

Structural Calculations West Bergholt Community Hub and Office Ref: 2405-05 03/05/2024

<u>Head Office</u> Innovation Centre Knowledge Gateway Colchester CO4 3ZQ London Office Sutton Point 6 Sutton Ct Road Sutton London SM1 4FS

01206 259 360

0204 534 5593

office@morganeng.co.uk

Document Review Sheet:

Project: West Bergholt Community Hub and Office

Client: West Bergholt Parish Council

Calculations Prepared By: Bhavya Paruchuri MSc

Project Director: Oliver Morgan BEng (Hons) CEng MIStructE

Signature: O

Date: 03/05/2024

Document Status: Final

Revision: -

Design Codes: Building Regulations Part A, BS5268, BS5628, BS5950, BS6399, BS8004, BS8110

Drawings Referenced: Mclean Architecture drawings.

Notes: -

This document has been prepared for the sole use of the named client, its copyright and its contents should not be relied upon by others without the written authority of Morgan Engineering Consultants Limited. If any unauthorised third party makes use of this report they do so at their own risk and Morgan Engineering Consultants Limited owes them no duty of care or skill.

All information provided by others is taken in good faith as being accurate, but Morgan Engineering Consultants Limited cannot, and does not; accept any liability for the detailed accuracy, errors or omissions in such information.

1. Introduction

1.1. Morgan Engineering Consultants Ltd has been instructed by the client to undertake the structural design for the proposed;

• Single-storey extension.

1.2. The general building materials are; concrete foundations, concrete ground floor, timber roof and masonry load-bearing walls.

1.3. Vertical loads are transferred from the roof into the load-bearing walls and down into the foundations.

1.4. Horizontal loads are transferred by diaphragm action of the roof transferring the horizontal load into the load-bearing masonry walls and down into the foundations.

2. Loadings (BS6399)

2.1. General Loads

	Dead Load (kN/m2)	Live Load (kN/m2)
Roof	1.25	0.85
Ground Floor	5.00	2.50
Internal blockwork	2.50	0.00
External Cavity wall	4.50	0.00

3. General Notes

3.1. Do not scale drawings. The Contractor is to check all dimensions on site before carrying out any work.

3.2. This specification together with the Structural Engineer's drawings are to be read in conjunction with Architect's and all other Consultant's drawings and specifications, which should be used to verify layout, setting out, finishes etc. Any discrepancies are to be reported to the Architect before proceeding with the works.

3.3. The Contractor must ensure that the Architect has agreed all necessary party wall notices prior to carrying out works under, on or adjacent to the party wall.

3.4. The Contractor must ensure all Planning, Grade listed & Building Control Approvals are in place prior to carrying out the works.

3.5. Setting out details are shown on the Architect's drawings unless noted otherwise on the drawings.

3.6. All setting-out dimensions are to be confirmed on-site by the contractor.

3.7. The Contractor is to inform the Architect and Structural Engineer if the existing fabric, including foundations, is opened up and found to be inadequate, unsuitable to support the proposed works, or at variance from the details shown on the drawings.

3.8. Items noted on the drawings "to be confirmed on-site" are to be exposed by the Contractor for inspection by the Structural Engineer at the earliest opportunity.

3.9. Holes or chases must not be cut through any structural members without the written consent of the Structural Engineer.

3.10. Nothing included or omitted from this outline specification will relieve the Contractor of his duty to carry out the works in accordance with current standards of safety and good building practice.

3.11. All finishes DPC, DPM, Waterproofing, Insulations etc. are to be specified by other consultants and are to meet Building Regulation Standards as a minimum.

3.12. All materials and workmanship are to be to Approved Document 7 & the standards set out within.

3.13. The contractor is to implement all standards set out within the Building Regulations Documents (lateral restraint straps, tying etc) as part of the general build.

