	Project		Job Ref.			
Sheppard		The Almo	H4154			
CONSULTING CIVIL AND	Section	Sheet no./rev.				
STRUCTURAL ENGINEERS	Proposed Alterations and Extension				1	
5 Chiswick Place	Calcs by	Date	Chk'd by	Date	App'd by	Date
BN21 4NH	RJB	20/12/2019				

DESIGN BASIS

Superimposed loading to BS6399-1:1996 & BS6399-3:1998 Structural steelwork to BS5950-1:2000 Structural timber to BS5268-2:2002 Masonry stresses to BS5628-1:2005 These calculations to be read in conjunction with relevant architectural details

UNIT LOADING

TIMBER FLOOR LOADING (1ST FLOOR)

Dead load	
Boards	Floor1_D1 = 0.15 kN/m ²
Joists	Floor _{1_D2} = 0.20 kN/m ²
Ceiling	Floor _{1_D3} = 0.25 kN/m ²
Total dead load	$Floor_{1_DL} = sum(Floor_{1_D1}, Floor_{1_D2}, Floor_{1_D3}) = 0.60 \text{ kN/m}^2$
Imposed load	
Imposed load	Floor1_1 = 2.00 kN/m ²
Partitions	Floor _{1_l2} = 0.00 kN/m ²
Total imposed load	$Floor_{1_{lL}} = sum(Floor_{1_{l1}}, Floor_{1_{l2}}) = 2.00 \text{ kN/m}^2$
Total 1st floor loads	
Unfactored foundation design loads	w _{floor1_u} = Floor _{1_DL} + Floor _{1_IL} = 2.60 kN/m ²
Factored design loads	w_{floor1_f} = 1.4 × Floor1_DL + 1.6 × Floor1_IL = 4.04 kN/m ²

ROOF LOADING (PITCHED TILED ROOF)

Roof slope θ = 42.0 °

Dead load					
Tiles	Roof _{D1} = 0.70 kN/m ²				
Battens	Roof _{D2} = 0.05 kN/m ²				
Felt	Roof _{D3} = 0.05 kN/m ²				
Rafters	Roof _{D4} = 0.35 kN/m ²				
Dead load on slope	Roof _{DL_sroof} = sum(Roof _{D1} ,Roof _{D2} ,Roof _{D3} ,Roof _{D4}) = 1.15 kN/m ²				
Total dead load on plan	$Roof_{DL} = Roof_{DL_sroof} / cos(\theta) = 1.55 \text{ kN/m}^2$				
Imposed load					
Roof imposed load	Roof _{IL} = 0.40 kN/m ² on plan				
Total roof loads					
Unfactored foundation design loads	$w_{roof_u} = Roof_{DL} + Roof_{IL} = 1.95 \text{ kN/m}^2$				
Factored design loads	w_{roof_f} = 1.4 × Roof _{DL} + 1.6 × Roof _{IL} = 2.81 kN/m ²				

	Project				Job Ref.	
Shennard		The Almo	H4	154		
CONSULTING CIVIL AND	Section		,		Sheet no./rev.	-
STRUCTURALENGINEERS	Р	roposed Alterati	ions and Extensi	ion		2
5 Chiswick Place	Calcs by	Date	Chk'd by	Date	App'd by	Date
Eastbourne BN21 4NH	RJB	20/12/2019	- ,			
5.21						
WIND LOADING						
WIND LOADING (EN1991-1-4)	<u>)</u>					
					TEDDS calculat	ion version 3.0.13
Building data						
Type of roof	Duopitch					
Length of building	L = 8500 mm	W	idth of building	V	/ = 4800 mm	
Pitch of roof	α₀ = 42.0 deg					
Total height	h = 6261 mm					
Basic values						
Location	Battle					
Wind speed velocity (FigNA.1)	v _{b,map} = 22.0 m/s	D	istance to shore	L	_{shore} = 8.00 km	
Altitude above sea level	A _{alt} = 75.0 m	A	titude factor	C	alt = 1.075	
Fund wind speed velocity	v _{b,0} = 23.7 m/s	D	irection factor	C	dir = 1.00	
Season factor	c _{season} = 1.00	P	robability factor	C	orob = 1.00	
Basic wind speed (Exp. 4.1)	v _b = 23.7 m/s	R	ef mean velocity	pressure q	• = 0.343 kN/m ²	2
Orography						
Orography factor not signif	$c_{0} = 1.0$					
Terrain category	Country					
Displacement height	$H_{d} = 0$ mm					
The velocity pressure for the	windward face of	the building w	ith a 0 degree v	vind is to be co	onsidered as 1	part as the
height h is less than b (cl.7.2.	.2)					
The velocity pressure for the	windward face of	the building w	ith a 90 degree	wind is to be c	onsidered as 2	2 parts as
the height h is greater than b	but less than 2b (cl.7.2.2)				
Peak velocity pressure - win	dward wall - Wind	0 deg and root	F			
Reference height	z = 4100 mm					
Exposure factor (Figure NA.7)	_{Ce} = 1.93					
Peak velocity pressure	q _p = 0.66 kN/m ²					
Structural factor						
Structural damping	δs = 0.100	Si	ize factor (Table	NA.3) c	s = 0.93	
Dynamic factor (Figure NA.9)	c _d = 1.02	St	tructural factor	C	_{sCd} = 0.949	
Peak velocity pressure - win	dward wall (lower	part) - Wind 90	deg			
Reference height	z = 4800 mm					
Exposure factor (Figure NA.7)	c _e = 2.03					
Peak velocity pressure	q _p = 0.70 kN/m ²					
Structural factor						
Structural damping	8 0 100	Q	ize factor (Table	NA 3) C	- 0 94	
Dynamic factor (Figure NA 0)	$o_{\rm s} = 0.100$	S	tructural factor	NA.3) C	s - 0.94	
Book volocity prossure win	dward wall (uppor	nart) Wind 9	dog and roof	C,	sca – 0.949	
Reference height	z = 6261mm					
Exposure feater (Eight $Z = 6261$ m)						
Peak velocity pressure	$c_e = 2.20$					
reak velocity pressure	4p - υ./ 3 κΝ/ΠΙ-					
Structural factor						
Structural damping	δs = 0.100	Si	ize factor (Table	NA.3) c	s = 0.96	
Dynamic factor (Figure NA.9)	c _d = 1.04	St	tructural factor	C	_{sCd} = 0.949	

