

GEOTECHNICAL ASSESSMENT REPORT

BATTLE SPORTS PAVILION NORTH TRADE ROAD BATTLE EAST SUSSEX

PROJECT REFERENCE: P17031

REPORT REFERENCE: R16574

Report Beneficiary: Battle Town Council

	Document Control					
lssue No.	Status	Issue Date	Νο	tes		
1	Final	4 th March 2025				
	Report Section		Prepared By	Approved By		
	Factual Section		Tom Hughes BA MA	Rebecca Webb BSc FGS		
	Geotechi	nical Assessment	Adam Cormack HNC FGS	Rebecca Webb BSc FGS		

Limitations

This report was prepared specifically for the Client's project and may not be appropriate to alternative schemes. The copyright for the report and licence for its use shall remain vested in Ashdown Site Investigation Limited (the Company) who disclaim all responsibility or liability (whether at common law or under the express or implied terms of the Contract between the Company and the Client) for any loss or damage of whatever nature in the event that this report is relied on by a third party, or is issued in circumstances or for projects for which it was not originally commissioned.

Head Office:

Unit 3 The Old Grain Store Ditchling Common Business Park Ditchling East Sussex BN6 8SG

Telephone:

01273 483119 Email: contact@ashdownsi.co.uk

Company Registration No. 242 6786

EXECUTIVE SUMMARY

The following presents a summary of the main findings of the report. It is emphasised that no reliance should be placed on any individual point until the whole of the report has been read as other sections of the report may put into context the information contained herein.

It is proposed to demolish the existing sports pavilion at Battle Recreation Ground and construct a new pavilion building on the footprint of the demolished structure.

The existing sports pavilion is located within the northern part of the recreation ground, adjacent to two tennis courts, and is connected on its western side to a guide hall, which is to be retained.

Reference to geological datasets indicates that the site is expected to be underlain by the Wadhurst Clay Formation. The ground investigation confirmed the underlying soils to comprise a shallow thickness of made ground, overlying Wadhurst Clay Formation deposits.

The Wadhurst Clay Formation is classed as an Unproductive Stratum. The site does not lie within a SPZ. With the exception of borehole WS02 where groundwater was noted between a depth of 2.00m and 3.00m below ground level, the boreholes were recorded to remain dry during the short period of the intrusive works.

Precautions against shrinkage and heave for any new foundation system should assume a medium volume change potential for the fine-grained Wadhurst Clay Formation.

A net allowable bearing capacity of 150kN/m² may be assumed for spread (pad or strip) foundations up to 1.00m across bearing within the Wadhurst Clay Formation soils of at least stiff consistency.

Ground floors should be suspended unless the conditions set out within this report can be met.

A DS-1 Design Sulfate Class and an AC-2z ACEC classification should be assumed as a minimum for the design of concrete in contact with the ground.

Infiltration testing within the Wadhurst Clay Formation soils recorded an infiltration rate of 1.17×10^{-6} m/s for a 1.7m driving head and 3.78 x 10^{-6} m/sec for a 2.1m driving head.

TABLE OF CONTENTS

1.	INTRODUCTION	1
2.	SITE CONTEXT	2
2.1	Site Location	2
2.2	Geological Data Review	2
3.	SITE WORKS	4
3.1	Introduction	4
3.2	Exploratory Holes	4
3.3	Sampling	4
3.4	In Situ Strength Testing	4
3.5	In Situ Infiltration Testing	4
3.6	Laboratory Testing	4
4.	GROUND CONDITIONS	6
4.1	Stratigraphy	6
4.1 4.2	Stratigraphy Stability	6
4.2	Stability	6
4.2 4.3	Stability Groundwater Conditions	6
4.2 4.3 5.	Stability Groundwater Conditions GEOTECHNICAL ASSESSMENT	6 6 7
4.2 4.3 5. 5.1	Stability Groundwater Conditions GEOTECHNICAL ASSESSMENT Foundations	6 6 7 7
4.2 4.3 5. 5.1 5.2	Stability Groundwater Conditions GEOTECHNICAL ASSESSMENT Foundations Ground Floors	6 6 7 7 9
4.2 4.3 5. 5.1 5.2 5.3	Stability Groundwater Conditions GEOTECHNICAL ASSESSMENT Foundations Ground Floors Groundwater	6 6 7 9 10

Project Ref: P17031 Report Ref: R16574 Issue No. 1

FIGURES AND APPENDICES

FIGURES

Figure 1Site Location PlanFigure 2Site Plan

APPENDIX A

Proposed Development Layout

APPENDIX B

Explanatory Notes Exploratory Hole Records DPSH-B Dynamic Probe Records

APPENDIX C

Geotechnical Laboratory Test Results

APPENDIX D

Aggressivity To Concrete Assessment Borehole Infiltration Test Results

1. INTRODUCTION

It is proposed to construct a replacement, larger sports pavilion at Battle Recreation Ground, on the footprint of the existing pavilion building. Details of the proposed development layout are presented in Appendix A.

Ashdown Site Investigation Ltd was requested to undertake a ground investigation and to provide advice to assist with the structural design.

The specific objectives of the works were to:

- a) Establish the expected geology and hydrogeology at the site;
- b) Investigate the shallow ground and groundwater conditions in the area of the proposed development; and
- c) Provide advice/parameters to assist others in undertaking design of spread foundations, ground floors and soakaways.

The scope of the works covered by this report, and the terms and conditions under which they were undertaken, were set out within the offer letter Q14896, dated 17th January 2025. The instruction to proceed was received from the client, Battle Town Council.

2. SITE CONTEXT

2.1 Site Location

The area of the proposed replacement sports pavilion lies within the northern part of Battle Recreation Ground located at North Trade Road, Battle, East Sussex, and is centred on the approximate Ordnance Survey national grid reference 574270, 116150. A site location plan and site plan are presented as Figure 1 and Figure 2, respectively.

The existing sports pavilion is located adjacent to two tennis courts, and is connected on its western side to a guide hall, which is to be retained.

2.2 Geological Data Review

2.2.1 Expected Geology and Aquifer Designation

The stratigraphic unit that may be expected to underlie the site has been established by reference to British Geological Survey (BGS) mapping and the BGS Lexicon of Named Rock Units. The expected stratigraphy is presented in the following table.

Table 1.Expected Strata and Aquifer Designation

Туре	Stratum	Aquifer Designation
Bedrock	Wadhurst Clay Formation	Unproductive Stratum

The Wadhurst Clay Formation forms part of the Wealden Group. The formation is of Valanginian age (133.9 to 139.4 million years old; Early Cretaceous). The Wadhurst Clay Formation comprises dark grey thinlybedded mudstones ("shales") and mudstones with subordinate beds of pale grey siltstone, fine-grained sandstone (locally calcareous where it is known as Tilgate Stone or colloquially "Hastings Granite"), shelly limestone, clay ironstone and rare pebble beds. The top metre or so of the Wadhurst Clay often comprises stiff clay stained red by weathering. Thin beds of shelly limestone are present throughout. Nodular clay-ironstone occurs particularly in the lower part of the formation, but also near the top. Thicker beds of siltstone and lenticular calcareous sandstone units are also present. In the Tunbridge Wells district a thicker sand in the lower part of the formation is present but this does not appear on BGS maps. The base of the formation is commonly a thicker siltstone and, in some areas, a basal pebble bed, the Top Ashdown Pebble Bed is present. The formation is recorded by the BGS to range in thickness up to 78m.

2.2.2 Mining and Ground Workings

The geological units of the Wealden Group, including the Wadhurst Clay Formation, were locally mined for iron during the early Roman period, the Medieval period and significantly between the 15th and 18th centuries. The mining activities were associated with hammer and furnace ponds, and forges. The locations of many of the workings are unknown, the works mostly having been dismantled and sites overgrown with woodland. Many of the old ponds in the Weald may be representative of old hammer or furnace ponds.

The historical extraction was mostly from open pits excavated from surface, but during the Medieval period, extraction in the eastern Weald was increasingly from mine pits. These mine pits were typically five metres in diameter and up to twelve metres deep. The pits were worked in sequence with spoil from one pit used to in-fill the one before. In the western part of the Weald, the principal method of extracting iron ore was also the mine pit but smaller in scale; the pits consisted of a vertical shaft up to 2.5 metres in diameter and the base of the shaft would have been widened out.

The British Geological Survey GeoIndex Onshore viewer records the presence of the ceased Kelk Wood Pits some 960m to the west of the site. A search of the Wealden Iron Research Group database (www.wirgdata.org) revealed no records of iron workings within 1km of the site. The risk posed to the development is considered to be negligible to very low.

Further assessment of the natural ground and mining hazards can be undertaken, if required, to provide more detailed comment specific to the site.

2.2.3 Groundwater Source Protection Zones (SPZ)

The Environment Agency defines SPZs as those areas where groundwater supplies are at risk from potentially polluting activities and accidental releases of pollutants. SPZs are primarily a policy tool used to control activities close to water supplies intended for human consumption.

The site does not lie within a SPZ.

3. SITE WORKS

3.1 Introduction

The intrusive site works comprised a series of dynamic sampler boreholes, together with accompanying insitu geotechnical testing. The intrusive work was carried out on 3rd February 2025. The exploratory hole locations are shown on Figure 2.

Descriptions of the strata encountered and comments on groundwater conditions are shown in the exploratory hole records given in Appendix B, which also includes explanatory notes to assist in their interpretation.

3.2 Exploratory Holes

The following table summarises the intrusive works undertaken at the site.

Designation	Depth (m bgl)	Method
WS01	3.00	Dynamic Sampler
WS02	3.00	Dynamic Sampler
WS03	3.00	Dynamic Sampler
WS04	2.90	Dynamic Sampler

Table 2.Summary of Intrusive Works Undertaken

3.3 Sampling

Samples of soil were taken from the exploratory holes at the depths shown in the exploratory hole records. The types of samples taken are indicated on the exploratory hole records. Details on the sample types are provided in the explanatory notes.

3.4 In Situ Strength Testing

The types and depths of in situ testing, together with the test results, are either given on the exploratory hole records or are summarised separately in Appendix B. Further details on the in situ testing methods are provided in the explanatory notes.

3.5 In Situ Infiltration Testing

Falling head soakage testing was undertaken in a single borehole in general accordance with Kent County Council guidance¹. The results of the testing along with the infiltration rate calculations are included in Appendix D.

3.6 Laboratory Testing

Laboratory testing was scheduled by Ashdown Site Investigation Ltd.

¹ The Soakaway Design Guide published by Kent County Council, 2000. Battle Sports Pavilion, North Trade Road, Battle, East Sussex

Geotechnical testing was undertaken by Ashdown Site Investigation Ltd. Chemical testing was undertaken by a laboratory with recognised (UKAS and MCERTS) accreditation for quality control.

Results from the laboratory tests are provided in Appendix C, with the chemical testing also summarised in Appendix D.

4. GROUND CONDITIONS

4.1 Stratigraphy

4.1.1 Surface Covering

Each of the exploratory holes was excavated through an initial surface cover of topsoil.

4.1.2 Made Ground

Made ground, comprising slightly gravelly slightly sandy silty clay, was recorded to depths of between 0.70m and 1.00m below ground level. The gravel fraction comprised variable quantities of ironstone, mudstone, sandstone, brick, organic matter and ash-like material.

4.1.3 Wadhurst Clay Formation

Underlying the made ground, the boreholes progressed into generally stiff slightly gravelly silty clay soils, which were recorded to be locally very stiff. The gravel fraction comprised subangular to subrounded fine to coarse mudstone, ironstone and sandstone.

These deposits continued to the final investigation depth of 3.00m below ground level and are considered to represent the Wadhurst Clay Formation indicated to underlie the site on BGS geological maps.

4.2 Stability

Each of the exploratory holes was recorded to remain stable during the course of drilling.

4.3 Groundwater Conditions

Groundwater was noted within borehole WS02 between depths of 2.00m and 3.00m below ground level. The remaining boreholes were recorded to remain dry during the course of drilling.

5. GEOTECHNICAL ASSESSMENT

The geotechnical assessment has been prepared in connection with the development proposals shown on the drawings included in Appendix A.

In summary, the proposed development is to comprise demolition of the existing sports pavilion, and the construction of a replacement pavilion with a larger footprint than the previous.

At the time of writing, no details were available concerning the specific loads likely to be applied to the foundations.

