2015
olosives	RDX (Hexogen/Cyclonite/1,3,5-				
	trinitro-1,3,5-triazacyclohexane)	210000	210000	210000	S4UL LQM/CIEH 2015
	HMX (Octogen/1,3,5,7-tetrenitro-				
EX	1,3,5,7-tetrazacyclo-octane)	110000	110000	110000	S4UL LQM/CIEH 2015
	1,2,4-Trimethylbenzene	220	530	1300	S4UL LQM/CIEH 2015
	Chlorobenzene	56	130	290	S4UL LQM/CIEH 2015
	1,2-Dichlorobenzene	2000	4800	11000	S4UL LQM/CIEH 2015
	1,3-Dichlorobenzene	30	73	170	S4UL LQM/CIEH 2015
les	1,4-Dichlorobenzene	4400	10000	25000	S4UL LQM/CIEH 2015
zer	1,2,3,-Trichlorobenzene	102	250	590	S4UL LQM/CIEH 2015
en	1,2,4,-Trichlorobenzene	220	530	1300	S4UL LQM/CIEH 2015
Chlorob	1,3,5,-Trichlorobenzene	23	55	130	S4UL LQM/CIEH 2015
	1,2,3,4,-Tetrachlorobenzene	1700	3080	4400	S4UL LQM/CIEH 2015
	1,2,3,5,- Tetrachlobenzene	49	120	240	S4UL LQM/CIEH 2015
	1,2,4, 5,- Tetrachlobenzene	42	72	96	S4UL LQM/CIEH 2015
	Pentachlrobenzene	640	770	830	S4UL LQM/CIEH 2015
	Hexachlorobenzene	110	120	120	S4UL LQM/CIEH 2015
ols 0- ols	Total Phenols (monohydric)	440	690	1300	S4UL LQM/CIEH 2015
enc enc	Chlorophenols (4 Congeners)	3500	4000	4300	S4UL LQM/CIEH 2015
ਵੁੱ ਕ ਦ ਦ	Pentachlorophenols	400	400	400	S4UL LQM/CIEH 2015
	Carbon Disulphide	11	22	47	S4UL LQM/CIEH 2015
	Hexachloro-1,3-Butadiene	31	66	120	S4UL LQM/CIEH 2015
S	Perfluorooctanesulfonic acid (PFOS)	0.019	0.019	0.019	EA 2022
her	Perfluorooctanoic Acid (PFOA)	0.035	0.035	0.035	EA 2022
5	Cyanide	650	650	650	USEPA 2010

APPENDIX 5

ENVIRONMENTAL RISK ASSESSMENT

5.1 STATUTORY FRAMEWORK AND DEFINITIONS

The statutory definition of 'contaminated land' is defined in Part IIA of the Environmental Protection Act 1990, which was inserted by Section 57 of the Environment Act 1995, and came into force in England in 2000, as;

'any land which appears to the local authority in whose area it is situated to be in such a condition, by reason of substances in, on or under the land, that:

- (a) significant harm is being caused or there is a significant possibility of such harm being caused; or
- (b) pollution of controlled waters is being, or is likely to be, caused'.

The UK guidance on the assessment of contaminated has developed as a direct result of the introduction of these two Acts. The technical guidance supporting the new legislation has been summarised in a number of key documents collectively known as the Contaminated Land Reports (CLRs), a proposed series of twelve documents. Seven were originally published in March 1994, four more were published in April 2002, while the last remaining guidance document, CLR 11, was published in 2004. In 2008 CLR reports 7 to 10 were withdrawn by DEFRA and the Environment Agency and updated version of CLR 9 and 10 were produced in the form of Science Reports SR2, and SR3.

In establishing whether a site fulfils the statutory definition of 'contaminated land' it is necessary to identify, whether a pollutant linkage exists in respect of the land in question and whether the pollutant linkage:

- is resulting in significant harm being caused to the receptor in the pollutant linkage,
- presents a significant possibility of significant harm being caused to that receptor,
- is resulting in the pollution of the controlled waters which constitute the receptor, or
- is likely to result in such pollution.