Sheppard consulting civil and structural engineers 5 Chiswick Place Eastbourne BN21 4NH	Project The Almonry, Battle Section Proposed Alterations and Extension Calcs by Date RJB 20/12/2019 Date			Job Ref. H4154 Sheet no./rev. 3 App'd by Date		
Structural factor Structural damping Dynamic factor (Figure NA.9) Structural factor - roof 0 deg	δ _s = 0.100 c _d = 1.04	s s	Size factor (Ta Structural facto	ble NA.3) pr	c _s = 0.94 c _{sCd} = 0.949	
Structural damping Dynamic factor (Figure NA.9)	$\delta_{s} = 0.100$ $c_{d} = 1.02$	S	Size factor (Ta Structural facto	ible NA.3) or	c _s = 0.93 c _{sCd} = 0.949	
Peak velocity pressure for int Peak velocity pressure – interna	ernal pressure al (as roof press.)	q _{p,i} = 0.75 kN	I/m²			
Pressures and forces Net pressure Net force		$p = c_{sCd} \times q_p$ $F_w = p_w \times A_{re}$	$ imes$ C _{pe} - $\mathbf{q}_{p,i} imes$ C	pi		

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p , (kN/m²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
F (+ve)	0.80	0.75	0.80	4.86	3.88
G (+ve)	0.58	0.75	0.64	4.86	3.11
H (+ve)	0.64	0.75	0.68	17.73	12.12
l (+ve)	-0.50	0.75	-0.13	17.73	-2.33
J (+ve)	-0.82	0.75	-0.36	9.72	-3.50
Total vertical net	force F _{w,v} =	= 9.87 kN	Total horizonta	I net force F _{w,}	h = 16.69 kN

Walls load case 1 - Wind 0, cpi -0.30, + cpe

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P , (kN/m²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
А	-1.20	0.75	-0.63	8.27	-5.23
В	-0.80	0.75	-0.35	16.60	-5.74
D	0.80	0.66	0.73	34.85	25.40
E	-0.52	0.66	-0.10	34.85	-3.41

Overall loading

Fı = **-3.4** kN Leeward force overall Lack of correlation (cl.7.2.2(3)) $f_{corr} = 0.86$

Roof load case 2 - Wind 90, cpi -0.3, +cpe

Windward force overall F_w = **25.4** kN Overall loading overall section $F_{w,D} = 39.2 \text{ kN}$

	Zone	Ext pressure coefficient _{Cpe}	Peak velocity pressure q _P , (kN/m²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
	F (+ve)	0.58	0.75	0.64	1.55	0.99
	G (+ve)	0.48	0.75	0.57	1.55	0.88
	H (+ve)	0.38	0.75	0.50	12.40	6.17
	l (+ve)	0.28	0.75	0.43	39.40	16.80
Total vertical net force		force F _{w,v} =	= 18.46 kN	Total horizonta	I net force Fw	_{.h} = 0.00 kN

Total vertical net force

Walls load case 2 - Wind 90, cpi -0.3, +cpe

Sheppard	Project					Job Ref.	
	The Almonry, Battle					H4154	
CONSULTING CIVIL AND	Section					Sheet no./rev.	
STRUCTURAL ENGINEERS	Proposed Alterations and Extension					4	
5 Chiswick Place	Calcs by	Date	Chk'd by	Date	App'd by	Date	
BN21 4NH	RJB	20/12/2019					

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P , (kN/m²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
А	-1.20	0.66	-0.53	3.94	-2.08
В	-0.80	0.66	-0.28	15.74	-4.36
С	-0.50	0.66	-0.09	15.17	-1.34
Db	0.76	0.70	0.73	22.50	16.44
Du	0.76	0.75	0.77	2.37	1.83
E	-0.43	0.75	-0.08	24.87	-2.02