5.1 Foundations

5.1.1 Soil Shrinkage/Heave Potential

The fine-grained soils of the Wadhurst Clay Formation have been classified as clays, and with plasticity indices in the range of 17% to 33%, the soils may be expected to exhibit a low to medium volume change potential.

It is recommended that the design of precautions against shrinkage and heave for any new foundation system (spread footings and ground beams etc.) should assume a medium volume change potential for the finegrained Wadhurst Clay Formation soils and take into account current guidance such as that given by the Building Research Establishment (BRE)² or the National House Builders Council (NHBC)³.

Whilst this report has been prepared to provide advice to assist designers in undertaking detailed design, the report itself does not represent a detailed design statement. Detailed foundation design, including assessment of foundation type, minimum founding depths for spread foundations, and requirements for placement of void formers et cetera, should take into account the findings of this report and the presence of trees (previous, present and proposed). In connection with the latter, it is recommended that an arboricultural survey of the site that identifies the species and maturity of the existing or any recently felled trees in the areas of the proposed new buildings should be provided to engineers responsible for the foundation design. Information on proposed planting schemes that may affect foundation design should also be provided.

5.1.2 Spread Foundations

5.1.2.1 Foundation Depths for Spread Foundations

Foundations should be constructed to bear below soils that are likely to be affected by significant soil volume changes caused by seasonal changes in moisture content to avoid damage to foundations that could otherwise arise. In addition, all made ground and any soils disturbed by the construction or removal of any previously existing foundations or services should be regarded as being variable in nature and state of compaction and, as such, unsuitable as a founding medium for shallow footings. New footings should be constructed so as to bear below made ground/disturbed natural soils and soil subject to seasonal soil volume changes, whichever is the deeper, and onto undisturbed, competent, natural deposits.

Summary guidance on suitable minimum foundation depths to protect against the effects of seasonal soil volume changes is presented in the table below but designers undertaking detailed design of foundations should follow the detailed guidance such as that provided within Chapter 4.2 of the NHBC Standards.

² <u>www.bre.co.uk</u> : BRE Digests 240, 241 and 242, Low rise buildings on shrinkable clay soils, parts 1, 2 and 3; and BRE Digest 298 , The influence of trees on house foundations in clay soils and BRE Digest 412, Desiccation in clay soils.
³ <u>http://www.nhbc.co.uk/</u> : NHBC Standards, Chapter 4.2.

Battle Sports Pavilion, North Trade Road, Battle, East Sussex

Table 3. Indicative Minimum Foundation Depths

			Tree Distance to Tree Height Ratio (D/H)								
Tree Type	Water Demand of	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.80	1.00	1.25
	Tree	Minimum Foundation Depth Required in Medium Volume Change Potential Soils (m)									
	High		+		2.50	2.35	2.20	2.00	1.70	1.35	0.90*
Broad Leaf	Moderate	2.00	1.60	1.45	1.30	1.15	0.90*	0.90*	0.90*	0.90*	0.90*
	Low	1.50	1.15	1.05	0.90*	0.90*	0.90*	0.90*	0.90*	0.90*	0.90*
Coniferous	High	+	t	1.95	1.60	1.25	0.90*	0.90*	0.90*	0.90*	0.90*
Confierous	Moderate	2.00	1.10	0.90*	0.90*	0.90*	0.90*	0.90*	0.90*	0.90*	0.90*

* Minimum foundation depth required to protect against soil volume changes.

+ Foundations deeper than 2.50m require specialist design to protect against soil volume changes.

Where specialist foundation design is required (foundation depths exceeding the maximum permitted by the guidance) then piled foundations are likely to be needed, though commercial considerations may also dictate that piled foundations may be more economic even in comparison with conventional spread foundations constructed to depths less than the maximum permitted by guidance. Further works including deep boreholes would be required if structural engineers or quantity surveyors decide that piled foundations should be adopted.

Details on the water demand and mature height of common trees is given within Table 3 of Chapter 4.2 of the NHBC standards which should be referred to when assessing minimum foundation depths required for the proposed development. A summary is provided in the table below.

Tree Type	High Wate	er Demand	Moderate W	ater Demand	Low Wate	Low Water Demand		
Γ	Tree	Height (m)	Tree	Height (m)	Tree	Height (m)		
	Elm	18 – 24*	Acacia	18	Birch	14		
	Oak	16 – 24*	Alder	18	Elder	10		
	Poplar	15 – 28*	Apple	10	Fig	8		
	Willow	16 – 24*	Ash	11 – 23*	Hazel	8		
	Eucalyptus	18	Laurel	10	Holly	12		
	Hawthorn	10	Beech	20	Honey Locust	14		
			Blackthorn	8	Hornbeam	17		
Broad Leaf			Cherry	8 - 17*	Laburnum	12		
			Chestnut	20-24*	Magnolia	9		
			Lime	22	Mulberry	9		
			Maple	8 - 18*	Tulip Tree	20		
			Pear	12				
			Plane	26				
			Plum	10				
			Sycamore	22]			

Table 4. Indicative Summary of Water Demand and Mature Height of Common Trees

Tree Type	High Wate	er Demand	Moderate W	ater Demand	Low Water Demand
			Tree of Heaven	20	
			Walnut	18	
			Whitebeam	12	
	Cypress	18 – 20*	Cedar	20	
			Douglas Fir	20	
			Larch	20	
Coniformu			Monkey Puzzle	18	
Coniferous	erous		Pine	20	
			Spruce	18	
			Wellingtonia	30	
			Yew	12	

* Dependent on particular species.

5.1.2.2 Bearing Capacity for Spread Foundations

For design purposes, a net allowable bearing capacity of 150kN/m² may be assumed for spread (pad or strip) foundations up to 1.00m across bearing within the Wadhurst Clay Formation soils of at least stiff consistency. The quoted bearing capacity is expected to limit settlement to less than 25mm.

In view of the risk associated with the underlying geology at the site for potential mining hazards, it is recommended that as a minimum all stripped formation levels should be inspected by a suitably qualified person for evidence of historical backfilled shafts/chambers as a precaution, and the inspections should be appropriately documented.

5.2 Ground Floors

In view of the variable thickness of made ground and presence of soils of up to medium volume change potential underlying the site, it is recommended that ground floors should be suspended.

Current guidance⁴ suggests that ground bearing floor slabs may, however, be considered where:

- 1) All made ground is removed from beneath the building footprint;
- 2) The depth of foundations required to protect against seasonal soil volume changes close to trees is less than 1.5m; and
- 3) Further works demonstrate that close to the time of construction, no significant soil desiccation is present.

Where the above criteria cannot be met, ground floors should be suspended.

If ground bearing floors are adopted it is recommended that the potential for differential movement, both between the floor slab and walls and across the floor slab itself, should be anticipated. Such floors should be fully debonded from walls. Formations should be adequately proof rolled and any excessively soft materials excavated and replaced with a suitable, well graded granular fill. The depth of any fill should be limited to a maximum of 600mm unless placed to an engineering specification designed to limit internal settlement of the fill materials to a tolerance to be advised by the designer.

⁴ <u>http://www.nhbc.co.uk/</u> : NHBC Standards, Chapter 4.2.

Battle Sports Pavilion, North Trade Road, Battle, East Sussex

5.3 Groundwater

With the exception of borehole WS02 where groundwater was noted between a depth of 2.00m and 3.00m below ground level, the boreholes were recorded to remain dry during the short period of the intrusive works. It should be noted that water levels within the exploratory holes may not have equilibrated with the groundwater table at the time the readings were recorded and that groundwater levels should be expected to fluctuate seasonally.

Where excavations are proposed to extend below the groundwater table, groundwater control will be required to maintain adequately dry working conditions and excavation stability. If deep excavations are anticipated, it may be prudent to undertake trial pumping from proposed formation depths in advance of detailed design to fully establish requirements for groundwater control at this site.

For shallow excavations made above the water table, ingress of perched groundwater or surface water runoff into excavations during heavy precipitation events would be expected to be adequately managed by pumping from sumps.

5.4 Stability of Excavations

All made ground soils exposed in excavations should be assumed to be unstable, even in the short term. Whilst fine-grained natural soils may remain stable for a short period of time if not subjected to surcharge loads (such as may be imposed by existing foundations, traffic or storage of materials), the stability of these deposits if left unsupported should be assumed to have the potential to deteriorate. Where stable excavations are required, excavations should either be suitably supported or, where space permits, side slopes could be battered back to a safe angle of repose.

All excavations requiring human entry must be shored or battered as necessary to conform to current best practice, as accepted by the Health and Safety Executive (HSE)⁵. Current legislation requires that where personnel access is required into any excavation a competent person must inspect excavation supports or battering of slopes at the start of the working shift and at other specified times. No work should take place until the excavation is safe. Excavations should also be inspected after any event that may have affected their stability, such as a significant weather event, changes in surcharge loadings imposed by temporary storage of materials or changes in site traffic plans or alteration of support systems. Inspections should be formally recorded and any faults that are found should be corrected immediately.

Particular attention must be paid to ensuring the stability of nearby structures, services and neighbouring sites.

5.5 Aggressivity to Concrete

The aggressivity of the soils to concrete has been assessed in accordance with guidance published by the BRE⁶. The results of the chemical laboratory testing together with a summary of the characteristic values is included in Appendix D.

In consideration of the soils encountered beneath the site it is considered that 'natural ground conditions' should be assumed for the purpose of assessing the aggressivity of the chemical environment for concrete classification (ACEC class). Given the noted occurrence of groundwater, 'mobile groundwater' conditions should be assumed.

⁵ Relevant guidance is given on the HSE website, <u>www.hse.gov.uk</u>

⁶ BRE Special Digest 1:2005 Concrete in Aggressive Ground.

Battle Sports Pavilion, North Trade Road, Battle, East Sussex

The following table summarises the characteristic values indicated from the chemical analysis of the soils present beneath the site.

Table 5.Assessment of the Chemical Analysis of the Soil

	Characteristic Value	Design Sulfate Class	ACEC Classification
рН	3.5	-	-
Water Soluble Sulphate (mg/l as SO4) *	<100	DS-1	AC-2z

Notes: * Characteristic value rounded to nearest 100.

In accordance with the guidance, a DS-1 Design Sulfate Class and an AC-2z ACEC classification should be assumed as a minimum for the design of concrete in contact with the ground.

5.6 Stormwater Infiltration Systems

In-situ infiltration testing⁷ was undertaken in borehole WS04. From the test results, calculations were made to estimate the infiltration rate that could be expected for soakaways constructed to discharge into the underlying soils within the test zone.

The infiltration rates derived from the tests are summarised in the following table.

Table 6.Calculated Infiltration Rates

Exploratory Hole	Top of Response Zone (m bgl)	Bottom of Response Zone (m bgl)	Stratum	Infiltration Rate (f) (m/sec)	Driving Head of Water (m)
WS04			Wadhurst Clay Formation	3.78 x 10 ⁻⁶	2.1
W304	1.90	2.90	Wadhurst Clay Pormation	1.17 x 10 ⁻⁶	1.7

The value 'f' is equivalent to the soil infiltration coefficient 'q' quoted in the Construction Industry Research and Information Association (CIRIA) Report 156.

The results from the infiltration tests should be provided to engineers responsible for the design of the drainage system.

To comply with building regulations⁸, point discharging infiltration systems (conventional ring or trench soakaways) are required to be constructed a minimum of 5.0m away from proposed or existing buildings.

⁸ The Building Regulations 2010; Part H; Drainage and Waste Disposal

⁷ Conducted in accordance with The Soakaway Design Guide, published by Kent County Council, July 2000.

Battle Sports Pavilion, North Trade Road, Battle, East Sussex

Project Ref: P17031 Report Ref: R16574 Issue No. 1

FIGURES

Figure 1 Site Location Plan

Figure 2 Site Plan

Head C	Office
--------	--------

Unit 3 The Old Grain Store Ditchling Common Business Park Ditchling East Sussex BN6 8SG contact@ashdownsi.co.uk

Site

Battle Sports Pavilion North Trade Road Battle East Sussex

Project Ref

P17031

Figure No

1 Drawing Title

Site Location Plan

Scale

Not To Scale

Head Office

Unit 3 The Old Grain Store Ditchling Common Business Park Ditchling East Sussex BN6 8SG contact@ashdownsi.co.uk

Site

Battle Sports Pavilion North Trade Road Battle East Sussex

Project Ref

P17031

Figure No

2

Drawing Title

Site Plan

Scale

Not To Scale

Project Ref: P17031 Report Ref: R16574 Issue No. 1

APPENDIX A

Proposed Development Layout

GENERAL NOTES

ALL DIMENSIONS TO BE CHECKED ON SITE PRIOR TO COMMENCEMENT OF WORKS - PLEASE REPORT ERRORS OR OMISSIONS TO THE ARCHITECT.