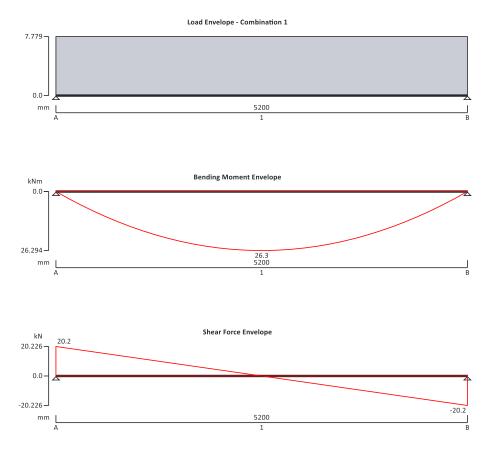
3.14. All lengths in the calculations are structural opening sizes. Full length of beams, columns, joists etc are to be confirmed on site by the contractor.

4. Calculations

4.1. Item 1 – L1

L = 5200mm

Loading


UDL					
ITEM	DL	IL	WIDTH	DL UDL	IL UDL
ROOF	1.25	0.85	2.40	3.00	2.04
FIRST FLOOR	0.75	2.00	0.00	0.00	0.00
GROUND	5.00	2.50	0.00	0.00	0.00
WALL	4.50	0.00	0.00	0.00	0.00
TOTAL UDL SLS kN/m			3.00	2.04	

: USE 152X152X23UC + 10mm S275 BOTTOM PLATE

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07

Support conditions		
Support A	Vertically restrained	
	Rotationally free	
Support B	Vertically restrained	
	Rotationally free	
Applied loading		
Beam loads	Dead self weight of beam \times 1	
	Dead full UDL 3 kN/m	
	Imposed full UDL 2.04 kN/m	
Load combinations		
Load combination 1	Support A	Dead × 1.40
		Imposed \times 1.60
		Dead × 1.40
		Imposed \times 1.60
	Support B	Dead × 1.40
		Imposed \times 1.60
Analysis results		
Maximum moment	M _{max} = 26.3 kNm	M _{min} = 0 kNm
Maximum shear	$V_{max} = 20.2 \text{ kN}$	V _{min} = -20.2 kN
Deflection	δ _{max} = 19.6 mm	δ _{min} = 0 mm
Maximum reaction at support A	R _{A_max} = 20.2 kN	R _{A_min} = 20.2 kN
Unfactored dead load reaction at support A	R _{A_Dead} = 8.4 kN	
Unfactored imposed load reaction at support A	RA_Imposed = 5.3 kN	
Maximum reaction at support B	R _{B_max} = 20.2 kN	R _{B_min} = 20.2 kN
Unfactored dead load reaction at support B	R _{B_Dead} = 8.4 kN	
Unfactored imposed load reaction at support B	R _{B_Imposed} = 5.3 kN	
Section details		
Section type	UC 152x152x23 (British Steel S	ection Range 2022
(BS4-1))		
Steel grade	S355	
From table 9: Design strength py		
Thickness of element	max(T, t) = 6.8 mm	
Design strength	p _y = 355 N/mm ²	
Modulus of elasticity	E = 205000 N/mm ²	

5

Lateral restraint

Span 1 has lateral restraint at supports only

	-	
Effective length factors		
Effective length factor in major axis	K _x = 1.00	
Effective length factor in minor axis	K _y = 1.00	
Effective length factor for lateral-torsional buckling	K _{LT.A} = 1.00	
	K _{LT.B} = 1.00	
Classification of cross sections - Section 3.5		
	$\epsilon = \sqrt{[275 \text{ N/mm}^2 / p_y]} = 0.88$	
Internal compression parts - Table 11		
Depth of section	d = 123.6 mm	
	d / t = 24.2 $\times \epsilon$ <= 80 $\times \epsilon$	Class 1 plastic
Outstand flanges - Table 11		
Width of section	b = B / 2 = 76.1 mm	
	b / T = $12.7 \times \epsilon \le 15 \times \epsilon$	Class 3 semi-
compact		
	Section is	s class 3 semi-compact
Shear capacity - Section 4.2.3		
Design shear force	$F_v = max(abs(V_{max}), abs(V_{min})) =$	= 20.2 kN
	d / t < 70 × ε	
	Web does not need to be chee	cked for shear buckling
Shear area	$A_v = t \times D = 884 \text{ mm}^2$	
Design shear resistance	$P_v = 0.6 \times p_y \times A_v = 188.3 \text{ kN}$	
PASS	- Design shear resistance exce	eds design shear force
Moment capacity - Section 4.2.5		
Design bending moment	$M = max(abs(M_{s1_max}), abs(M_{s1_max}))$	_{.min})) = 26.3 kNm
Effective plastic modulus - Section 3.5.6		
Limiting value for class 2 compact flange	$\beta_{2f} = 10 \times \epsilon = 8.801$	
Limiting value for class 3 semi-compact flange	$\beta_{3f} = 15 \times \epsilon = 13.202$	
Limiting value for class 2 compact web	$\beta_{2w} = 100 \times \epsilon = 88.014$	