Overall loading

Leeward force upper	F _I = -0.2 kN
Lack of correlation (cl.7.2.2(3))	f _{corr} = 0.85
Leeward force bottom	Fi = -1.8 kN
Lack of correlation (cl.7.2.2(3))	f _{corr} = 0.85

Windward force upper $F_w = 1.8 \text{ kN}$ Overall loading upper section $F_{w,u} = 1.7 \text{ kN}$ Windward force bottom $F_w = 16.4 \text{ kN}$ Overall loading bottom section $F_{w,b} = 15.5 \text{ kN}$

FAR T	Project				Job Ref.	
Sheppard		The Almo	onry, Battle		F	4154
CONSULTING CIVIL AND	Section				Sheet no./rev.	
STRUCTURAL ENGINEERS		Proposed Alterat	Proposed Alterations and Extension			7
5 Chiswick Place	Calcs by	Date	Chk'd by	Date	App'd by	Date
Eastbourne BN21 4NH	RJB	20/12/2019	-			
				Imposed \times	1.00	
		Span 1		$Dead \times 1.0$	0	
				Imposed ×	1.00	
		Support B		Dead \times 1.0	0	
				Imposed ×	1.00	
Analysis results				·		
Analysis results		M - 4 094	kNm	M 0.00		
		M = max(abc	(M) aba(M)	(1) = 4.984 kMm		
Maximum shoar				n)) - 4.304 KINIII		
		F = max(abc)	(E) abc (E)	I min0.3		
Total load on boom		W 13 020	רmax),aus(רmin), ראו) = 0.314 KM		
Reactions at support A		$P_{1} = -6.51$			51 <i>4 k</i> N	
Linfactored doad load reaction at a		$R_{A_{max}} = 6.31$	4 NIN 20 KNI	$TA_min - 0.5$	514 KIN	
Linfactored imposed load reaction	at support A	RA_Dead = 3.2	29 KN			
Reactions at support B	at support A	$R_{\rm R}$ may = 6.51	4 kN	R_R min = 6	514 kN	
Linfactored dead load reaction at s	upport B	$R_{P, Dood} = 5.2^{\circ}$	29 kN			
Linfactored imposed load reaction	at support B	$R_{\rm B}$ improved = 1	285 kN			
limber section details		h 100 mm				
Breadth of sections		b = 100 mm				
Depth of sections		n = 225 mm				
		N = 1				
		$D_b = N \times D = P$	IUU mm			
limber strength class		D35				
Member details						
Service class of timber		1				
Load duration		Long term				
Length of span		L _{s1} = 3060 m	m			
Length of bearing		L _b = 100 mm				
Section properties						
Cross sectional area of member		$A = N \times b \times h$	= 22500 mm ²			
Section modulus		$Z_x = N \times b \times I$	$1^2 / 6 = 843750$	mm ³		
		$Z_y = h \times (N \times$	b) ² / 6 = 37500	0 mm ³		
Second moment of area		$I_x = N \times b \times h$	³ / 12 = 949218	3 75 mm ⁴		
		$I_y = h \times (N \times I)$	o) ³ / 12 = 18750)000 mm ⁴		
Radius of gyration		i _x = √(I _x / A) =	65.0 mm			
		$i_y = \sqrt{(I_y / A)} =$	28.9 mm			
Modification factors						
Duration of loading - Table 17		K₃ = 1 00				
Bearing stress - Table 18		K ₄ = 1 00				
Total depth of member - cl 2 10 6		$K_7 = (300 \text{ mm})$	$(h)^{0.11} = 1.03$			
Load sharing - cl.2.9		K ₈ = 1.00	.,,			
Latoral support of 2.10.9		_ ·				
Ends held in position and member	s held in line <i>i</i>	as by direct copp	ection of sheath	ing deck or joists		
Permissible denth-to breadth ratio	- Tahla 10	5 00	South of SHEdli			
Actual depth-to-breadth ratio		5.50 h / (Nl ∨ h) – f	25			
		$\Pi : (\Pi \times U) = A$	L.2J	DACC I	atoral cunn	ort is adoquate
				FA33 - La	αισιαι συμρ	on i no auequate