A 'pollutant linkage' may be defined as the link between a contaminant 'source' and a 'receptor' by means of a 'pathway'.
5.2 ASSESSMENT METHODOLOGY

The guidance proposes a four-stage assessment process for identifying potential pollutant linkages on a site. These stages are set out in the table below:

No.	Process	Description		
1	Hazard Identification	Establishing contaminant sources, pathways and receptors (the conceptual model).		
2	Hazard Assessment	Analysing the potential for unacceptable risks (wha linkages could be present, what could be th effects).		
3	Risk Estimation	Trying to establish the magnitude and probability of the possible consequences (what degree of harm might result and to what receptors, and how likely is it).		
4	Risk Evaluation	Deciding whether the risk is unacceptable.		

Stages 1 and 2 develop a *'conceptual model'* based upon information collated from desk based studies, and frequently a walkover of the site. The walkover survey should be conducted in general accordance with CLR 2. The formation of a conceptual model is an iterative process and as such, it should be updated and refined throughout each stage of the project to reflect any additional information obtained.

The extent of the desk studies and enquiries to be conducted should be in general accordance with CLR 3. The information from these enquiries is presented in a desk study report with recommendations, if necessary, for further work based upon the conceptual model. Specific DoE 'Industry Profiles' provide guidance on the nature of contaminants relating to specific industrial processes.

If potential pollutant linkages are identified within the conceptual model, a Phase 2 site investigation and report will be recommended. The investigation should be planned in general accordance with CLR 4. The number of exploratory holes and samples collected for analysis should be consistent with the size of the site and the level of risk envisaged. This will enable a contamination risk assessment to be conducted, at which point the conceptual model can be updated and relevant pollutant linkages can be identified.

A two-stage investigation may be more appropriate where time constraints are less of an issue. The first stage investigation being conducted as an initial assessment for the presence of potential sources, a second being a more refined investigation to delineate wherever possible the extent of the identified contamination.

All site works should be in general accordance with the British Standards, BS 5930:2015, ISO 1997, and BS 10175:2011.

The generic contamination risk assessment screens the results of the chemical analysis against generic guidance values which are dependent on the proposed end-use of the development.

The end-use may be defined as one of the following;

- Residential with homegrown produce domestic low rise and low density housing with gardens where vegetable may be grown for home consumption
- Residential without homegrown produce domestic low density and low density housing where no gardens are present.
- Allotments specific areas where vegetables are grown for home consumption.
- Public open space in close proximity to residential housing includes the predominantly grassed area adjacent to high density housing and the central green area around which houses are developed. This land-use includes the smaller areas commonly incorporated in newer developments as informal grassed areas or more formal landscaped areas with a mixture of open space and covered soil with planting.
- Public open space in use as general parkland provided for recreational use and may be used for family visits and picnics, children's play area, sports grounds and dig walking.
- Commercial industrial premises where there is limited exposure to soil.

Exposure pathways for each type of end-use are given below:

Standard Land Use	Oral Route	S		Derr Rout	nal :es	Inhalation Routes				
	Direct soil & dust ingestion	Consumption of homegrown produce	Soil attache homege produc	ed to rown e	Indoor	Outdoor	Indoor dust	Outdoor dust	Indoor vapour	Outdoor vapour
Residential with homegrown produce										
Residential without homegrown produce		х	x							
Allotments					х		х			
Public open space – adjacent to dwellings		x	x						x	
Public open space – parkland		х	x		x		x		x	
Commercial		Х	x			Х		Х		Х

In the first instance, soils will be compared to Suitable 4 Use Levels (S4ULs) published by LQM. Screening levels for lead are taken from guidance published by DEFRA as no S4UL has been derived.

The decision to use S4ULs is based on the fact that C4SLs are primarily intended for use under Part 2A of the Environmental Protection Act 1990 in determining when land is not contaminated land as defined under the Act. By its definition, this implies a lower standard of protection than the previous SGVs due to their use of a "Low Level of Toxicological Concern", as opposed to the minimal or tolerable level of risk. As such, it was considered that, excepting lead, S4ULs are suitable in evaluating this site.