Job: West Bergholt Community Hub and Office	Job No: 2405-05
Element: Structural	Date: 03/05/2024
Calculations	

Limiting value for class 3 semi-compact web Effective plastic modulus - cl.3.5.6.2	$\beta_{3w} = 120 \times \epsilon = \textbf{105.617}$
$S_{eff} = min(Z_{xx} + (S_{xx} - Z_{xx}) \times min([((\beta_{3w} / (d / t))^2 - f_{xx}) \times min([((\beta_{3w} / (d / t))^2 - f_{xx}) \times min(f_{xx} + f_{xx}) \times min(f_{xx}) \times min(f_{xx} + f_{xx}) \times min(f_{xx}) \times min(f_{$	I) / ((β_{3w} / β_{2w}) ² - 1)], [(β_{3f} / (b / T) - 1) / (β_{3f} / β_{2f} - 1)]), S _{xx}) = 170473 mm ³
Moment capacity low shear - cl.4.2.5.2	$M_{c} = min(p_{y} \times S_{eff}, \ 1.2 \times p_{y} \times Z_{xx}) = \textbf{60.5} \ kNm$
Effective length for lateral-torsional buckling - S	Section 4.3.5
Effective length for lateral torsional buckling	$L_E = 1.0 \times L_{s1} = 5200 \text{ mm}$
Slenderness ratio	$\lambda = L_E / r_{yy} = 140.620$
Equivalent slenderness - Section 4.3.6.7	
Buckling parameter	u = 0.840
Torsional index	x = 20.701
Slenderness factor	$v = 1 / [1 + 0.05 \times (\lambda / x)^2]^{0.25} = 0.742$
Ratio - cl.4.3.6.9	$\beta_{W} = S_{eff} / S_{xx} = 0.937$
Equivalent slenderness - cl.4.3.6.7	$\lambda_{LT} = \mathbf{u} \times \mathbf{v} \times \lambda \times \sqrt{[\beta w]} = 84.731$
Limiting slenderness - Annex B.2.2	$\lambda_{L0} = 0.4 \times (\pi^2 \times E / p_y)^{0.5} = 30.198$
$\lambda_{LT} > \lambda_{LO} - A$	llowance should be made for lateral-torsional buckling
Bending strength - Section 4.3.6.5	
Robertson constant	αιτ = 7.0
Perry factor	$η_{LT} = max(α_{LT} \times (λ_{LT} - λ_{L0}) / 1000, 0) = 0.382$
Euler stress	$p_{E} = \pi^{2} \times E / \lambda_{LT}^{2} = 281.8 \text{ N/mm}^{2}$
	$\phi_{LT} = (p_y + (\eta_{LT} + 1) \times p_E) / 2 = 372.2 \text{ N/mm}^2$
Bending strength - Annex B.2.1	$p_{\text{b}} = p_{\text{E}} \times p_{\text{y}} / (\phi_{\text{LT}} + (\phi_{\text{LT}}^2 - p_{\text{E}} \times p_{\text{y}})^{0.5}) = 176 \text{ N/mm}^2$
Equivalent uniform moment factor - Section 4.3	.6.6
Moment at quarter point of segment	M ₂ = 19.7 kNm
Moment at centre-line of segment	M ₃ = 26.3 kNm
Moment at three quarter point of segment	M ₄ = 19.7 kNm
Maximum moment in segment	M _{abs} = 26.3 kNm
Maximum moment governing buckling resistance	M _{LT} = M _{abs} = 26.3 kNm
Equivalent uniform moment factor for lateral-torsion	-
$m_{LT} = max(0.2)$	$P + (0.15 \times M_2 + 0.5 \times M_3 + 0.15 \times M_4) / M_{abs}, 0.44) = 0.925$
Buckling resistance moment - Section 4.3.6.4	
Buckling resistance moment	$M_b = p_b \times S_{eff} = \textbf{30} \text{ kNm}$
	M _b / m _{LT} = 32.4 kNm
PASS - Buckling	g resistance moment exceeds design bending moment
Check vertical deflection - Section 2.5.2	
Consider deflection due to dead and imposed load	8
Limiting deflection	$\delta_{\text{lim}} = L_{s1} / 250 = 20.8 \text{ mm}$
Maximum deflection span 1	$\delta = max(abs(\delta_{max}), abs(\delta_{min})) = 19.564 \text{ mm}$
PASS	- Maximum deflection does not exceed deflection limit