THIS DRAWING HAS BEEN PRODUCED FOR THE PURPOSES OF PLANNING AND BUILDING REGULATIONS APPROVALS ONLY AND IS NOT INTENDED TO BE A FULL WORKING DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ANY WRITTEN SPECIFICATIONS, SCHEDULES OF WORK AND STRUCTURAL ENGINEER'S DETAILS AS APPROPRIATE.

THIS DRAWING IS THE COPYRIGHT OF PUMP HOUSE DESIGNS AND ANY FURTHER REPRODUCTION OF THE PLAN IS NOT PERMITTED WITHOUT OBTAINING PRIOR CONSENT.

© CROWN COPYRIGHT - LICENCE NO. 100032237

250m

PumpHouse DESIGNS

Architectural & Interior Design Consultants

Pump House Yard The Green Sedlescombe East Sussex TN33 0QA info@pumphousedesigns.co.uk www.pumphousedesigns.co.uk

T: 01424 871120

	_			
1	F			
	D			
	С			
	B A			
	NO BA	TTLE RECREATION GRO RTH TRADE ROAD TTLE Battle Town Council	NUC	1D
	LOCA	TION BLOCK PLAN		
		NN BY - JRPL - APRIL 2018		

1:500 & 1:2500 @ A3

DRAWING No. 5744 / LBP

SCALE -

Pump House Yard The Green Sedlescombe East Sussex TN33 0QA Tr 01424 & info@pumphousedesigns.co.uk	ESIG Inter Sulta	iNS ior nts
F E BUILDING REGULATION DETAILS ADDED D CLIENT AMENDMENTS C CLIENT AMENDMENTS B CLIENT AMENDMENTS A CLIENT AMENDMENTS	AMG SMG JRPL JRPL JRPL	MAR 20 NOV 19 OCT 19 OCT 19 SEP 19
BATTLE RECREATION GRO NORTH TRADE ROAD BATTLE for Battle Town Council		
DRAWN BY - JRPL		
DATE - SEPTEMBER 2019 SCALE - 1:50 @ A1		
DRAWING No. 5744 / 2019 / 1 / E		

ELECTRICALLY OPERATED SECURITY SHUTTER

 (\mathbf{S})

KEY

© CROWN COPYRIGHT - LICENCE NO. 100032237

THIS DRAWING IS THE COPYRIGHT OF PUMP HOUSE DESIGNS AND ANY FURTHER REPRODUCTION OF THE PLAN IS NOT PERMITTED WITHOUT OBTAINING PRIOR CONSENT.

THIS DRAWING HAS BEEN PRODUCED FOR THE PURPOSES OF PLANNING AND BUILDING REGULATIONS APPROVALS ONLY AND IS NOT INTENDED TO BE A FULL WORKING DRAWING. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ANY WRITTEN SPECIFICATIONS, SCHEDULES OF WORK AND STRUCTURAL ENGINEER'S DETAILS AS APPROPRIATE.

ALL DIMENSIONS TO BE CHECKED ON SITE PRIOR TO COMMENCEMENT OF WORKS - PLEASE REPORT ERRORS OR OMISSIONS TO THE ARCHITECT.

REAR ELEVATION

SIDE ELEVATION

- MATCH GUIDE BUILDING

GENERAL NOTES

ALL DIMENSIONS TO BE CHECKED ON SITE PRIOR TO COMMENCEMENT OF WORKS - PLEASE REPORT ERRORS OR OMISSIONS TO THE ARCHITECT.

THIS DRAWING HAS BEEN PRODUCED FOR THE PURPOSES OF PLANNING AND BUILDING REGULATIONS APPROVALS ONLY AND IS NOT INTENDED TO BE A FULL WORKING DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ANY WRITTEN SPECIFICATIONS, SCHEDULES OF WORK AND STRUCTURAL ENGINEER'S DETAILS AS APPROPRIATE.

THIS DRAWING IS THE COPYRIGHT OF PUMP HOUSE DESIGNS AND ANY FURTHER REPRODUCTION OF THE PLAN IS NOT PERMITTED WITHOUT OBTAINING PRIOR CONSENT.

© CROWN COPYRIGHT - LICENCE NO. 100032237

30 NO. JA SOLAR 290 WATT SOLAR PANELS

SECTION D-D

GENERAL NOTES

ALL DIMENSIONS TO BE CHECKED ON SITE PRIOR TO COMMENCEMENT OF WORKS - PLEASE REPORT ERRORS OR OMISSIONS TO THE ARCHITECT. THIS DRAWING HAS BEEN PRODUCED FOR THE PURPOSES OF PLANNING AND BUILDING REGULATIONS APPROVALS ONLY AND IS NOT INTENDED TO BE A FULL WORKING DRAWING.

THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ANY WRITTEN SPECIFICATIONS, SCHEDULES OF WORK AND STRUCTURAL ENGINEER'S DETAILS AS APPROPRIATE.

THIS DRAWING IS THE COPYRIGHT OF PUMP HOUSE DESIGNS AND ANY FURTHER REPRODUCTION OF THE PLAN IS NOT PERMITTED WITHOUT OBTAINING PRIOR CONSENT.

© CROWN COPYRIGHT - LICENCE NO. 100032237

APPENDIX B

Explanatory Notes Exploratory Hole Records DPSH-B Dynamic Probe Records Project Ref: P17031 Report Ref: R16574 Issue No. 1

EXPLANATORY NOTES

Symbols and abbreviations on Exploratory Hole Records

Samples

- U 'Undisturbed' Sample: 100mm diameter by 450mm long. The number of blows to drive in the sampling tube is shown after the test index letter in the SPT column.
- Pi Piston Sample: 'Undisturbed' sample 100mm diameter by 600mm long.
- D Disturbed Sample
- R Root Sample
- B Bulk Disturbed Sample
- W Water Sample
- ES Environmental Suite (on older records may be referenced J T)

In Situ Testing

- S Standard penetration test (SPT): Using the split spoon sampler.
- C Standard Penetration Test (SPT): Using a solid cone instead of the sampler conducted usually in coarse grained soils or weak rocks.
- V Shear Vane Test: Undrained shear strength (cohesion) (kN/m²) shown within the Vane/Pen Test and N Value column.
- H Hand penetrometer Test: Undrained shear strength (cohesion) (kN/m²) shown within the Vane/Pen Test and N Value column.
- P Perth Penetrometer Test: Number of blows for 300mm penetration shown under Vane/Pen Test and N Value column.

Excavation Method

- CP Cable Percussion Borehole
- RC Rotary Cored Borehole
- WLS Dynamic Sampler Borehole using windowless sampler tubes
- WS Dynamic Sampler Borehole using window sampler tubes
- TP Trial Pit excavated using mechanic excavator
- HDP Trial Pit excavated using hand tools

Soil Description

Description and classification of soils has been carried out using as a general basis the British Standard Geotechnical investigation and testing – Identification and classification of soil, Part 1 Identification and description (BS EN ISO 14688-1) and Part 2 Principles of classification (BS EN 14688-2) as well as the BS5930 code of Practice for Ground Investigations.

Rock Description

Description and classification of rocks has been carried out using as a general basis the British Standard Geotechnical investigation and testing – Identification and classification of rock, Part 1 Identification and classification (BS EN ISO 14689-1) as well as the BS5930 code of Practice for Ground Investigations. TCR – Total Core Recovery, SCR – Solid Core Recovery, RQD – Rock Quality Designation, NI – Non Intact, If – indicative fracture spacing (min/ave/max), FI – Fracture Index.

Chalk Description

Chalk description is based on BS EN ISO 14688, BS EN ISO 14689 and BS5930. The classification of chalk generally follows the guidance offered by the Construction Industry Research and Information Association (CIRIA) C574, 'Engineering in Chalk'. This is based on assessment of chalk density, discontinuity and aperture spacing, and the proportion of intact chalk to silt of chalk.

In Situ Strength Testing

Standard penetration testing (SPT) carried out in accordance with BS EN ISO 22476-3:2005.

Continuous dynamic probe testing conducted using a super heavy DPSH-B (As defined by BS EN ISO 22476-2:2005) probing geometry. The DPSH-B configuration is similar to that of the standard penetration test (SPT); the main differences being that the tip comprises a 90° cone, the driving rods are lighter than those used for SPT testing and the blow counts are recorded over 100mm increments rather than 300mm, as is the case for the SPT.

Perth penetrometer tests carried out in accordance with Australian Standard AS 1289:6.3.3-1997, Method of Testing Soils for Engineering Purposes; no equivalent European or British Standard having been published to date.

Undrained shear strength determinations made in-situ using a Geonor hand shear vane or a hand penetrometer.

Testing to determine the in-situ California Bearing Ratio (CBR) of soils conducted at shallow depths using a hand-held Transport Research Laboratory (TRL) cone penetrometer.

SITE INVES	TIGATION	WN		umber: F	P1703	81				
E-mail:	contact@asho : www.ashdov	lownsi.co.uk		t Date: (25			
web	Tel: 01273 48	3119		d Date: (Borehole Number: WS01 Sheet
andpipe	Sample/ Test Type	Samples and In Depth From (m)	n Situ Testing Depth To (m)	Test Result		namic I 10 15 1 1	Probe 20 25	30 Legend	Depth	Stratum Description
	Type D H V D H V D H V V	0.80 0.90 1.00 1.20 1.50 1.50 2.20 2.20 2.20 2.20 2.20 2.20 3.00		100 >130 >225 >225 >130 >225 >130 >225 >130					0.00 0.15 0.80 - 2.30 3.00 -	Topsoil over, MADE GROUND: Brown slightly gravelly slightly sandy silty clay. Gr. subangular to subrounded fine to medium ironstone, mudstone, and ash-like material. Stiff orange brown and grey brown mottled slightly gravelly silty (Gravel is subangular to subrounded fine to medium mudstone (Wadhurst Clay Formation) becoming very stiff below 1.20m depth. Very stiff orange brown and grey brown mottled slightly gravelly (Gravel is subangular to subrounded fine to medium mudstone (Wadhurst Clay Formation) becoming very stiff below 1.20m depth. Very stiff orange brown and grey brown mottled slightly gravelly (Gravel is subangular to subrounded fine to medium mudstone a ironstone. (Wadhurst Clay Formation) End of borehole at 3.00m
Rema		ole dry on co	mpletion.							Excavation Method: W
Stal	bility: Boreł	ole stable on	completion	ι.						Borehole Diameter: Vari

SITE INVEST	IGATION	WN		umber: F	1703	1							
E-mail: co Web: v	ontact@ashd www.ashdow	lownsi.co.uk /nsi.co.uk	Star	t Date: ()3/02	/2025				Borehole Number:	14/502		
Te	el: 01273 483	3119		d Date: (Borenole Number:	WS02	S	Sheet 1 o
andpipe	Sample/ Test Type	Samples and In Depth From (m)	n Situ Testing Depth To (m)	Test Result		namic Prob 0 15 20		egend	Depth		Stratum Description		
	D	0.50							0.00 0.10	MADE GROUND: Brown slig subangular to subrounded			
	Н	0.90		100			×-		0.90	Stiff orange brown and gre			
	н	1.20		175						Gravel is subangular to ironstone. becoming very stiff below 1.	(Wadhurst Clay Format		one and
	D H	1.50 1.50		>225									
	V	2.00		>130					2.00 -	Very stiff grey brown slight subrounded fine to coarse			
	D H	2.50 2.50		>225									
	V	3.00		>130				×	3.00 -	Er	nd of borehole at 3.00m		
Rema		ndwater noted	d between 2	2.00m and 3	l .00m d	epth.				1	Excavation N	/lethod:	WLS
		ole stable on	completion								Borehole Di	ameter:	Vario
No	otes: n/a												