EAR 1	Project				Job Ref.			
Sheppard		The Almonry, Battle				14154		
CONSULTING CIVIL AND	Section				Sheet no./rev.	Sheet no./rev.		
STRUCTURAL ENGINEERS		Proposed Altera	tions and Exte	ension		8		
5 Chiswick Place Eastbourne	Calcs by	Date	Chk'd by	Date	App'd by	Date		
BN21 4NH	RJB	20/12/2019						
Compression perpendicular to	grain							
Permissible bearing stress (no w	/ane)	$\sigma_{c_{adm}} = \sigma_{cp1}$	\times K ₃ \times K ₄ \times K ₄	8 = 3.400 N/mm ²				
Applied bearing stress		$\sigma_{c_a} = R_{B_{max}}$	/ (N × b × L _b)	= 0.651 N/mm ²				
		σc_a / σc_adm =	= 0.192					
PA	SS - Applied o	compressive stre	ss is less tha	n permissible c	ompressive st	ress at bearing		
Bending parallel to grain								
Permissible bending stress		$\sigma_{m_{adm}} = \sigma_{m}$	\times K ₃ \times K ₇ \times K ₈	= 11.354 N/mm ²				
Applied bending stress		σ _{m_a} = M / Z _x = 5.906 N/mm ²						
		$\sigma_{m_a} / \sigma_{m_adm} = 0.520$						
		PASS - Applie	ed bending s	tress is less tha	n permissible	bending stress		
Shear parallel to grain								
Permissible shear stress		$\tau_{adm} = \tau \times K_3$	× K ₈ = 1.700	N/mm ²				
Applied shear stress		τ_a = 3 \times F / (2	2 × A) = 0.434	N/mm ²				
		$\tau_a / \tau_{adm} = 0.2$	255					
		PASS - A	Applied shea	r stress is less t	han permissib	le shear stress		
Deflection								
Modulus of elasticity for deflection	on	E = E _{min} = 65	500 N/mm ²					
Permissible deflection		$\delta_{adm} = min(0)$	551 in, 0.003	× L _{s1}) = 9.180 m	m			
Bending deflection		δ _{b_s1} = 7.878	mm					
Shear deflection		δ _{v_s1} = 0.654	mm					
Total deflection		$\delta_a = \delta_{b_s1} + \delta_b$	_{v_s1} = 8.533 m	ım				
		δ_a / δ_{adm} = 0.9	929					
		F	PASS - Total	deflection is les	s than permiss	sible deflection		
<u>1ST FLOOR JOISTS TO OFFIC</u>	E/STORE							

TIMBER JOIST DESIGN (BS5268-2:2002)

Joist details Joist breadth

Joist depth

Joist spacing

Span details Number of spans

Length of bearing

Section modulus Loading details Joist self weight

Dead load

Timber strength class

Service class of timber

Effective length of span Section properties Second moment of area b = **50** mm h = **150** mm s = **400** mm C24 N_{span} = 1

Tedds calculation version 1.1.04

L_b = **100** mm L_{s1} = **2900** mm I = b × h³ / 12 = **14062500** mm⁴ $Z = b \times h^2 / 6 = 187500 \text{ mm}^3$ $F_{\text{swt}} = b \times h \times \rho_{\text{char}} \times g_{\text{acc}} = \textbf{0.03} \text{ kN/m}$

F_{d_udl} = **0.44** kN/m²

1

C 1 EAR	Project				Job Ref.	
Sheppard		The Alm	onry, Battle		ŀ	H4154
CONSULTING CIVIL AND	Section				Sheet no./rev.	
STRUCTURAL ENGINEERS		Proposed Alterat	tions and Exte	ension		9
5 Chiswick Place	Calcs by	Date	Chk'd by	Date	App'd by	Date
BN21 4NH	RJB	20/12/2019				
Imposed LIDI (Long term)		Fi unit = 2 00 k	(N/m ²			
Imposed point load (Medium term)		Fint = 1.40 k	N			
Modification factors		i_pr				
Service class for bending parallel t	o grain	Ka - 1 00				
Service class for compression	o grain	$K_{2m} = 1.00$				
Service class for shear parallel to	orain	$K_{2s} = 1.00$				
Service class for modulus of elasti	city	K _{2e} = 1.00				
Section depth factor	,	K ₇ = 1.08				
Load sharing factor		K ₈ = 1.10				
Consider long term loads						
Load duration factor		K₀ = 1 00				
Maximum bending moment		M = 1.053 kN	lm			
Maximum shear force		V = 1.453 kN				
Maximum support reaction		R = 1.453 kN	l			
Maximum deflection		δ = 6.324 mn	n			
Check bending stress						
Bending stress		σm = 7.500 N	l/mm ²			
Permissible bending stress		$\sigma_{\rm m adm} = \sigma_{\rm m}$	$\langle K_{2m} imes K_3 imes k$	K ₇ × K ₈ = 8.904 N	/mm²	
Applied bending stress		$\sigma_{m max} = M / 2$	Z = 5.616 N/r	nm²		
			PASS - App	olied bending st	ress within pe	rmissible limits
Check shear stress						
Shear stress		τ = 0.710 N/r	nm²			
Permissible shear stress		$\tau_{adm} = \tau \times K_{2s}$	$_{3} \times K_{3} \times K_{8} = 0$	0.781 N/mm ²		
Applied shear stress		τ_{max} = 3 × V /	$(2 \times b \times h) =$	0.291 N/mm ²		
			PASS - A	Applied shear st	ress within pe	rmissible limits
Check bearing stress						
Compression perpendicular to grain	in (no wane)	σ _{cp1} = 2.400	N/mm ²			
Permissible bearing stress		$\sigma_{c_{adm}} = \sigma_{cp1}$	imes K _{2c} $ imes$ K ₃ $ imes$ k	≺ ₈ = 2.640 N/mm	2	
Applied bearing stress		$\sigma_{c_{max}} = R / ($	b × L _b) = 0.29	1 N/mm ²		
			PASS - Ap	plied bearing st	ress within pe	rmissible limits
Check deflection						
Permissible deflection		$\delta_{adm} = min(L_s)$	₁ × 0.003, 14	mm) = 8.700 mr	n	
Bending deflection (based on E _{mea}	n)	δ _{bending} = 6.07	74 mm			
Shear deflection		δ _{shear} = 0.250	mm			
Total deflection		δ = δ_{bending} +	δ _{shear} = 6.324	mm		
			PAS	S - Actual deflee	ction within pe	rmissible limits
Consider medium term loads						
Load duration factor		K₃ = 1.25				
Maximum bending moment		M = 1.227 kM	١m			
Maximum shear force		V = 1.693 kN	l			
Maximum support reaction		R = 1.693 kN	I			
Maximum deflection		δ = 6.198 mn	n			
Check bending stress						
Bending stress		σm = 7.500 N	l/mm ²			
Permissible bending stress		$\sigma_{m_{adm}} = \sigma_{m}$	$\times K_{2m} \times K_3 \times k_3$	K ₇ × K ₈ = 11.130	N/mm ²	