4.2. Item 2 – L2

L = 1200mm

Loading

UDL					
ITEM	DL	IL	WIDTH	DL UDL	IL UDL
ROOF	1.25	0.85	2.40	3.00	2.04
FIRST FLOOR	0.75	2.00	0.00	0.00	0.00
GROUND	5.00	2.50	0.00	0.00	0.00
WALL	4.50	0.00	0.00	0.00	0.00
TOTAL UDL SLS kN/m			3.00	2.04	

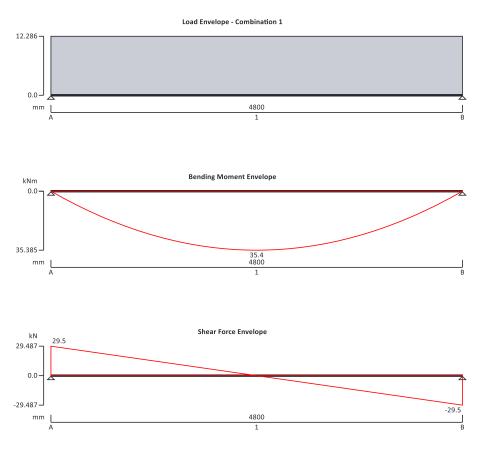
Working load = 1.2x1.1x5.04 = 6.65kN

:- USE CATNIC STANDARD DUTY CAVITY WALL LINTEL SWL = 15kN

4.3. Item 3 – SB1

L = 4800mm

Loading


UDL					
ITEM	DL	IL	WIDTH	DL UDL	IL UDL
ROOF	1.25	0.85	2.40	3.00	2.04
FIRST FLOOR	0.75	2.00	0.00	0.00	0.00
GROUND	5.00	2.50	0.00	0.00	0.00
WALL	4.50	0.00	0.70	3.15	0.00
TOTAL UDL SLS kN/m			6.15	2.04	

: USE 152X152X30UC + 10mm S275 TOP PLATE

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07

MORGAN Engineering Consultants	

Date:	03/05/2024

Sunnert conditions		
Support conditions Support A	Vertically restrained	
Cuppert	Rotationally free	
Support B	Vertically restrained	
	Rotationally free	
Applied loading		
Beam loads	Dead self weight of beam \times 1	
	Dead full UDL 6.15 kN/m	
	Imposed full UDL 2.04 kN/m	
Load combinations		
Load combination 1	Support A	$Dead \times 1.40$
		Imposed $ imes$ 1.60
		$\text{Dead} \times 1.40$
		Imposed \times 1.60
	Support B	Dead × 1.40
		Imposed \times 1.60
Analysis results		
Maximum moment	M _{max} = 35.4 kNm	M _{min} = 0 kNm
Maximum shear	V _{max} = 29.5 kN	V _{min} = -29.5 kN
Deflection	δ _{max} = 16.4 mm	$\delta_{min} = 0 mm$
Maximum reaction at support A	R _{A_max} = 29.5 kN	R _{A_min} = 29.5 kN
Unfactored dead load reaction at support A	R _{A_Dead} = 15.5 kN	
Unfactored imposed load reaction at support A	RA_Imposed = 4.9 kN	
Maximum reaction at support B	R _{B_max} = 29.5 kN	R _{B_min} = 29.5 kN
Unfactored dead load reaction at support B	R _{B_Dead} = 15.5 kN	
Unfactored imposed load reaction at support B	R _{B_Imposed} = 4.9 kN	
Section details		
Section type	UC 152x152x30 (British Steel S	Section Range 2022
(BS4-1))		
- · · ·		