Name were were were were were were were we	
Remarks During the last of	Chart
Mathematical biology Mathemati	Sheet
D 0.00 Topsol. D 0.90 75 H 0.00 75 V 1.00 75 V 1.00 75 V 1.00 75 V 2.00 75 V 3.00 75	
D 0.00 75 H 1.00 75 V 2.00 75 H 1.40 210 H 2.30 H 2.30 V 2.00 Stiff grave is subangular to subrounded fine to coarse indication and the subrounded fine to coarse indication and the subrounded fine to coarse mudstore indication and the subrounded fine to coarse mudstore. W 2.00 V 2.00 V 2.00 V 2.00 V 2.00 V 3.00 End of borehole at 3.00m	
Normalized in the second se	
D 0.90 H 0.90 H 75 100 210 H 75 120 100 100 D 75 120 100 F 100 F 75 F 100 F 100 F <t< td=""><td>mudsto</td></t<>	mudsto
b 0.00 75 100 210 100	
D 0.00 H 0.00 V 75 100 V 75 120 V 75 120 V 75 120 V 75 120 V 75 V 76 V 76 V 76 V 76 V 76 V	
H 0.000 V 75 100 210 75 120 210 100 V 75 120 V 100 V 100 V <td></td>	
H 0.90 -130 -130 -130 -120 H 1.40 210 -120 -120 -120 -120 V 2.00 >130 -120 -120 -120 -120 V 2.00 >130 -120 -120 -120 -120 V 2.00 >130 -120 -120 -120 -120 H 2.80 75 -120 -120 -120 -120 H 2.80 75 -120 -120 -120 -120 V 3.00 -130 -120 -120 -120 -120 H 2.80 75 -120 -120 -120 -120 V 3.00 -130 -120 -120 -120 -120 -120 V 3.00 -130 -120 -120 -120 -120 -120 Remarks -120 -120 -120 -120 -120 -120 -120 Stability: Borchole stable on completion. -120 -120 -120 <td>lstone ar</td>	lstone ar
H 1.10 210 Image: Constraint of the constrai	
D 1.50 -30 End of borehole at 3.00m Note -300 -310 -30 -30 -30 End of borehole at 3.00m End of borehole at 3.00m Remarks	
D 1.50 -30 End of borehole at 3.00m Note -300 -310 -30 -30 -30 End of borehole at 3.00m End of borehole at 3.00m Remarks	
V 2.00 >130 Image: Constrained on the state on completion. H 2.80 75 Image: Constrained on the state on completion. H 2.80 75 Image: Constrained on the state on completion. Remarks Excavation Method: Excavation Method: Stability: Brenchet state on completion. Excavation Method:	
p 2.30 H 2.80 D 2.90 V 3.00 Stiff grey brown slightly gravelly sitty CLAK. Gravel is suban subrounded fine to coarse mudstone. (Wadhurst Clay For subrounded fine to coarse mudstone.) Remarks Excavation Mathod Stability: Borehole stable on completion. Excavation Method: Stability: Borehole stable on completion. Borehole Diameter:	
p 2.30 H 2.80 D 2.90 V 3.00 Stiff grey brown slightly gravelly sitty CLAK. Gravel is suban subrounded fine to coarse mudstone. (Wadhurst Clay For subrounded fine to coarse mudstone.) Remarks Excavation Mathod Stability: Borehole stable on completion. Excavation Method: Stability: Borehole stable on completion. Borehole Diameter:	
p 2.30 H 2.80 D 2.90 V 3.00 Stiff grey brown slightly gravelly sitty CLAK. Gravel is suban subrounded fine to coarse mudstone. (Wadhurst Clay For subrounded fine to coarse mudstone.) Remarks Excavation Mathod Stability: Borehole stable on completion. Excavation Method: Stability: Borehole stable on completion. Borehole Diameter:	
p 2.30 H 2.80 D 2.90 V 3.00 Stiff grey brown slightly gravelly sitty CLAK. Gravel is suban subrounded fine to coarse mudstone. (Wadhurst Clay For subrounded fine to coarse mudstone.) Remarks Excavation Mathod Stability: Borehole stable on completion. Excavation Method: Stability: Borehole stable on completion. Borehole Diameter:	
H 2.80 75 Image: Stability: Borehole stable on completion. H 2.80 75 Image: Stability: Borehole stable on completion. Stability: Borehole stable on completion. Excavation Method:	
H 2.80 75 Image: Stability: Borehole stable on completion. H 2.80 75 Image: Stability: Borehole stable on completion. Stability: Borehole stable on completion. Excavation Method:	
H 2.80 75 Still grey frown signly gravelis suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Subrounded fine to coarse mudstone.) temarks Excavation Method: stability: Borehole stable on completion. Excavation Method: Stability: Borehole stable on completion. Borehole Diameter:	
H 2.80 75 Still grey frown signly gravelis suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Subrounded fine to coarse mudstone.) temarks Excavation Method: stability: Borehole stable on completion. Excavation Method: Stability: Borehole stable on completion. Borehole Diameter:	
H 2.80 75 Still grey frown signly gravelis suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Suban subrounded fine to coarse mudstone. (Wadhurst Clay For Subrounded fine to coarse mudstone.) temarks Excavation Method: stability: Borehole stable on completion. Excavation Method: Stability: Borehole stable on completion. Borehole Diameter:	
D 2.90 10	
H 2.90 100 Image: Stability: Borehole stable on completion. Stability: Borehole stable on completion. Excavation Method:	ormatio
Remarks Excavation Method: Stability: Borehole stable on completion. Borehole Diameter:	
Stability: Borehole stable on completion. Excavation Method: Borehole Stable on completion. Borehole Diameter:	
Stability: Borehole dry on completion. Excavation Method: Borehole stable on completion. Borehole Diameter:	
Stability: Borehole stable on completion. Excavation Method: Borehole Diameter: Borehole Diameter:	
Stability: Borehole dry on completion. Excavation Method: Borehole stable on completion. Borehole Diameter:	
Stability: Borehole dry on completion. Excavation Method: Borehole stable on completion. Borehole Diameter:	
Stability: Borehole dry on completion. Excavation Method: Borehole stable on completion. Borehole Diameter:	
Stability: Borehole dry on completion. Excavation Method: Borehole stable on completion. Borehole Diameter:	
Stability: Borehole stable on completion. Excavation Method: Borehole Stable on completion. Borehole Diameter:	
Stability: Borehole stable on completion. Excavation Method: Borehole Diameter: Borehole Diameter:	
Stability: Borehole stable on completion. Excavation Method: Borehole Diameter: Borehole Diameter:	
stability: Borehole stable on completion. Excavation Method: Borehole Diameter: Borehole Diameter:	
stability: Borehole stable on completion. Excavation Method: Borehole Diameter: Borehole Diameter:	
windwater: Borehole dry on completion. Excavation Method: Stability: Borehole stable on completion. Borehole Diameter:	
windwater: Borehole dry on completion. Excavation Method: Stability: Borehole stable on completion. Borehole Diameter:	
Stability: Borehole stable on completion. Excavation Method: Borehole Diameter: Borehole Diameter:	
Stability: Borehole stable on completion. Borehole Diameter:	
Borehole Diameter:	l: W
Borehole Diameter:	
	r: Vari
	. vuit
Made By:	/: TN

Joint and the Burger	SITE INVES	IIGATION			umber:									
Jumph and is the local barry with the second seco	Web	: www.ashdov	vnsi.co.uk								Borehole Number:	WS04	c	heet 1 of
The second of			Samples and I		a Date:									incer I of
D 0.50 V 1.00 L 1.00 V 1.00 L 1.00 Stiff orange brown and grey brown mottled slightly gravely sightly and ysity clara Gravel is subangular to subrounded fine to coarse mudstone. Clay Formation) H 1.70 H 1.70 D 2.30 D 2.80 V 2.90	andpipe			Depth To (m)	Test Result	05	10 15 2 I I	20 25 3	30 Legend	Depth	S	Stratum Description		
D 0.50 V 1.00 D 1.80 V 2.00 >130 1.80 V 2.30 D 2.30 V 2.90 >130 1.00 D 2.80 V 2.90 >130 1.00 D 1.00 D 2.80 V 2.90 >130 1.00 D 1.00 D 1.00 D 1.00 D 1.00										0.00	MADE GROUND: Brown slight	ly gravelly slightly san		
D 1.10 Image brown and grey brown mottled sightly graveins, subangular to subrounded fine to coarse mudstone. Clay Formation) H 1.70 100 Image brown and grey brown mottled slightly graveins, subangular to subrounded fine to coarse mudstone. Clay Formation) V 2.00 >130 Image brown and grey brown mottled slightly graveins, subangular to subrounded fine to coarse mudstone. Clay Formation) D 2.30 Image brown and grey brown mottled slightly graveins, subangular to subrounded fine to coarse mudstone. Clay Formation) D 2.30 Image brown and grey brown mottled slightly graveins, subangular to subrounded fine to coarse mudstone. Clay Formation) D 2.80 >130 Image brown and grey brown mottled slightly graveins, subangular to subrounded fine to coarse mudstone. Clay Formation) D 2.80 >130 Image brown and grey brown mottled slightly graveins, subangular to subrounded fine to coarse mudstone. Clay Formation) End of borehole at 2.90m Image brown and grey brown and grey brown mottled slightly graveins, subangular to subrounded fine to coarse mudstone. Clay Formation) Image brown and grey brown mottled slightly graveins, subangular to subrounded fine to coarse mudstone. Clay Formation) Image brown and grey brown mottled slightly graveins, subangular to subrounded fine to coarse mudstone. Clay Formation) Image brown and grey brown		D	0.50							0.40	slightly sandy silty clay. Gra	avel is subangular to s	ubrounde	
0 1.10 Image: Constraint of the constrain			1		120					1.00 -	Stiff orange brown and grey	brown mottled slightl	y gravelly	silty CLA
D 1.80 V 2.00 D 2.30 D 2.30 V 2.90 Sector 2.90 End of borehole at 2.90m		D	1.10						××		Gravel is subangular to subrou	unded fine to coarse r		
v 2.00 >130					100	$ \langle \rangle$			××	1.80	-			
D 2.80 V 2.90 >130 2.90 End of borehole at 2.90m					>130					- 1.80	Gravel is subangular to subrou	unded fine to coarse r		
V 2.90 >130 End of borehole at 2.90m End of borehole at 2.90m End of borehole at 2.90m End of borehole at 2.90m		D	2.30								- - - - -			
V 2.90 >130 End of borehole at 2.90m End of borehole at 2.90m End of borehole at 2.90m End of borehole at 2.90m														
					>130		$\left \right $			2.90	- - - - -	of borehole at 2.00m		
									-	-				
									-	-				
Remarks roundwater: Borehole dry on completion. Excavation Method:	-		nole dry on co	ompletion.								Excavation N	lethod:	WLS
Stability: Borehole cased to 1.90m depth. Borehole stable on completion. Note: No further progress below 3.90m depth, too bard/depse		Boreł	nole stable or	o completion	٦.	too bar	d/dor	60				Borehole Dia	meter:	Variou
Notes: No further progress below 2.90m depth - too hard/ dense. Made By:	N	iotes: No fu	nther progres	s delow 2.9	um aepth -	ιοο har	a∕ den	se.						TM

DPSH-B DYNAMIC PROBE RECORD

SITE INVESTIGA

Site:

Battle Sports Pavilion, North Trade Road, Battle, East Sussex

Project Ref: P17031

30.00

25.00

63.5 kg 0.76 m 0.0019 m² 473 J 0.75

1 kg

8.79 kg/m

Anvil Mass

Rod Mass

Average Unit Point Resistance (MPa) Dynamic Point No Dynamic Point No <thdynamic Point No Dynamic Point No</thdynamic 	
Image Ioumn) per Blow (MPa) (MPa) Resistance (MPa) 0.00 5.00 10.00 0.10 1 0.10 1.87 1.82 0.00	oint Resistance (M
0.10 1 0.10 1.87 1.82 0.20 1 0.10 1.87 1.79 0.30 1 0.10 1.87 1.74 0.50 1 0.10 1.87 1.74 0.50 1 0.10 1.87 1.72 0.60 1 0.10 1.87 1.68 0.80 1 0.10 1.87 1.64 1.00 2 0.05 3.74 3.24 1.10 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.64 1.80 3 0.03 5.61 4.64 1.80 3 0.03 5.61 4.64 1.80 3 0.03 5.61 4.64 1.80 3 0.03 5.61 4.16 2.80 5 0.02 9.34 7.15 2.60 3 0.03 </th <th>15.00 20.0</th>	15.00 20.0
0.20 1 0.10 1.87 1.79 0.30 1 0.10 1.87 1.77 0.40 1 0.10 1.87 1.72 0.60 1 0.10 1.87 1.72 0.60 1 0.10 1.87 1.72 0.60 1 0.10 1.87 1.66 0.70 1 0.10 1.87 1.66 0.80 1 0.10 1.87 1.66 0.80 1 0.10 1.87 1.64 1.00 2 0.05 3.74 3.24 1.10 3 0.03 5.61 4.69 1.40 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.63 1.70 4 0.03 5.61 4.43 1.80 3 0.03 5.61 4.12 2.10 5 0.02 9.34 7.15 2.20 7 0.01 13.08 9.91 3.00 5 0.22<	
0.30 1 0.10 1.87 1.77 0.40 1 0.10 1.87 1.74 0.50 1 0.10 1.87 1.72 0.60 1 0.10 1.87 1.72 0.60 1 0.10 1.87 1.66 0.70 1 0.10 1.87 1.64 0.70 1 0.10 1.87 1.64 1.00 2 0.05 3.74 3.24 1.00 3 0.03 5.61 4.69 1.30 3 0.03 5.61 4.69 1.40 3 0.03 5.61 4.69 1.60 2 0.05 3.74 3.02 1.70 4 0.03 7.48 5.98 1.80 3 0.03 5.61 4.10 2.00 7 0.01 13.08 9.01 2.30 5 0.02 9.34 6.66 2.70 5 0.02 9.34 6.66 2.90 10 0.01	
0.40 1 0.10 1.87 1.74 0.50 1 0.10 1.87 1.72 0.60 1 0.10 1.87 1.70 0.70 1 0.10 1.87 1.66 0.80 1 0.10 1.87 1.68 0.80 1 0.10 1.87 1.66 0.90 1 0.10 1.87 1.64 1.00 2 0.05 3.74 3.24 1.10 3 0.03 5.61 4.80 1.20 3 0.03 5.61 4.64 1.30 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.64 1.70 4 0.03 7.48 5.96 1.80 3 0.03 5.61 4.43 1.90 5 0.02 9.34 7.10 2.00 7 0.01 13.08 9.91 2.30 5 0.02 9.34 6.66 2.90 10 0.01	
0.50 1 0.10 1.87 1.72 0.60 1 0.10 1.87 1.78 0.70 1 0.10 1.87 1.68 0.80 1 0.10 1.87 1.64 0.90 1 0.10 1.87 1.64 1.00 2 0.05 3.74 3.24 1.10 3 0.03 5.61 4.64 1.30 3 0.03 5.61 4.64 1.30 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.64 1.60 2 0.05 3.74 3.02 1.70 4 0.03 7.48 5.98 1.80 3 0.03 5.61 4.16 2.00 7 0.01 13.08 10.12 2.60 3 0.03 5.61 4.08 2.70 5 0.02 9.34 6.66 2.90 10 0.0	
0.60 1 0.10 1.87 1.70 0.70 1 0.10 1.87 1.64 0.80 1 0.10 1.87 1.64 1.00 2 0.05 3.74 3.24 1.00 2 0.05 3.74 3.24 1.00 3 0.03 5.61 4.69 1.40 3 0.03 5.61 4.69 1.40 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.64 1.70 4 0.03 7.48 5.98 1.80 3 0.03 5.61 4.13 2.00 7 0.01 13.08 9.91 2.30 5 0.02 9.34 7.15 2.00 7 0.01 18.69 13.19 3.00 7 0.01 18.69 13.19 3.00 7 0.01 18.69 3.40 3.00 7.48 <	
0.80 1 0.10 1.87 1.64 0.90 1 0.10 1.87 1.64 1.00 2 0.05 3.74 3.24 1.10 3 0.03 5.61 4.80 1.20 3 0.03 5.61 4.69 1.40 3 0.03 5.61 4.68 1.50 3 0.03 5.61 4.58 1.60 2 0.05 3.74 3.02 1.70 4 0.03 7.48 5.98 1.80 3 0.03 5.61 4.43 1.90 5 0.02 9.34 7.15 2.00 7 0.01 13.08 9.91 2.30 5 0.02 9.34 7.15 2.20 7 0.01 13.08 9.91 2.30 5 0.02 9.34 6.73 2.80 5 0.02 9.34 6.73 3.00 9 0.01 16.82 11.76 3.00 7 0.	
0.90 1 0.10 1.87 1.64 1.00 2 0.05 3.74 3.24 1.10 3 0.03 5.61 4.80 1.20 3 0.03 5.61 4.74 1.30 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.64 1.60 2 0.05 3.74 3.02 1.70 4 0.03 7.48 5.98 1.80 3 0.03 5.61 4.43 1.90 5 0.02 9.34 7.31 2.00 7 0.01 13.08 10.12 2.10 5 0.02 9.34 6.73 2.20 7 0.01 18.69 13.19 3.00 5 0.02 9.34 6.66 2.70 5 0.02 9.34 6.61 2.80 5 0.02 9.34 6.41 3.30 4 0.	
1.00 2 0.05 3.74 3.24 1.10 3 0.03 5.61 4.80 1.20 3 0.03 5.61 4.64 1.30 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.58 1.60 2 0.05 3.74 3.02 1.70 4 0.03 7.48 5.98 1.80 3 0.03 5.61 4.43 1.80 3 0.03 5.61 4.43 1.80 3 0.02 9.34 7.31 2.00 7 0.01 13.08 10.12 2.10 5 0.02 9.34 7.15 2.20 7 0.01 13.08 9.91 2.30 5 0.02 9.34 6.73 2.80 5 0.02 9.34 6.64 2.90 10 0.01 16.82 11.76 3.00 9	
1.10 3 0.03 5.61 4.80 1.20 3 0.03 5.61 4.69 1.40 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.64 1.70 4 0.03 7.48 5.98 1.80 3 0.03 5.61 4.43 1.90 5 0.02 9.34 7.15 2.20 7 0.01 13.08 9.91 2.00 2.30 5 0.02 9.34 7.73 2.20 7 0.01 13.08 9.91 2.20 2.40 3 0.03 5.61 4.16 2.50 3 0.03 5.61 4.08 2.70 5 0.02 9.34 6.66 2.90 10 0.01 18.69 13.19 3.00 9 0.01 16.82 11.76	
1.20 3 0.03 5.61 4.74 1.30 3 0.03 5.61 4.69 1.40 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.64 1.60 2 0.05 3.74 3.02 1.70 4 0.03 7.48 5.98 1.80 3 0.03 5.61 4.43 1.70 5 0.02 9.34 7.31 2.00 7 0.01 13.08 10.12 2.10 5 0.02 9.34 7.15 2.20 7 0.01 13.08 9.91 2.30 5 0.02 9.34 6.73 2.80 5 0.02 9.34 6.41 3.30 4 0.03 7.48 5.08 3.40 4 0.03 7.48 5.03 3.60 4 0.03 7.48 4.94 3.70 5 0.0	
1.30 3 0.03 5.61 4.69 1.40 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.58 1.60 2 0.05 3.74 3.02 1.70 4 0.03 7.48 5.98 1.80 3 0.02 9.34 7.31 2.00 7 0.01 13.08 9.91 2.10 5 0.02 9.34 7.15 2.20 7 0.01 13.08 9.91 2.30 5 0.02 9.34 7.30 2.40 3 0.03 5.61 4.16 2.50 3 0.03 5.61 4.12 2.60 3 0.03 5.61 4.12 2.60 3 0.02 9.34 6.66 2.90 10 0.01 16.82 11.76 3.10 6 0.02 11.21 7.76 3.60 4 0.03 7.48 5.03 3.70 5	
1.40 3 0.03 5.61 4.64 1.50 3 0.03 5.61 4.58 1.60 2 0.05 3.74 3.02 1.70 4 0.03 7.48 5.98 1.80 3 0.03 5.61 4.43 1.90 5 0.02 9.34 7.31 2.00 7 0.01 13.08 10.12 2.10 5 0.02 9.34 7.15 2.20 7 0.01 13.08 9.91 2.30 5 0.02 9.34 7.00 2.40 3 0.03 5.61 4.16 2.50 3 0.03 5.61 4.12 2.60 3 0.02 9.34 6.63 2.70 5 0.02 9.34 6.64 3.70 5 0.02 9.34 6.41 3.80 4 0.03 7.48 5.08 3.60 4 0.03 7.48 4.98 3.70 5 0.0	
1.50 3 0.03 5.61 4.58 1.60 2 0.05 3.74 3.02 1.70 4 0.03 7.48 5.98 1.80 3 0.03 5.61 4.43 1.90 5 0.02 9.34 7.31 2.00 7 0.01 13.08 10.12 2.10 5 0.02 9.34 7.15 2.20 7 0.01 13.08 9.91 2.30 5 0.02 9.34 7.00 2.40 3 0.03 5.61 4.16 2.50 3 0.03 5.61 4.08 2.70 5 0.02 9.34 6.73 2.80 5 0.02 11.21 7.76 3.10 6 0.02 11.21 7.76 3.30 4 0.03 7.48 5.03 3.40 4 0.03 7.48 4.98 3.40 4 0.02 <t< td=""><td></td></t<>	
1.60 2 0.05 3.74 3.02 1.70 4 0.03 7.48 5.98 1.80 3 0.03 5.61 4.43 1.90 5 0.02 9.34 7.31 2.00 7 0.01 13.08 10.12 2.10 5 0.02 9.34 7.15 2.20 7 0.01 13.08 9.91 2.30 5 0.02 9.34 7.15 2.40 3 0.03 5.61 4.16 2.50 3 0.03 5.61 4.12 2.60 3 0.03 5.61 4.12 2.60 3 0.03 5.61 4.08 2.70 5 0.02 9.34 6.66 2.90 10 0.01 18.69 13.19 3.00 9 0.01 16.82 11.76 3.30 4 0.03 7.48 5.08 3.40 4 0.03 7.48 4.98 3.60 4 <t< td=""><td></td></t<>	
1.70 4 0.03 7.48 5.98 1.80 3 0.03 5.61 4.43 1.90 5 0.02 9.34 7.31 2.00 7 0.01 13.08 10.12 2.10 5 0.02 9.34 7.15 2.20 7 0.01 13.08 9.91 2.30 5 0.02 9.34 7.00 2.40 3 0.03 5.61 4.16 2.50 3 0.03 5.61 4.12 2.60 3 0.03 5.61 4.08 2.70 5 0.02 9.34 6.73 2.80 5 0.02 9.34 6.66 2.90 10 0.01 18.69 13.19 3.00 9 0.01 16.82 11.76 3.30 4 0.03 7.48 5.08 3.40 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.94 3.70 5 <t< td=""><td></td></t<>	