EAR.	Project				Job Ref.		
Sheppard		The Almonry, Battle H4			H4154		
CONSULTING CIVIL AND	Section				Sheet no./rev		
STRUCTURALENGINEERS		Proposed Alterat	tions and Ext	ension		10	
5 Chiswick Place	Calcs by	Date	Chk'd by	Date	App'd by	Date	
BN21 4NH	RJB	20/12/2019					
Applied bending stress		$\sigma_{m_{max}} = M / .$	Z = 6.544 N/r	mm²			
			PASS - Apj	olied bending	stress within pe	rmissible limits	
Check shear stress							
Shear stress		τ = 0.710 N/r	nm²				
Permissible shear stress		τ_{adm} = $\tau \times K_{2s} \times K_3 \times K_8$ = 0.976 N/mm ²					
Applied shear stress		τ_{max} = 3 × V / (2 × b × h) = 0.339 N/mm ²					
			PASS - A	Applied shear	stress within pe	rmissible limits	
Check bearing stress							
Compression perpendicular to g	rain (no wane)	σ _{cp1} = 2.400	N/mm²				
Permissible bearing stress		$\sigma_{c_{adm}} = \sigma_{cp1}$	imes K _{2c} $ imes$ K ₃ $ imes$ I	K ₈ = 3.300 N/m	m²		
Applied bearing stress		$\sigma_{c_{max}}$ = R / (b × L _b) = 0.33	39 N/mm²			
			PASS - Ap	plied bearing	stress within pe	rmissible limits	
Check deflection							
Permissible deflection		$\delta_{adm} = min(L_s)$	₁ × 0.003, 14	mm) = 8.700 r	nm		
Bending deflection (based on E_m	ean)	δ _{bending} = 5.90)7 mm				
Shear deflection		δ _{shear} = 0.291	mm				
Total deflection		$\delta = \delta_{\text{bending}} +$	δ _{shear} = 6.198	mm			
		-	PAS	S - Actual defl	ection within pe	rmissible limits	