Steel grade	S355
From table 9: Design strength py	
Thickness of element	max(T, t) = 9.4 mm
Design strength	py = 355 N/mm ²
Modulus of elasticity	E = 205000 N/mm ²

Lateral restraint

	Span 1 has lateral restraint at supports only		
Effective length factors			
Effective length factor in major axis	K _x = 1.00		
Effective length factor in minor axis	K _y = 1.00		
Effective length factor for lateral-torsional buckling	K _{LT.A} = 1.00		
	К _{LT.В} = 1.00		
Classification of cross sections - Section 3.5			
	$\epsilon = \sqrt{[275 \text{ N/mm}^2 / p_y]} = 0.88$		
Internal compression parts - Table 11			
Depth of section	d = 123.6 mm		
	d / t = 21.6 $\times \epsilon$ <= 80 $\times \epsilon$	Class 1 plastic	
Outstand flanges - Table 11			
Width of section	b = B / 2 = 76.5 mm		
	b / T = 9.2 $\times \epsilon$ <= 10 $\times \epsilon$	Class 2 compact	
	Sec	tion is class 2 compact	
Shear capacity - Section 4.2.3			
Design shear force	$F_v = max(abs(V_{max}), abs(V_{min})) =$	= 29.5 kN	
	d / t < 70 × ε		
	Web does not need to be chec	ked for shear buckling	
Shear area	$A_v = t \times D = 1024 \text{ mm}^2$		
Design shear resistance	$P_v = 0.6 \times p_y \times A_v = \textbf{218.2 kN}$		
PASS	 Design shear resistance exce 	eds design shear force	
Moment capacity - Section 4.2.5			
Design bending moment	$M = max(abs(M_{s1_max}), abs(M_{s1_max}))$	_{min})) = 35.4 kNm	
Moment capacity low shear - cl.4.2.5.2	$M_{c} = min(p_{y} \times S_{xx}, \ 1.2 \times p_{y} \times Z_{xx}) = \textbf{87.9} \ kNm$		
Effective length for lateral-torsional buckling - S	Section 4.3.5		
Effective length for lateral torsional buckling	$L_{E} = 1.0 \times L_{s1} = \textbf{4800} \text{ mm}$		
Slenderness ratio	$\lambda = L_E / r_{yy} = 125.417$		