Where no S4UL or C4SL is available, the assessment criteria (AC) may be generated using the Contaminated Land Exposure Assessment (CLEA) Software Version 1.07. Toxicological and physico-

chemical/fate and transport data used to generate the AC has been derived from a hierarchy of data sources as follows:

1. Environment Agency or Department of Environment Food and Rural Affairs

(DEFRA) documents;

- 2. Other documents produced by UK Government or state organisations;
- 3. European institution documents;
- 4. International organisation documents;
- 5. Foreign government institutions.

In the case of the majority of contaminants considered, the toxicological data has been drawn from the relevant CLR 9 TOX report, or updated toxicological data published by the Environment Agency (2009), where available. Where no TOX report is available reference has been made to the health criteria values, derived for use in Land Quality Press (2006), as this is considered to represent a peer reviewed data source. Similarly, fate and transport data has been derived in the first instance from Environment Agency (2003), and for contaminants not considered in this document the fate and transport data used in previous versions of the CLEA model has been used.

Chemical laboratory test results are processed as follows. A statistical analysis of the results is conducted, as detailed in CIEH and CL:AIRE 'Guidance on Comparing Soil Contamination Data with a Critical Concentration'. Individual concentrations are compared to the selected guideline values to identify concentrations of contaminants that are above the selected screening criteria.

Where the risk estimation identifies significant concentrations of one or more contaminants, a further risk evaluation needs to be undertaken.

5.3 RISK EVALUATION

The risk evaluation is a qualitative method for interpreting the data from the hazard estimation stage. It involves the classification of the:

• magnitude of the potential 'consequence' (severity) of the risk occurring and:

• magnitude of the 'probability' (likelihood) of the risk occurring.

These are defined in the following sections:

5.4 CLASSIFICATION OF CONSEQUENCE

Classification	Definition	Examples		
Severe	Short-term (acute) risk to human health likely	High Concentrations of cyanide		
	to result in 'significant harm' as defined by the	on the surface of an informal		
	Environment Protection Act 1990, Part IIA.	recreation area.		
	Short-term risk of pollution (note: Water			
	Resources Act contains no scope for	Major spillage of contaminants		
	considering significance of pollution) of	from site into controlled water.		
	sensitive water resource. Catastrophic damage			
	to buildings property. A short-term risk to a	Explosion, causing building		
	particular ecosystem, or organism forming part	collapse can also equate to a		
	of such ecosystem (note: the definitions of	short-term human health risk if		
	ecological systems within the Draft Circular on	buildings are occupied.		
	Contaminated Land, DETR, 2000).			

Medium	Chronic damage to Human Health ('significant	Concentrations of a		
	harm' as defined in DETR, 2000). Pollution of	contaminant from site exceed		
	sensitive water resources (note: Water	the generic, or site-specific		
	Resources Act contains no scope for	assessment criteria.		
	considering significance of pollution). A			
	significant change in a particular ecosystem, or	Leaching of contaminants from		
	organism forming part of such ecosystem,	a site to a major or minor		
	(note: the definitions of ecological systems	aquifer.		
	within Draft Circular on Contaminated Land,			
	DETR, 2000).	Death of a species within a		
		designated nature reserve.		
Mild	Pollution of non-sensitive water resources.	Pollution of non-classified		
	Significant damage to crops, buildings,	ground water.		
	structures and services ('significant harm' as			
	defined in the Draft Circular on Contaminated	Damage to building rendering it		
	Land, DETR 2000). Damage to sensitive	unsafe to occupy (eg foundation		
	buildings/ structures/services or the	damage resulting in instability).		
	environment.			
Minor	Harm, although not necessarily significant	The presence of contaminants		
	harm, which may result in a financial loss, or	at such concentrations that		
	expenditure to resolve. Non-permanent health	protective equipment is		
	effects to human health (easily prevented by	required during site works.		
	means such as personal protective clothing	The loss of plants in		
	etc). Easily repairable effects of damage to	landscaping scheme.		
	buildings, structures and services.	Discoloration of concrete		

In theory, both severe and medium classification can result in death. The differential is that severe relates to short term risk while medium relates to long-term risk. Therefore, the classification of severe requires urgent action while medium may require urgent action but usually long term action would be sufficient.