1.80 3 0.03 5.61 4.43 1.90 5 0.02 9.34 7.31 2.00 7 0.01 13.08 10.12 2.10 5 0.02 9.34 7.15 2.20 7 0.01 13.08 9.91 2.30 5 0.02 9.34 7.00 2.40 3 0.03 5.61 4.16 2.50 3 0.03 5.61 4.16 2.60 3 0.03 5.61 4.08 2.70 5 0.02 9.34 6.73 2.80 5 0.02 9.34 6.66 2.90 10 0.01 18.69 13.19 3.00 9 0.01 16.82 11.76 3.30 4 0.03 7.48 5.08 3.40 4 0.03 7.48 4.94 3.70 5 0.02 9.34 6.12 3.80 7 0.01 13.08 8.41 4.00 6 <	
1.90 5 0.02 9.34 7.31 2.00 7 0.01 13.08 10.12 2.10 5 0.02 9.34 7.15 2.20 7 0.01 13.08 9.91 2.30 5 0.02 9.34 7.00 2.40 3 0.03 5.61 4.16 2.50 3 0.03 5.61 4.12 2.60 3 0.03 5.61 4.12 2.60 3 0.03 5.61 4.08 2.70 5 0.02 9.34 6.73 2.80 5 0.02 9.34 6.66 2.90 10 0.01 18.69 13.19 3.00 9 0.01 16.82 11.76 3.10 6 0.02 11.21 7.76 3.20 5 0.02 9.34 6.41 3.30 4 0.03 7.48 4.94 3.60 4 0.03 7.48 4.94 3.70 5 <	
2.007 0.01 13.08 10.12 2.105 0.02 9.34 7.15 2.207 0.01 13.08 9.91 2.305 0.02 9.34 7.00 2.403 0.03 5.61 4.16 2.503 0.03 5.61 4.12 2.603 0.03 5.61 4.12 2.603 0.03 5.61 4.12 2.603 0.02 9.34 6.66 2.705 0.02 9.34 6.66 2.9010 0.01 18.69 13.19 3.009 0.01 16.82 11.76 3.106 0.02 11.21 7.76 3.205 0.02 9.34 6.41 3.304 0.03 7.48 5.08 3.404 0.03 7.48 4.94 3.705 0.02 9.34 6.12 3.807 0.01 13.08 8.41 4.00 6 0.02 11.21 7.15 4.10 6 0.02 11.21 7.08 4.20 7 0.01 13.08 8.19 4.30 6 0.02 11.21 6.96	
2.10 5 0.02 9.34 7.15 2.20 7 0.01 13.08 9.91 2.30 5 0.02 9.34 7.00 2.40 3 0.03 5.61 4.16 2.50 3 0.03 5.61 4.12 2.60 3 0.03 5.61 4.08 2.70 5 0.02 9.34 6.66 2.90 10 0.01 18.69 13.19 3.00 9 0.01 16.82 11.76 3.10 6 0.02 11.21 7.76 3.20 5 0.02 9.34 6.41 3.30 4 0.03 7.48 5.08 3.40 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.94 3.70 5 0.02 9.34 6.12 3.80 7 0.01 13.08 8.41 4.00 6 0.02 11.21 7.08 4.20 7 <	
2.20 7 0.01 13.08 9.91 2.30 5 0.02 9.34 7.00 2.40 3 0.03 5.61 4.16 2.50 3 0.03 5.61 4.12 2.60 3 0.03 5.61 4.08 2.70 5 0.02 9.34 6.73 2.80 5 0.02 9.34 6.66 2.90 10 0.01 18.69 13.19 3.00 9 0.01 16.82 11.76 3.10 6 0.02 11.21 7.76 3.20 5 0.02 9.34 6.41 3.30 4 0.03 7.48 5.08 3.40 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.98 3.70 5 0.02 9.34 6.12 3.80 7 0.01 13.08 8.41 4.00 6 0.02 11.21 7.15 4.10 6 <	
2.30 5 0.02 9.34 7.00 2.40 3 0.03 5.61 4.16 2.50 3 0.03 5.61 4.12 2.60 3 0.03 5.61 4.12 2.60 3 0.03 5.61 4.12 2.60 3 0.03 5.61 4.08 2.70 5 0.02 9.34 6.66 2.80 5 0.02 9.34 6.66 2.90 10 0.01 18.69 13.19 3.00 9 0.01 16.82 11.76 3.10 6 0.02 11.21 7.76 3.20 5 0.02 9.34 6.41 3.30 4 0.03 7.48 5.08 3.40 4 0.03 7.48 4.94 3.70 5 0.02 9.34 6.12 3.80 7 0.01 13.08 8.41 4.00 6 0.02 11.21 7.08 4.20 7 <t< td=""><td></td></t<>	
2.40 3 0.03 5.61 4.16 2.50 3 0.03 5.61 4.12 2.60 3 0.03 5.61 4.08 2.70 5 0.02 9.34 6.66 2.80 5 0.02 9.34 6.66 2.90 10 0.01 18.69 13.19 3.00 9 0.01 16.82 11.76 3.10 6 0.02 9.34 6.41 3.30 4 0.03 7.48 5.08 3.40 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.94 3.70 5 0.02 9.34 6.12 3.80 7 0.01 13.08 8.49 3.70 5 0.02 11.21 7.15 4.10 6 0.02 11.21 7.08 4.10 6 0.02 11.21 7.08 4.30 6 0.02 11.21 6.96	
2.70 5 0.02 9.34 6.73 2.80 5 0.02 9.34 6.66 2.90 10 0.01 18.69 13.19 3.00 9 0.01 16.82 11.76 3.10 6 0.02 9.34 6.41 3.20 5 0.02 9.34 6.41 3.30 4 0.03 7.48 5.08 3.40 4 0.03 7.48 5.03 3.50 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.94 3.70 5 0.02 9.34 6.12 3.80 7 0.01 13.08 8.41 4.00 6 0.02 11.21 7.15 4.10 6 0.02 11.21 7.08 4.20 7 0.01 13.08 8.19 4.30 6 0.02 11.21 6.96	
2.70 5 0.02 9.34 6.73 2.80 5 0.02 9.34 6.66 2.90 10 0.01 18.69 13.19 3.00 9 0.01 16.82 11.76 3.10 6 0.02 9.34 6.41 3.20 5 0.02 9.34 6.41 3.30 4 0.03 7.48 5.08 3.40 4 0.03 7.48 5.03 3.50 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.94 3.70 5 0.02 9.34 6.12 3.80 7 0.01 13.08 8.41 4.00 6 0.02 11.21 7.15 4.10 6 0.02 11.21 7.08 4.20 7 0.01 13.08 8.19 4.30 6 0.02 11.21 6.96	
2.70 5 0.02 9.34 6.73 2.80 5 0.02 9.34 6.66 2.90 10 0.01 18.69 13.19 3.00 9 0.01 16.82 11.76 3.10 6 0.02 9.34 6.41 3.20 5 0.02 9.34 6.41 3.30 4 0.03 7.48 5.08 3.40 4 0.03 7.48 5.03 3.50 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.94 3.70 5 0.02 9.34 6.12 3.80 7 0.01 13.08 8.41 4.00 6 0.02 11.21 7.15 4.10 6 0.02 11.21 7.08 4.20 7 0.01 13.08 8.19 4.30 6 0.02 11.21 6.96	
2.90 10 0.01 18.69 13.19 3.00 9 0.01 16.82 11.76 3.10 6 0.02 11.21 7.76 3.20 5 0.02 9.34 6.41 3.30 4 0.03 7.48 5.08 3.40 4 0.03 7.48 5.03 3.50 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.94 3.70 5 0.02 9.34 6.12 3.80 7 0.01 13.08 8.41 4.00 6 0.02 11.21 7.15 4.10 6 0.02 11.21 7.08 4.20 7 0.01 13.08 8.19 4.30 6 0.02 11.21 6.96	
3.00 9 0.01 16.82 11.76 3.10 6 0.02 11.21 7.76 3.20 5 0.02 9.34 6.41 3.30 4 0.03 7.48 5.08 3.40 4 0.03 7.48 5.03 3.50 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.94 3.70 5 0.02 9.34 6.12 3.80 7 0.01 13.08 8.49 3.90 7 0.01 13.08 8.41 4.00 6 0.02 11.21 7.08 4.20 7 0.01 13.08 8.19 4.30 6 0.02 11.21 6.96	
3.10 6 0.02 11.21 7.76 3.20 5 0.02 9.34 6.41 3.30 4 0.03 7.48 5.08 3.40 4 0.03 7.48 5.03 3.50 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.94 3.70 5 0.02 9.34 6.12 3.80 7 0.01 13.08 8.49 3.90 7 0.01 13.08 8.41 4.00 6 0.02 11.21 7.08 4.20 7 0.01 13.08 8.19 4.30 6 0.02 11.21 6.96	>
3.20 5 0.02 9.34 6.41 3.30 4 0.03 7.48 5.08 3.40 4 0.03 7.48 5.03 3.50 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.94 3.70 5 0.02 9.34 6.12 3.80 7 0.01 13.08 8.49 3.90 7 0.01 13.08 8.41 4.00 6 0.02 11.21 7.15 4.10 6 0.02 11.21 7.08 4.20 7 0.01 13.08 8.19 4.30 6 0.02 11.21 6.96	
3.30 4 0.03 7.48 5.08 3.40 4 0.03 7.48 5.03 3.50 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.94 3.70 5 0.02 9.34 6.12 3.80 7 0.01 13.08 8.49 3.90 7 0.01 13.08 8.41 4.00 6 0.02 11.21 7.15 4.10 6 0.02 11.21 7.08 4.20 7 0.01 13.08 8.19 4.30 6 0.02 11.21 6.96	
3.40 4 0.03 7.48 5.03 3.50 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.98 3.60 4 0.03 7.48 4.98 3.70 5 0.02 9.34 6.12 3.80 7 0.01 13.08 8.49 3.90 7 0.01 13.08 8.41 4.00 6 0.02 11.21 7.15 4.10 6 0.02 11.21 7.08 4.20 7 0.01 13.08 8.19 4.30 6 0.02 11.21 6.96	
1 1 1 1 0	
3.60 4 0.03 7.48 4.94 3.70 5 0.02 9.34 6.12 3.80 7 0.01 13.08 8.49 3.90 7 0.01 13.08 8.41 4.00 6 0.02 11.21 7.15 4.10 6 0.02 11.21 7.08 4.20 7 0.01 13.08 8.19 4.30 6 0.02 11.21 6.96	
3.70 5 0.02 9.34 6.12 3.80 7 0.01 13.08 8.49 3.90 7 0.01 13.08 8.41 4.00 6 0.02 11.21 7.15 4.10 6 0.02 11.21 7.08 4.20 7 0.01 13.08 8.19 4.30 6 0.02 11.21 6.96	
3.80 7 0.01 13.08 8.49 3.80 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.20 4	
3.90 7 0.01 13.08 8.41 4.00 6 0.02 11.21 7.15 4.10 6 0.02 11.21 7.08 4.20 7 0.01 13.08 8.19 4.30 6 0.02 11.21 6.96	
4.00 6 0.02 11.21 7.15 4.00 4	
4.10 6 0.02 11.21 7.08 4.20 7 0.01 13.08 8.19 4.30 6 0.02 11.21 6.96	
4.30 6 0.02 11.21 6.96	
4.40 5 0.02 9.34 5.75 4.40	
4.50 5 0.02 9.34 5.70	
4.60 5 0.02 9.34 5.66 4.60	
4.70 6 0.02 11.21 6.73	
4.80 5 0.02 9.34 5.56 4.80 4.80	
4.90 6 0.02 11.21 6.62 5.00 6 0.02 11.21 6.62 5.00	
5.00 6 0.02 11.21 6.57 5.00	
Fa	Hammer Mass Fall Height Cone Area E _{theor}