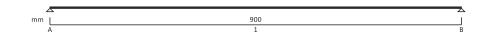
Equivalent slenderness - Section 4.3.6.7	
Buckling parameter	u = 0.849
Torsional index	x = 15.999
Slenderness factor	v = 1 / $[1 + 0.05 \times (\lambda / x)^2]^{0.25}$ = 0.704
Ratio - cl.4.3.6.9	βw = 1.000
Equivalent slenderness - cl.4.3.6.7	$\lambda_{LT} = \mathbf{u} \times \mathbf{v} \times \lambda \times \sqrt{[\beta w]} = 74.912$
Limiting slenderness - Annex B.2.2	$\lambda_{L0} = 0.4 \times (\pi^2 \times E / p_y)^{0.5} = 30.198$
$\lambda_{LT} > \lambda_{L0} - A$	llowance should be made for lateral-torsional buckling
Bending strength - Section 4.3.6.5	
Robertson constant	α _{LT} = 7.0
Perry factor	$\eta_{LT} = max(\alpha_{LT} \times (\lambda_{LT} - \lambda_{L0}) / 1000, 0) = 0.313$
Euler stress	$p_{E} = \pi^{2} \times E / \lambda_{LT}^{2} = 360.5 \text{ N/mm}^{2}$
	$\phi_{LT} = (p_y + (\eta_{LT} + 1) \times p_E) / 2 = 414.2 \text{ N/mm}^2$
Bending strength - Annex B.2.1	$p_b = p_E \times p_y / (\phi_{LT} + (\phi_{LT}^2 - p_E \times p_y)^{0.5}) = 205.5 \text{ N/mm}^2$
Equivalent uniform moment factor - Section 4.3	3.6.6
Moment at quarter point of segment	M ₂ = 26.5 kNm
Moment at centre-line of segment	M ₃ = 35.4 kNm
Moment at three quarter point of segment	M4 = 26.5 kNm
Maximum moment in segment	M _{abs} = 35.4 kNm
Maximum moment governing buckling resistance	M _{LT} = M _{abs} = 35.4 kNm
Equivalent uniform moment factor for lateral-torsion	nal buckling
$m_{LT} = max(0.2)$	2 + (0.15 × M ₂ + 0.5 × M ₃ + 0.15 × M ₄) / M _{abs} , 0.44) = 0.925
Buckling resistance moment - Section 4.3.6.4	
Buckling resistance moment	$M_b = p_b \times S_{xx} = 50.9 \text{ kNm}$
	M _b / m _{LT} = 55 kNm
PASS - Buckling	g resistance moment exceeds design bending moment
Check vertical deflection - Section 2.5.2	
Consider deflection due to dead and imposed load	S
Limiting deflection	$\delta_{\text{lim}} = L_{s1} / 250 = 19.2 \text{ mm}$
Maximum deflection span 1	$\delta = max(abs(\delta_{max}), abs(\delta_{min})) = 16.365 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit

Job: West Bergholt Community Hub and Office	Job No: 2405-05		
Element: Structural	Date: 03/05/2024		
Calculations			

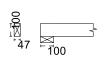
4.4. Item 4 – FRJ1

L = 900mm


Loading

AREA				
ITEM DL IL				
ROOF 1.25 0.85				
kN/m2				

:-USE 47X100 @ 600mm CTRS


TIMBER JOIST DESIGN (BS5268-2:2002)

b = 47 mm
h = 100 mm
s = 600 mm
C24
1

Span details Number of spans

Length of bearing Effective length of span N_{span} = 1 L_b = 100 mm L_{s1} = 900 mm

Section properties

Second moment of area Section modulus $I = b \times h^3 / 12 =$ **3916667** mm^4 Z = b × h² / 6 = **78333** mm³

13

Tedds calculation version 1.1.04

$F_{swt} = b \times h \times \rho_{char} \times g_{acc} = 0.02 \text{ kN/m}$
F _{d_udl} = 1.25 kN/m ²
F _{i_udl} = 0.85 kN/m ²
F _{i_pt} = 1.40 kN
K _{2m} = 1.00
K _{2c} = 1.00
K _{2s} = 1.00
K _{2e} = 1.00
K ₇ = 1.13
K ₈ = 1.10
K ₃ = 1.00
M = 0.129 kNm
V = 0.574 kN
R = 0.574 kN
δ = 0.307 mm
σ _m = 7.500 N/mm ²
$\sigma_{m_adm} = \sigma_m \times K_{2m} \times K_3 \times K_7 \times K_8 = \textbf{9.310} \ N/mm^2$
$\sigma_{m_max} = M / Z = 1.649 \text{ N/mm}^2$
PASS - Applied bending stress within permissible limits
τ = 0.710 N/mm²
$\tau_{adm} = \tau \times K_{2s} \times K_3 \times K_8 = \textbf{0.781} \ N/mm^2$
τ_{max} = 3 × V / (2 × b × h) = 0.183 N/mm ²
PASS - Applied shear stress within permissible limits
$\sigma_{cp1} = 2.400 \text{ N/mm}^2$

Compression perpendicular to grain (no wane) Permissible bearing stress Applied bearing stress

Check deflection

Permissible deflection Bending deflection (based on E_{mean}) Shear deflection Total deflection

Consider medium term loads

Load duration factor Maximum bending moment Maximum shear force Maximum support reaction $\sigma_{c_max} = R \ / \ (b \times L_b) = \textbf{0.122} \ N/mm^2$ **PASS - Applied bearing stress within permissible limits**