STEEL BEAM OVER KITCHENETTE/ARCHIVE

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07

	Project				Job Ref.	
Sheppard		The Alm	onry, Battle	H4154		
CONSULTING CIVIL AND	Section		-	Sheet no./rev.		
STRUCTURAL ENGINEERS	P	oposed Alterations and Extension				12
5 Chiswick Place	Calcs by	Date	Chk'd by	Date	App'd by	Date
BN21 4NH	RJB	20/12/2019				
Effective length factors		K 4 00				
Effective length factor in major axis	S	$K_x = 1.00$				
Effective length factor for lateral-to	s orsional buckling	$K_y = 1.00$				
	isional buoking	К _{LT.R} = 1.00				
Classification of cross soctions	- Section 3.5					
Classification of closs sections	- Section 5.5	c – √[275 N/n	$am^2/n 1 - 100$			
		8 - V[275 W/I	1111 / pyj – 1.00			
Internal compression parts - Tal	ble 11	400.0	_			
Depth of section		d = 123.6 mm	1	Class 1 ml	ti -	
		$d/l = 21.3 \times$	3 × U8 => 3	Class T pla	asuc	
Outstand flanges - Table 11						
Width of section		b = B / 2 = 76	5.1 mm			
		b/I = 11.2 ×	ε <= 15 × ε	Class 3 se	mi-compact	
				Sectio	on is class 3	semi-compact
Shear capacity - Section 4.2.3						
Design shear force		$F_v = max(abs$	s(V _{max}), abs(V _{min}	n)) = 18.3 kN		
		α/t<70×ε	Wab dooo	not need to be a	bookod for	boor buokling
Shoor groo				not need to be c		snear buckning
Design shear resistance		$A_V = I \times D = C$	→ 0-4 mm → 0 - 1 45 8 kN	I		
Design shear resistance		τν = 0.0 × ργ ΡΑ .	SS - Desian sh	' ear resistance e	xceeds desi	an shear force
Moment consists - Continue 4.2.5			ee zeeigii eii			gii eilear leree
Moment capacity - Section 4.2.5		M - max/abs	(Matura) abs(N	(m	
				//s1_min/) - 13.1 Kiv		
Effective plastic modulus - Sect	ion 3.5.6	0 - 10	40			
Limiting value for class 2 compact	nange	$\beta_{2f} = 10 \times \varepsilon =$	10			
Limiting value for class 3 semi-con	npact nange	$p_{3f} = 15 \times \varepsilon =$	15			
Limiting value for class 2 compact	web	p _{2w} = 100 × ε	- 100			
Effective plastic modulus - cl 3 5 6	2	p3w – 120 × ε	- 120			
$S_{off} = \min(Z_{vv} + (S_{vv} - Z_{vv}) \times 1)$.~ min([((ßaw / (d / t)) ² - 1) / ((Baw / f	3 _{2w}) ² - 1)] [(B3f /	(b / T) - 1) / (Bar /	Bor - 1)]) Svy)	= 176245 mm ³
Moment capacity low shear - cl 4 2	252	$M_c = \min(p_v)$	$S_{\text{eff}} = 1.2 \times \text{pv} \times 1.2 \times$	(2, 1) = 48.5 kNm	pzi 1)]), Oxy	
		P.	ASS - Moment	capacity exceed	ls desian be	ndina moment
Chack vartical deflection Section	on 252	•			<u>-</u>	
Consider deflection due to impose	d loads					
Limiting deflection		δ _{lim} = L _{s1} / 36	0 = 9.167 mm			
Maximum deflection span 1		$\delta = \max(abs)$	δ_{max}), abs(δ_{min}))	= 1.808 mm		
		PAS	SS - Maximum	deflection does	not exceed o	deflection limit

Prepared by: RJB

Detailed Results Table for Beam 1

Moments: kN*meter , Forces: kN , Stresses: mPa , Section prop.: cm.

Beam:		1			2 – —X3 (Major axis
			3 38		
Support	S	Fixed-3	0.00		Fixed-3 (Table 13,14)
CONSTRAIN	ITS		DESIGN DA	ТA	
- Sections : - Steel Grade	Check e: S275		- Kx = 1.00 - Allow. Sler - Allowable - Tension A	- Ky = nd. : 250 (c Deflection rea Reducti	1.00 compr.) 300 (tens.) : 1/250 on Factor : 1.00
INTERMEDI	ATE SUPPORTS	6			
LatTors.	Cont. at +	_			
Compress.	Cont. at Y				
lx = 1748 hw = 157 J = 10.	Secti .00 ly = 560.00 .60 bf = 152.9 50 x = 16.00	on: UC 152x1 Dom4 Sx = 2 0mm tw = u = 0.85 DESIGN CC	152x30 248.0 Sy = 1 6.50 tf = 9.4 0MBINATION =	12.0cm3 A 40mm = 2	rea = 38.30
0.00		M3 Moment	Diagram		
			_		4.10
			5.	20	_

Max. AXIAL Force = -12.43 (compr.) Max. SHEAR Force = 4.50

SECTION CLASSIFICATION: *** PLASTIC ***

Limiting Ratios:		Plastic	Compact	Semi-Compact	
d/t= 19.02	<	75.7	92.2	117.2	(e = 1.000 R = 0.012)
b/t= 8.13	<	9.0	10.0	15.0	
** Des	ign	Strength	(py) = 275.0 **		

DESIGN	EQUATION	FACTORS	VALUES	RESULT
V2 Shear (4.2.3)	Fv/Pv < 1.00	Av = 10.24	Fv = 4.50 Pv = 169.03	0.03
M3 Moment (4.2.5.2) Notes:	M — < 1.00 Mc LOW Shear Load U	S = 248.00 Z = 221.83 sed for Moment Desig	M = 5.20 Mc = 68.20 gn	0.08
Deflection	defl. < 1.00 L / 250		defl = 0.00115	0.09
Combined Stresses (Local) (4.8.2.3) (4.8.3)	(Mx)z1 (My)z2 () + () (Mrx) (Mry) < 1.00	n = 0.01180	Mx = 5.20 My = 0.00 Mrx = 68.18 Mry = 30.80 z1 = 2.00 z2 = 1.00	0.01

Prepared by: RJB

Detailed Results Table for Beam 1

Moments: kN*meter , Forces: kN , Stresses: mPa , Section prop.: cm.