SHDOWN INVESTIGATION

DPSH-B DYNAMIC PROBE RECORD

Project Ref: P17031

63.5 kg 0.76 m 0.0019 m^2 473 J 0.75

1 kg

8.79 kg/m

Anvil Mass

Rod Mass

30.00

Site: Battle Sports Pavilion, North Trade Road, Battle, East Sussex

		A		D											
Donth	Plows (non	Average Popotration	Unit Point	Dynamic Point			-		le D-1		at)_)		
Depth (mbgl)	Blows (per 100mm)	Penetration	Resistance	Point Resistance	0.00	E 00	D	ynam 10.00		nt Resi		20.00		25	: ^
(mbgt)	Toomm)	per Blow (m)	(MPa)	(MPa)	0.00 	5.00		10.00	J	15.00		20.00		25).U
0.10	1	(m) 0.10	1.87	(MPa) 1.82	0.00										ŧ
0.20	1	0.10	1.87	1.79	0.20										1
0.30	1	0.10	1.87	1.77	0.20										1
0.40	1	0.10	1.87	1.74	0.40										
0.50	1	0.10	1.87	1.72											I
0.60	1	0.10	1.87	1.70	0.60										
0.70	1	0.10	1.87	1.68											1
0.80	1	0.10	1.87	1.66	0.80										1
0.90	1	0.10	1.87	1.64											1
1.00	1	0.10	1.87	1.62	1.00 -										-
1.10	1	0.10	1.87	1.60											I
1.20	3	0.03	5.61	4.74	1.20 -										-
1.30	5	0.02	9.34	7.82			\searrow								1
1.40	5	0.02	9.34	7.73	1.40		ノ								1
1.50	3	0.03	5.61	4.58		1								≢	-
1.60	3	0.03	5.61	4.53	1.60 -	X									ŧ
1.70	4	0.03	7.48	5.98											ŧ
1.80	4	0.03	7.48	5.91	1.80										1
1.90	4	0.03	7.48	5.85		•									1
2.00	5	0.02	9.34	7.23	2.00 -		>								1
2.10	4	0.03	7.48	5.72											1
2.20	5	0.02	9.34	7.08	2.20		1								Ī
2.30	5	0.02	9.34	7.00			~	$ \rightarrow $							
2.40	8	0.01	14.95	11.09	() 2.40 tid 2.60)						1
2.50	7	0.01	13.08	9.61			\checkmark								1
2.60	4	0.03	7.48	5.43	d 2.60										I
2.70	3	0.03	5.61	4.04	2.80										
2.80 2.90	4	0.03	5.61 7.48	4.00 5.28	2.00										1
3.00	4	0.03	7.48	5.20	3.00										1
3.10	4	0.03	7.48	5.17	0.00	ι (1
3.20	7	0.03	13.08	8.97	3.20		\searrow								
3.30	9	0.01	16.82	11.42					>						I
3.40	5	0.02	9.34	6.29	3.40			\frown							1
3.50	5	0.02	9.34	6.23											1
3.60	5	0.02	9.34	6.17	3.60 -										1
3.70	4	0.03	7.48	4.89											
3.80	4	0.03	7.48	4.85	3.80 -										+
3.90	4	0.03	7.48	4.81		•									1
4.00	5	0.02	9.34	5.95	4.00 -										1
4.10	5	0.02	9.34	5.90											I
4.20	7	0.01	13.08	8.19	4.20 -										1
4.30	7	0.01	13.08	8.12			1								1
4.40	6	0.02	11.21	6.90	4.40 -		1								1
4.50	6	0.02	11.21	6.84	🗏		1							#	ŧ
4.60	5	0.02	9.34	5.66	4.60									1	Ē
4.70	6	0.02	11.21	6.73	()								I
4.80	5	0.02	9.34	5.56	4.80										ŧ
4.90	6	0.02	11.21	6.62	E 00		1								
5.00	6	0.02	11.21	6.57	5.00		•								-
otes:									H	ammer	Mas	5			-
										all Heig		-			
										one Ar	-				

SHDOWN INVESTIGATION

DPSH-B DYNAMIC PROBE RECORD

Project Ref: P17031

30.00

25.00

+

Site: Battle Sports Pavilion, North Trade Road, Battle, East Sussex

	-	Average	Unit Point	Dynamic				_						
Depth	Blows (per	Penetration	Resistance	Point			E 00		mic Po					
(mbgl)	100mm)	per Blow	(MPa)	Resistance		.00	5.00	10	.00	15.0	10	20	0.00	
0.10	1	(m)	1.07	(MPa)	0.00									∃
0.10	1	0.10	1.87	1.82	0.00		$\mathbf{\mathbf{x}}$							Ξ
0.20	2	0.05	3.74	3.58	0.20									Ξ
0.30	2	0.05	3.74	3.54	0.40		/							
0.40	1	0.10	1.87	1.74	0.40									Ξ
0.50	2	0.05	3.74	3.45	0.40		/							
0.60	1	0.10	1.87	1.70	0.60									Ξ
0.70	1	0.10	1.87	1.68	0.80	I								
0.80	1 2	0.10	1.87 3.74	1.66 3.28	0.00									-
1.00	4	0.05	7.48	6.48	1.00		\searrow							
	4	0.03	7.48		1.00									
1.10		0.03	7.48	6.40	1.20		I							=
	4			6.33	1.20									=
1.30	4	0.03	7.48	6.25	1.40		I							
1.40 1.50	4	0.03	7.48 7.48	6.18	1.40									
1.50	4	0.03	7.48	6.11 6.04	1.60		1							
	4				1.00									
1.70 1.80	7 9	0.01	13.08 16.82	10.46 13.30	1.80									
1.80	9 10	0.01	16.82	13.30	1.80									
					2.00				\sim					
2.00 2.10	7	0.01	13.08	10.12	2.00									
2.10	9 5	0.01	16.82 9.34	12.88 7.08	2.20									
2.30	9 9	0.02	16.82	12.61				<u> </u>						Ξ
2.30	7	0.01	13.08	9.71					\nearrow					Ξ
2.50	7	0.01	13.08	9.61	Ē			S						Ξ
2.60	5	0.01	9.34	6.79	(1900) 19000 10000 10000 100000 10000000000			\nearrow						Ξ
2.70	3	0.02	5.61	4.04	å									Ξ
2.80	3	0.03	5.61	4.04	2.80									Ξ
2.90	5	0.03	9.34	6.59	2.00									Ξ
3.00	5	0.02	9.34	6.53	3.00									
3.10	4	0.02	7.48	5.17										
3.20	5	0.02	9.34	6.41	3.20									=
3.30	5	0.02	9.34	6.35										Ξ
3.40	4	0.02	7.48	5.03	3.40									Ξ
3.50	4	0.03	7.48	4.98										Ξ
3.60	4	0.03	7.48	4.94	3.60									Ξ
3.70	4	0.03	7.48	4.89										Ξ
3.80	5	0.02	9.34	6.06	3.80						#			
3.90	7	0.01	13.08	8.41				$\mathbf{>}$						
4.00	6	0.02	11.21	7.15	4.00			(#	#	#	
4.10	7	0.01	13.08	8.26										
4.20	6	0.02	11.21	7.02	4.20			$\langle $			1	ŧ	#	
4.30	9	0.01	16.82	10.44										
4.40	11	0.01	20.56	12.65	4.40				\rightarrow	,				-
4.50	9	0.01	16.82	10.27										
4.60	8	0.01	14.95	9.05	4.60			•						=
4.70	9	0.01	16.82	10.10										Ξ
4.80	9	0.01	16.82	10.01	4.80						#		ŧ	-
4.90	7	0.01	13.08	7.72							#		ŧ	
5.00	9	0.01	16.82	9.85	5.00						=		+	Ξ
lotes:									1	Hamm Fall He Cone A	eight			

Hammer Mass	63.5	kg
Fall Height	0.76	m
Cone Area	0.0019	m ²
E _{theor}	473	J
Energy Ratio	0.75	
Anvil Mass	1	kg
Rod Mass	8.79	kg/m

DPSH-B DYNAMIC PROBE RECORD

Project Ref: P17031

30.00

63.5 kg 0.76 m 0.0019 m² 473 J 0.75

1 kg

8.79 kg/m

Anvil Mass

Rod Mass

Site: Battle Sports Pavilion, North Trade Road, Battle, East Sussex

		A		Dumant									
Donth	Blows (per	Average Penetration	Unit Point	Dynamic Point			Dum	omia I	laint D		ee (M	D _1	
Depth (mbgl)	100mm)	per Blow	Resistance	Resistance	0.00	5.00		amic i).00	Point Re 15.0		20.0		25.
(iiibgt)		(m)	(MPa)	(MPa)	0.00	5.00		1.00	15.0		20.0		
0.10	1	0.10	1.87	1.82		•							
0.20	1	0.10	1.87	1.79	0.20								
0.30	1	0.10	1.87	1.77									
0.40	1	0.10	1.87	1.74	0.40								
0.50	1	0.10	1.87	1.72									
0.60	1	0.10	1.87	1.70	0.60								
0.70	1	0.10	1.87	1.68		1							
0.80	1	0.10	1.87	1.66	0.80								
0.90	1	0.10	1.87	1.64	1.00								
1.00	1	0.10	1.87	1.62	1.00	1							
1.10	1	0.10	1.87	1.60 1.58	1.20	I							
1.20 1.30	1	0.10	1.87 1.87	1.58	1.20								
1.40	1	0.10	1.87	1.55	1.40	I							
1.50	1	0.10	1.87	1.53	1.40	L							
1.60	2	0.05	3.74	3.02	1.60								
1.70	1	0.10	1.87	1.49		$\langle $							
1.80	4	0.03	7.48	5.91	1.80								
1.90	4	0.03	7.48	5.85									
2.00	5	0.02	9.34	7.23	2.00		>						
2.10	4	0.03	7.48	5.72		•							
2.20	6	0.02	11.21	8.49	2.20								
2.30	6	0.02	11.21	8.41	2		1						
2.40	5	0.02	9.34	6.93	g 2.40		1						
2.50	5	0.02	9.34	6.86	je vo		\mathbf{X}						
2.60	6	0.02	11.21	8.15	2.40 (upd) 2.60 (upd)		N						
2.70	7	0.01	13.08	9.42	2.80								
2.80 2.90	13 9	0.01	24.29 16.82	17.31 11.87	2.00					~			
3.00	7	0.01	13.08	9.14	3.00								
3.10	6	0.02	11.21	7.76									
3.20	4	0.03	7.48	5.13	3.20	1							
3.30	4	0.03	7.48	5.08									
3.40	4	0.03	7.48	5.03	3.40	•							
3.50	5	0.02	9.34	6.23									
3.60	9	0.01	16.82	11.11	3.60			>					
3.70	6	0.02	11.21	7.34			(
3.80	6	0.02	11.21	7.27	3.80								
3.90	7	0.01	13.08	8.41	(00		3						
4.00	7	0.01	13.08	8.34	4.00		/						
4.10	4	0.03	7.48	4.72	4.20								
4.20 4.30	4	0.03	7.48 7.48	4.68 4.64	4.20	J							
4.30	3	0.03	5.61	3.45	4.40	1							
4.50	4	0.03	7.48	4.56									
4.60	4	0.03	7.48	4.52	4.60								
4.70	6	0.02	11.21	6.73			>						
4.80	5	0.02	9.34	5.56	4.80	•							
4.90	6	0.02	11.21	6.62									
5.00	6	0.02	11.21	6.57	5.00							1	
ator:									Hereit	on M-			
otes:									Hamm Fall He	er Mas aight	5		
									Etheor	1 60			

Project Ref: P17031 Report Ref: R16574 Issue No. 1

APPENDIX C

Geotechnical Laboratory Test Results

SOIL CLASSIFICATION SUMMARY

Site: Battle Sports Pavilion, North Trade Road, Battle, East Sussex

Project Ref: P17031

BH/TP		Nat. Moist.	Equiv. Moist.	Atte	erberg Lir	nits		Cons.	% passing	
No.	Depth (m)	Cont. (w %)	Cont. (w _a %)	W ւ %	W _թ %	I _P %	Class'n	Index (I _c)	425 μm sieve	Visual Description of Sample
WS01	1.20	17		42	24	18	CIM	1.39*	100	Very stiff orange brown and grey brown mottled silty CLAY.
WS02	2.50	18		40	22	18	CIM	1.22*	90	Very stiff orange brown and grey brown mottled slightly gravelly silty CLAY. Gravel is fine mudstone.
WS03	0.90	19		42	25	17	CIM	1.35*	90	Very stiff orange brown and grey brown mottled slightly gravelly silty CLAY. Gravel is fine mudstone.
WS04	1.80	26		57	24	33	СІН	0.94*	90	Stiff orange brown and grey brown mottled slightly gravelly CLAY.Gravel is fine mudstone.
Test Metl	hod: Classif	ication Te	sts BS1377	7: Part 2:	1990: Me	ethod 4.4	, 5.3 and 5	.4	I	Sheet No. 1

* Consistency index based on natural moisture content and not the equivalent moisture content.