5.5 CLASSIFICATION OF PROBABILITY

Classification	Definition
High	There is a pollution linkage and an event that either appears very likely in the
likelihood	short term and almost inevitable over the long term, or there is evidence at the receptor of harm or pollution
Likely	There is a pollution linkage and all the elements are present and in the right place, which means that it is probable that an event will occur.

	Circumstances are such that an event is not inevitable, but possible in the short
	term and likely over the long term.
Low	There is a pollution linkage and circumstances are possible under which an event
likelihood	could occur
	However, it is by no means certain that even over a longer period such event
	would take place, and is less likely in the shorter term
Unlikely	There is a pollution linkage but circumstances are such that it is improbable that
	an event would occur even in the very long term
Low likelihood Unlikely	There is a pollution linkage and circumstances are possible under which an event could occur However, it is by no means certain that even over a longer period such event would take place, and is less likely in the shorter term There is a pollution linkage but circumstances are such that it is improbable that an event would occur even in the very long term

For the purposes of this preliminary investigation, any source of contamination that has been identified by professional judgement as potentially impacting on the site has been classified as being 'likely' to be present, unless proven otherwise by intrusive investigation.

5.6 COMPARISON OF CONSEQUENCE AGAINST PROBABILITY

These classifications are compared to indicate the risk presented by each pollutant linkage. Once the consequence and probability have been classified they can be used to produce a risk category as below:

		Consequence				
		Severe Medium		Mild	Minor	
	High likelihood	Very high risk	High risk	Moderate risk	Moderate/low risk	
bility	Likely	High risk	Moderate risk	Moderate/low risk	Low risk	
Proba	Low likelihood	Moderate risk	Moderate/low risk	Low risk	Very low risk	
	Unlikely	Moderate/low risk	Low risk	Very low risk	Negligible risk	

The action required for the classified risks are as follows:

	There is a high probability that severe harm could a risk to a designated
	receptor from an identified hazard, OR, there is evidence that severe
	harm to a designated receptor is currently happening.
Very high risk	This risk, if realised, is likely to result in a substantial liability.
	Urgent investigation (if not undertaken already) and remediation are
	likely to be required
	Harm is likely to arise to a designated receptor from an identified
	hazard.
High risk	Realisation of the risk is likely to present a substantial liability.
	Urgent investigation (if not undertaken already) is required and remedial
	works may be necessary in the short term and are likely over the longer
	term
	It is possible that harm could arise to a designated receptor from an
	identified hazard. However, it is either relatively unlikely that any such
	harm would be severe, or if any harm were to occur it is more likely that
Moderate risk	the harm would be relatively mild
	Investigation (if not already undertaken) is normally required to clarify
	the risk and to determine the potential liability. Some remedial works
	may be required in the longer term
	It is possible that harm could arise to a designated receptor from an
Low risk	identified hazard, but it is likely that this harm, if realised, would at
	worst normally be mild.
	worst normally be mild.
Very low risk	worst normally be mild. There is a low possibility that harm could arise to a receptor. In the
Very low risk	worst normally be mild. There is a low possibility that harm could arise to a receptor. In the event of such harm being realised it is not likely to be severe.
Very low risk Negligible risk	worst normally be mild. There is a low possibility that harm could arise to a receptor. In the event of such harm being realised it is not likely to be severe. There is no foreseeable risk of harm.

The risk evaluation will address the potential pollutant linkages between an identified source of contamination and the likely receptors both on and off site.

The potential receptors include:

- 1) Humans current site occupants, construction workers, future site users and neighbouring site users.
- 2) Controlled Waters surface water and groundwater resources
- 3) Plants current and future site vegetation
- 4) Building materials

The potential hazards to be considered in relation to contamination are:

- a) Ingestion and inhalation.
- b) Uptake of contaminants via cultivated vegetables.
- c) Dermal contact
- d) Phytotoxicity (the prevention or inhibition of plant growth)
- e) Contamination of water resources
- f) Chemical attack on building materials and services
- g) Fire and explosion

Dependent on the outcome of the initial, generic contamination risk assessment, further detailed assessment of the identified risks may be required.