DESIGN	EQUATION	FACTORS	VALUES	RESULT
Axial Force (4.7.4) Note:	F < 1.00 Agpc Slender. reduct. Strut Selection from	(kL/r)x =49 (kL/r)y =0 x = 0.97 table 23(b)	F = 12.43 Ag = 38.30 pc = 238.03 y = 0.00	0.01
Overall Buckling - Simplified (4.8.3.3.1)	$\frac{F}{Pc} + \frac{mxMx}{pyZx} + \frac{myMy}{pyZy} < 1.00$	Mx = 5.20 My = 0.00 mx = 0.91	pyZx= 61.00 pyZy= 20.14 my = 1.00 Pc = 911.64	0.09
Overall Buckling Check - Exact (4.8.3.3.2) major axis buckling Note:	$\frac{Fc}{Pc} + \frac{Mx}{Max} + \frac{My}{May} < 1$ $\frac{Mcx}{Max=} - \frac{Mcx}{mx(1+F/2Pcx)}$ EXACT approach go	Pcx = 911.64 Pcy = 1053.25 mx = 0.91 my = 1.00 May= 0.5*my poverns	Mx = 5.20 Max = 74.07 My = 0.00 May = Pc = Pcx	0.08

Detailed Results Table for Beam 2

Moments: kN*meter , Forces: kN , Stresses: mPa , Section prop.: cm.

Code: BS5950 Page: 14 Date: 20/12/19 E A R Sheppard Consulting Engineers 5 Chiswock Place, Eastbourne East Sussex BN21 4NH, UK

H4154 The Almonry - Steel Portal

Prepared by: RJB

Code: BS5950 Page: 15 Date: 20/12/19

Detailed Results Table for Beam 2

Moments: kN*meter , Forces: kN , Stresses: mPa , Section prop.: cm.

Max. AXIAL Force = -4.67 (compr.) Max. SHEAR Force = 2.97

SECTION CLASSIFICATION: *** PLASTIC ***

Limiting Ratios:		Plastic	Compact	Semi-Compact			
d/t= 19.02	<	78.3	96.9	118.9	(e = 1.000	R =	0.004)
b/t= 8.13	<	9.0	10.0	15.0			
** Des	ign	Strength (py) = 275.0 **				

DESIGN	EQUATION	FACTORS	VALUES	RESULT
V2 Shear (4.2.3)	Fv/Pv < 1.00	Av = 10.24	Fv = 2.97 Pv = 169.03	0.02
M3 Moment (4.2.5.2) Notes:	M ——— < 1.00 Mc LOW Shear Load U	S = 248.00 Z = 221.83 sed for Moment Desi	M = 5.77 Mc = 68.20 gn	0.08
Deflection	defl. < 1.00 L / 250		defl = 0.00212	0.13
Combined Stresses (Local) (4.8.2.3) (4.8.3)	(Mx)z1 (My)z2 () + () (Mrx) (Mry) < 1.00	n = 0.00443	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.01
Axial Force (4.7.4) Note:	F < 1.00 Agpc Slender. reduct. Strut Selection from	(kL/r)x =42 (kL/r)y =0 x = 0.71 table 23(b)	F = 4.67 Ag = 38.30 pc = 247.55 y = 0.00	0.00
Overall Buckling - Simplified (4.8.3.3.1)	FmxMxmyMyPcpyZxpyZy< 1.00	Mx = 5.77 My = 0.00 mx = 0.97	pyZx= 61.00 pyZy= 20.14 my = 1.00 Pc = 948.11	0.10
Overall Buckling Check - Exact (4.8.3.3.2) major axis buckling Note:	$\frac{F_{c}}{P_{c}} + \frac{M_{x}}{M_{ax}} + \frac{M_{y}}{M_{ay}} < 1$ $\frac{M_{cx}}{M_{ax}} + \frac{M_{cx}}{M_{ax}} = \frac{M_{cx}}{m_{x}(1+F/2P_{cx})}$ EXACT approach go	Pcx = 948.11 Pcy = 1053.25 mx = 0.97 my = 1.00 May= $\frac{Mcy}{0.5^*my}$ overns	Mx = 5.77 Max = 70.40 My = 0.00 May = Pc = Pcx	0.09

Prepared by: RJB

Detailed Results Table for Beam 3

Max. AXIAL Force = -9.41 (compr.) Max. SHEAR Force = 7.27

SECTION CLASSIFICATION: *** PLASTIC ***

Limiting Ratios:		Plastic	Compact	Semi-Compact	
d/t= 19.02	<	76.7	94.0	117.9	(e = 1.000 R = 0.009)
b/t= 8.13	<	9.0	10.0	15.0	
** Des	ign	Strength	(py) = 275.0 **		

DESIGN	EQUATION	FACTORS	VALUES	RESULT
V2 Shear (4.2.3)	Fv/Pv < 1.00	Av = 10.24	Fv = 7.27 Pv = 169.03	0.04
M3 Moment (4.2.5.2) Notes:	M Mc LOW Shear Load U	S = 248.00 Z = 221.83 sed for Moment Desig	M = 10.14 Mc = 68.20 gn	0.15
Deflection	defl. < 1.00 L / 250		defl = 0.00030	0.04
Combined Stresses (Local) (4.8.2.3) (4.8.3)	(Mx)z1 (My)z2 () + () (Mrx) (Mry) < 1.00	n = 0.00893	Mx = 10.14 My = 0.00 Mrx = 68.19 Mry = 30.80 z1 = 2.00 z2 = 1.00	0.02

Code: BS5950 Page: 16 Date: 20/12/19

Prepared by: RJB

Detailed Results Table for Beam 3

Moments: kN*meter , Forces: kN , Stresses: mPa , Section prop.: cm.