 $\sigma_{c_adm} = \sigma_{cp1} \times K_{2c} \times K_3 \times K_8 = \textbf{2.640} \ N/mm^2$

$$\begin{split} \delta_{adm} &= \min(L_{s1} \times 0.003, \, 14 \text{ mm}) = \textbf{2.700} \text{ mm} \\ \delta_{bending} &= \textbf{0.258} \text{ mm} \\ \delta_{shear} &= \textbf{0.049} \text{ mm} \\ \delta &= \delta_{bending} + \delta_{shear} = \textbf{0.307} \text{ mm} \\ \textbf{PASS - Actual deflection within permissible limits} \end{split}$$

K₃ = **1.25** M = **0.393** kNm V = **1.745** kN R = **1.745** kN

Maximum deflection

Check bending stress

Bending stress Permissible bending stress Applied bending stress

Check shear stress

Shear stress Permissible shear stress Applied shear stress

Check bearing stress

Compression perpendicular to grain (no wane) Permissible bearing stress Applied bearing stress

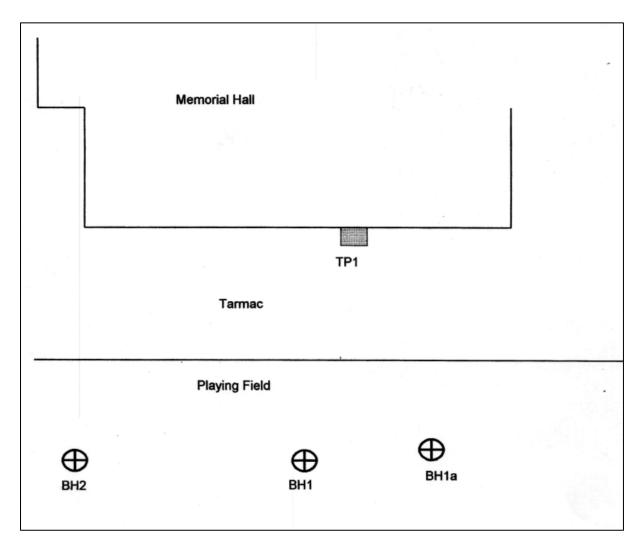
Check deflection

Permissible deflection Bending deflection (based on E_{mean}) Shear deflection Total deflection

$\delta = 0.806 \text{ mm}$

$$\label{eq:sigma_m} \begin{split} \sigma_m &= \textbf{7.500} \; \text{N/mm}^2 \\ \sigma_{m_adm} &= \sigma_m \times K_{2m} \times K_3 \times K_7 \times K_8 = \textbf{11.637} \; \text{N/mm}^2 \\ \sigma_{m_max} &= M \; / \; Z = \textbf{5.012} \; \text{N/mm}^2 \\ \end{split}$$

$$\begin{split} \tau &= \textbf{0.710} \text{ N/mm}^2 \\ \tau_{adm} &= \tau \times K_{2s} \times K_3 \times K_8 = \textbf{0.976} \text{ N/mm}^2 \\ \tau_{max} &= 3 \times V / (2 \times b \times h) = \textbf{0.557} \text{ N/mm}^2 \\ \textbf{PASS - Applied shear stress within permissible limits} \end{split}$$


$$\begin{split} \sigma_{cp1} &= \textbf{2.400} \text{ N/mm}^2 \\ \sigma_{c_adm} &= \sigma_{cp1} \times K_{2c} \times K_3 \times K_8 = \textbf{3.300} \text{ N/mm}^2 \\ \sigma_{c_max} &= \text{R} \ / \ (b \times L_b) = \textbf{0.371} \text{ N/mm}^2 \\ \end{split}$$

 $\delta_{adm} = min(L_{s1} \times 0.003, 14 \text{ mm}) = 2.700 \text{ mm}$ $\delta_{bending} = 0.657 \text{ mm}$ $\delta_{shear} = 0.148 \text{ mm}$ $\delta = \delta_{bending} + \delta_{shear} = 0.806 \text{ mm}$

PASS - Actual deflection within permissible limits

MORGAN	Job: West Bergholt Community Hub and Office	Job No: 2405-05
ENGINEERING CONSULTANTS	Element: Structural Calculations	Date: 03/05/2024

4.5. Item 5 – Foundations

Soil investigation was performed at 3 locations.

CLIENT	GJ	° Engineeri	ng Consult	ants Ltd	SITE	Orpen Memorial	Hall, West Bergh	olt	
DATE OF FI	ELDWORK	1	SCALE 1:50	LEVEL/POSITION	ION PLAN	OPERATOR ML	LOGGED BY ML	JOB NO VSJOB/	
SAMPLE DEPTH	RECORD TYPE	SPT N (Cu-kN/m ²	Standp/ Piezo	DESC	DESCRIPTION OF STRATUM (thickness)		35)	DEPTH	LEGEND
0.50 _1.00 1.00	D V D	(140)		Turf over very gra Firm to stiff becc Gravel is fine to	ming stiff	orange brown grav	Welly CLAY.	- 0.60	
-				Borehole Complete strength of strate		r progress possil	ble due to		

The borehole shows gravelly clay.

Prescriptive value: Allowable bearing pressure of 100kN/m2.

Loading

UDL						
ITEM	DL	IL	WIDTH	DL UDL	IL UDL	
ROOF	1.25	0.85	2.40	3.00	2.04	
FIRST FLOOR	0.75	2.00	0.00	0.00	0.00	
GROUND	5.00	2.50	1.20	6.00	3.00	
MASONRY WALL	4.50	0.00	3.70	16.65	0.00	
TOTAL UDL	25.65	5.04				

Total SLS UDL = 30.69kN/m

Minimum width of foundation = 0.31m.

: USE 450mm WIDE GEN 3 CONCRETE FOUNDATION BEARING A MINIMUM OF 1.0m BELOW GROUND LEVEL INTO GRAVELLY CLAY WITH AN ALLOWABLE BEARING PRESSURE OF 100kN/m2.

!DUE TO THE PRESENCE OF CLAY, THE FINAL FOUNDATION DEPTH IS TO BE AGREED UPON WITH BUILDING CONTROL TAKING INTO ACCOUNT ENCOUNTERED GROUND CONDITIONS & LOCAL TREES!

4.6. Item 6 – B&B

:- USE A 150mm BEAM & BLOCK FLOOR WITH A 300mm VENTILATED VOID. THE BEAM AND BLOCK FLOOR IS TO BE DESIGNED BY THE MANUFACTURER TO BS8110, THE SPAN DIRECTIONS SHOWN & A DESIGN LOAD OF DL 2.00kN/m2 + SELF WEIGHT, IL 2.50kN/m2.

4.7. Item 7 – Padstones

PADSTONES					
BEAM	Ra ULS kN	LDS N/mm2	WIDTH (mm)	MIN LENGTH (mm)	BEARING REQUIREMENT
L1	20.20	1.50	100.00	134.67	215X65X100 ENGINEERING BRICK
SB1	29.50	1.50	100.00	196.67	215X65X100 ENGINEERING BRICK

4.8. Item 8 – Windpost

Height = 2700mm

Wind load = 0.75kN/m2

Load length = 1.60m

UDL = 1.20 kN/m (SLS)

Total load = 3.24kN

: USE ANCON WP2 125X70X4 ANCON WINDPOST

Performance of WP2 Windposts to Eurocode 3

	Size		Total Uniform
	axbxt	2.5m	3.0m
	125x70x4	9.46	7.07
	140x70x4	12.28	9.25
	150x70x4	14.21	10.86
	130x70x6	15.83	11.93
	170x70x4	17.92	14.48
	160x70x5	20.33	15.94
WP2	150x70x6	21.90	16.64
	170x70x5	22.75	18.29
	180x70x5	24.76	20.80
	150x80x8	24.76	22.59
	185x70x6	24.76	26.71
	170x80x8	24.76	29.26
	180x80x8	24.76	29.26

Note: Table based on tie spacing of 225mm, no vertical movement joint ar