DESIGN	EQUATION	FACTORS	VALUES	RESULT
Axial Force (4.7.4) Note:	F ——— < 1.00 Agpc Slender. reduct. Strut Selection from	(kL/r)x =25 (kL/r)y =0 x = 1.00 table 23(b)	F = 9.41 Ag = 38.30 pc = 267.01 y = 0.00	0.01
Lateral Torsional Buckling (4.3.6) (B.2)	M*mLT Mb beam NOT LOADEE (u= 0.85 v = 0.9 Critical Segment from Segment End Momen	$\begin{array}{l} Sx = 248.00 \\ pb = 273.42 \\ Le = 1.73 \\ mL = 0.51 \\ \beta = -0.23 \\ \lambda = 35.00 \\ 0.22 \ Le/ry = 45.2 \end{array}) \\ 0.00 \ to \ 1.73 \ on \ -z \ fl \\ ts: \ 10.14 \ and \ -2.29 \end{array}$	M = 2.29 Ma = M*mLT Ma = 1.16 Mb = 67.81	0.02
Overall Buckling - Simplified (4.8.3.3.1)	$\frac{F}{Pc} + \frac{mxMx}{pyZx} \frac{myMy}{pyZy} < 1.00$	Mx = 10.14 My = 0.00 mx = 0.51	pyZx= 61.00 pyZy= 20.14 my = 1.00 Pc = 1022.65	0.09
Overall Buckling Check - Exact (4.8.3.3.2) major axis buckling Note:	$\frac{Fc}{Pc} + \frac{Mx}{Max} + \frac{My}{May} < 1$ $\frac{Mcx}{Max=} - \frac{Mcx}{mx(1+F/2Pcx)}$ EXACT approach go	Pcx = 1022.65 Pcy = 1053.25 mx = 0.51 my = 1.00 May= May= 0.5*my werns	Mx = 10.14 Max = 133.80 My = 0.00 May = Pc = Pcx	0.08

Detailed Results Table for Beam 4

Moments: kN*meter , Forces: kN , Stresses: mPa , Section prop.: cm.

Code: BS5950 Page: 17 Date: 20/12/19 E A R Sheppard Consulting Engineers 5 Chiswock Place, Eastbourne East Sussex BN21 4NH, UK

H4154 The Almonry - Steel Portal

Prepared by: RJB

Code: BS5950 **Page:** 18 **Date:** 20/12/19

Detailed Results Table for Beam 4

Moments: kN*meter , Forces: kN , Stresses: mPa , Section prop.: cm.

Max. AXIAL Force = -16.31 (compr.) Max. SHEAR Force = 2.07

SECTION CLASSIFICATION: *** PLASTIC ***

Limiting Ratios:		Plastic	Compact	Semi-Compact			
d/t= 19.02	<	74.5	90.0	116.4	(e = 1.000	R =	0.015)
b/t= 8.13	<	9.0	10.0	15.0			
** Des	ign	Strength (py) = 275.0 **				

DESIGN	EQUATION	FACTORS	VALUES	RESULT
V2 Shear (4.2.3)	Fv/Pv < 1.00	Av = 10.24	Fv = 2.07 Pv = 169.03	0.01
M3 Moment (4.2.5.2) Notes:	M ——— < 1.00 Mc LOW Shear Load U	S = 248.00 Z = 221.83 sed for Moment Desi	M = 10.14 Mc = 68.20 gn	0.15
Deflection	defl. < 1.00 L / 250		defl = 0.00320	0.16
Combined Stresses (Local) (4.8.2.3) (4.8.3)	(Mx)z1 (My)z2 () + () (Mrx) (Mry) < 1.00	n = 0.01549	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.02
Axial Force (4.7.4) Note:	F 	(kL/r)x =70 (kL/r)y =0 x = 0.97 table 23(b)	F = 16.31 Ag = 38.30 pc = 201.92 y = 0.00	0.02
Overall Buckling - Simplified (4.8.3.3.1)	FmxMxmyMyPc	Mx = 10.14 My = 0.00 mx = 0.60	pyZx= 61.00 pyZy= 20.14 my = 1.00 Pc = 773.34	0.12
Overall Buckling Check - Exact (4.8.3.3.2) major axis buckling Note:	$\frac{Fc}{Pc} + \frac{Mx}{Max} + \frac{My}{May} < 1$ $\frac{Mcx}{Max=} + \frac{Mcx}{mx(1+F/2Pcx)}$ EXACT approach go	Pcx = 773.34 Pcy = 1053.25 mx = 0.60 my = 1.00 May= May= 0.5*my overns	Mx = 10.14 Max = 112.48 My = 0.00 May = Pc = Pcx	0.11