Alex Bewick Ashdown Site Investigations Ltd Unit 3 The Grain Store Ditchling Common Business Park Ditchling Common West Sussex BN6 8SG Normec DETS Limited Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 25-01345

Site Reference:	Battle Sport Pavillion, North Trade Road, Battle, East Sussex
Project / Job Ref:	P17031_2676
Order No:	12045
Sample Receipt Date:	11/02/2025
Sample Scheduled Date:	11/02/2025
Report Issue Number:	1
Reporting Date:	19/02/2025

Authorised by:

1 Thur

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Normec DETS Limited ٠ Unit 1, Rose Lane Industrial Estate **Rose Lane** Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate						
DETS Report No: 25-01345	~Date Sampled	03/02/25	03/02/25	03/02/25	03/02/25	
Ashdown Site Investigations Ltd	~Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
~Site Reference: Battle Sport Pavillion, North Trade	~TP / BH No	WS01	WS02	WS03	WS04	
Road, Battle, East Sussex						
~Project / Job Ref: P17031_2676	~Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	
~Order No: 12045	~Depth (m)	2.80	1.50	2.30	1.10	
Reporting Date: 19/02/2025	DETS Sample No	763758	763759	763760	763761	

Determinand	Unit	RL	Accreditation					
pH	pH Units	N/a	MCERTS	4.3	3.5	5.3	6.2	
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	10	32	13	< 10	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.01	0.03	0.01	< 0.01	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

~Sample details provided by customer and can affect the validity of results

Normec DETS Limited Unit 1, Rose Lane Industrial Estate **Rose Lane** Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 25-01345	
Ashdown Site Investigations Ltd	
~Site Reference: Battle Sport Pavillion, North Trade Road, Battle, East Sussex	
~Project / Job Ref: P17031_2676	
~Order No: 12045	
Reporting Date: 19/02/2025	

DETS Sample No	~TP / BH No	~Additional Refs	~Depth (m)	Moisture Content (%)	Sample Matrix Description
763758	WS01	None Supplied	2.80	14.6	Grey clay
763759	WS02	None Supplied	1.50	15	Light brown sandy clay
763760	WS03	None Supplied	2.30	10.2	Light brown sandy clay
763761	WS04	None Supplied	1.10	19.3	Light brown clay

Moisture content is part of procedure E003 & is not an accredited test

Unsufficient Sample ^{US} Vnsuftable Sample ^{US} ~Sample details provided by customer and can affect the validity of results

Normec DETS Limited Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 25-01345
Ashdown Site Investigations Ltd
vSite Reference: Battle Sport Pavillion, North Trade Road, Battle, East Sussex
·Project / Job Ref: P17031_2676
vOrder No: 12045
Constring Date: 19/02/2025

Reporting Date: 19/02/2025

SoilARSoilARSoilARSoilDSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilDSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilDSoilARSoilDSoilARSoilARSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoil	Determinand	Brief Method Description				
SoilARSoilDSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilDSoilARSoilDSoilARSoilARSoilARSoilARSoilARSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilARSoilARSoilARSoilARSoilARSoilC10-C12,aro: C5C10-C12,SoilARSoilARSoilAR <td>Boron - Water Soluble</td> <td>Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES</td> <td>No E012</td>	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	No E012			
SoilDSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilDSoilAR <tr< td=""><td></td><td>Determination of BTEX by headspace GC-MS</td><td>E001</td></tr<>		Determination of BTEX by headspace GC-MS	E001			
SoilDSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilDSoilAR <trr< td=""><td></td><td>Determination of cations in soil by aqua-regia digestion followed by ICP-OES</td><td>E002</td></trr<>		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002			
SoilARSoilARSoilARSoilDSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoil<		Determination of chloride by extraction with water & analysed by ion chromatography	E009			
SoilARSoilARSoilDCycloherSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilDSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilARSoilARSoilARSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilDSoilARSoilDSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoil	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016			
SoilARSoilDCyclohe:SoilARDieseSoilARDieseSoilARDieseSoilARDieseSoilARDieseSoilARDieseSoilARDieseSoilARDieseSoilARDieseSoilARDieseSoilARDieseSoilDDieseSoilARDieseSoilDDieseSoilDDieseSoilDDieseSoilDDieseSoilDDieseSoilDDieseSoilDDieseSoilDDieseSoilARDiese<	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015			
SoilDCyclohesSoilARDieseSoilARDieseSoilARDieseSoilARDieseSoilARDieseSoilARDieseSoilARDieseSoilARDieseSoilARDieseSoilARDieseSoilARDieseSoilDDieseSoilDDieseSoilDDieseSoilDDieseSoilDDieseSoilDDieseSoilDDieseSoilDDieseSoilDDieseSoilAR<	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015			
SoilARDieseSoilARDieseSoilARImage: SoilSoilDImage: SoilSoilARImage: SoilSoilARImage: SoilSoilDImage: SoilSoilDImage: SoilSoilDImage: SoilSoilDImage: SoilSoilDImage: SoilSoilDImage: SoilSoilDImage: SoilSoilDImage: SoilSoilDImage: SoilSoilARImage: SoilSoilARImage: SoilSoilARImage: SoilSoilARImage: SoilSoilARImage: SoilSoilARImage: SoilSoilDImage: SoilSoilDImage: SoilSoilDImage: SoilSoilARImage: Soil<		Determination of total cyanide by distillation followed by colorimetry	E015			
SoilARSoilARSoilDSoilARSoilARSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilARSoilARSoilARSoilARSoilDSoilCSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilARSoilCSoilARSoilCSoilCSoilCSoilARSoilCSoilARSoilCSoilARSoilCSoilARSoilCSoilCSoilARSoilCSoilCSoilCSoilCSoilCSoilCSoilCSoilC		Gravimetrically determined through extraction with cyclohexane	E011			
SoilARSoilDSoilARSoilARSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilARSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilDSoilCSoilARSoilCSoilARSoilCSoilARSoilCSoilARSoilCSoilARSoilARSoilCSoilARSoilCSoilARSoilCSoilARSoilCSoilARSoilCSoilARSoilCSoilARSoilCSoilC </td <td></td> <td>Determination of hexane/acetone extractable hydrocarbons by GC-FID</td> <td>E004</td>		Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004			
SoilDSoilARSoilARSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilARSoilARSoilARSoilARSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilDSoilDSoilARSoilDSoilARSoilARSoilARSoilC10-C12,SoilARSoilC10-C12,SoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilAR <trr< td=""><td>Electrical Conductivity</td><td>Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement</td><td>E022</td></trr<>	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022			
SoilARSoilARSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilARSoilARSoilARSoilARSoilDSoilARSoilDSoilARSoilDSoilDSoilDSoilARSoilDSoilDSoilDSoilDSoilDSoilCSoilARSoilDSoilCSoilCSoilARSoilCSoilARSoilDSoilARSoilCSoilARSoilCSoilARSoilCSoilARSoilCSoilCSoilARSoilCSoilARSoilARSoilCSoilARSoilARSoilARSoilC <td></td> <td>Determination of electrical conductivity by addition of water followed by electrometric measurement</td> <td>E023</td>		Determination of electrical conductivity by addition of water followed by electrometric measurement	E023			
SoilARSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilARSoilARSoilARSoilARSoilARSoilDSoilARSoilDSoilARSoilDSoilDSoilDSoilARSoilDSoilDSoilDSoilARSoilDSoilCSoilARSoilDSoilARSoilCSoilARSoilCSoilARSoilCSoilARSoilCSoilARSoilCSoilARSoilCSoilARSoilCSoilARSoilCSoilARSoilCSoilARSoilARSoilCSoilARSoilCSoilARSoilC<		Determination of elemental sulphur by solvent extraction followed by GC-MS	E020			
SoilAREPH TEDSoilDFSoilDFSoilDFSoilDFSoilDFSoilDFSoilDFSoilDFSoilDFSoilDFSoilDFSoilARFSoilARFSoilARFSoilARFSoilARFSoilARFSoilARFSoilDFSoilDFSoilDFSoilDFSoilDFSoilDFSoilDSulphate (SoilARFSoil <td< td=""><td></td><td>Determination of acetone/hexane extractable hydrocarbons by GC-FID</td><td>E004</td></td<>		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004			
SoilARSoilDFSoilDFSoilDFSoilDFSoilDFSoilDFSoilDFSoilDFSoilDFSoilDFSoilDFSoilARFSoilARFSoilARFSoilARFSoilARFSoilARFSoilARFSoilDFSoilDFSoilDFSoilDFSoilDFSoilDFSoilDFSoilDFSoilARFSoilARFSoilDToluSoilARFSoilDToluSoilARFSoilARFSoilARFSoilARFSoilARFSoilARFSoilARFSoilARFSoilARFSoilARFSoilARFSoilARFSoilARFSoilARFSoilARFSoilARF <td></td> <td>Determination of acetone/hexane extractable hydrocarbons by GC-FID</td> <td>E004</td>		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004			
SoilDFSoilDDSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilDSoilARSoilDSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilC10-C12, aro: C5SoilAR <t< td=""><td>XAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)</td><td>Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by</td><td>E004</td></t<>	XAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	E004			
SoilDFSoilDDSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilARSoilDSoilARSoilDSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilC10-C12, aro: C5SoilAR <t< td=""><td></td><td>neadspace GC-MS Determination of Fluoride by extraction with water & analysed by ion chromatography</td><td>E009</td></t<>		neadspace GC-MS Determination of Fluoride by extraction with water & analysed by ion chromatography	E009			
SoilDSoilDSoilARSoilDSoilDSoilDSoilDSoilARSoilARSoilARSoilARSoilARSoilARSoilDSoilARSoilARSoilARSoilDSoilARSoilDSoilARSoilDSoilDSoilDSoilDSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilClo-Cl2,SoilARSoilClo-Cl2,SoilAR </td <td></td> <td>Determination of Floorde by extraction with water & analysed by for chromatography Determination of TOC by combustion analyser.</td> <td>E009 E027</td>		Determination of Floorde by extraction with water & analysed by for chromatography Determination of TOC by combustion analyser.	E009 E027			
SoilDSoilARSoilDSoilDSoilDSoilDSoilARSoilARSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilARSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilC10-C12,aro: C5C10-C12,SoilARSoilARSoilARSoilARSoilC10-C12,aro: C5C10-C12,SoilARSoil <td></td> <td>Determination of TOC by combustion analyser.</td> <td>E027</td>		Determination of TOC by combustion analyser.	E027			
SoilARSoilDFSoilDFSoilDSoilSoilDSoilSoilARSoilSoilARSoilSoilARSoilSoilARSoilSoilARSoilSoilARSoilSoilARSoilSoilARSoilSoilDPhSoilDSulphate (SoilSoilDSulphate (SoilSoilDSulphate (SoilSoilARSoilSoilARSoilSoilDToluSoilDToluSoilDToluSoilDToluSoilARC10-C12, aro: C5SoilARTPH LQSoilARTPH LQSoilARTPH LQSoilARC10-C12, aro: C5SoilARTPH LQSoilARSoilSoilARSoilSoilARSoilSoilARSoilSoilARSoilSoilARSoilSoilARSoilSoilARSoilSoilARSoilSoilARSoilSoilARSoilSoilARSoilSoilARSoilSoilARSoilSoilAR		Determination of TOC by combustion analyser.	E027			
SoilDFSoilDDSoilDDSoilDDSoilARDSoilARDSoilDDSoilARDSoilARDSoilARDSoilARDSoilARDSoilARDSoilDPSoilDSulphate (SoilDSulphate (SoilDSulphate (SoilARSulphate (SoilDSulphate (SoilDSulphate (SoilDToluSoilARToluSoilDToluSoilARToluSoilARTPH CWSoilARTPH LQSoilARTPH LQ <td></td> <td>Determination of ammonium by discrete analyser.</td> <td>E029</td>		Determination of ammonium by discrete analyser.	E029			
Soil D Soil D Soil AR Soil AR Soil D Soil D Soil D Soil AR Soil D Soil AR Soil AR Soil D Soil AR Soil AR Soil AR Soil D Soil AR Soil D Soil AR Soil D Soil AR Soil Clo-Cl2, aro: C5 Soil AR Soil AR Soil AR Soil AR Soil AR		Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010			
SoilDSoilARSoilARSoilDSoilDSoilARSoilARSoilARSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilDSoilDSoilDSoilDSoilARSoilARSoilARSoilARSoilDSoilC10-C12, aro: C5SoilARSoilARSoilC10-C12, aro: C5	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019			
SoilARSoilARSoilDSoilDSoilARSoilARSoilARSoilARSoilARSoilDSoilPSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilARSoilARSoilDSoilDSoilDSoilClo-Cl2, aro: C5SoilAR	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025			
SoilARSoilDSoilDSoilARSoilARSoilDSoilARSoilDSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilDSoilARSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilC10-C12, aro: C5SoilARSoilARSoilC10-C12, aro: C5		Determination of metals by aqua-regia digestion followed by ICP-OES	E002			
SoilDSoilARSoilARSoilARSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilDSoilDSoilCloccl2,SoilARSoilARSoilCloccl2,SoilARSoilCloccl2,SoilARCloccl2,aro: C5SoilARSoilARCloccl2,aro: C5	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004			
SoilDSoilARSoilARSoilDSoilARSoilARSoilDSoilDSoilDSoilDSoilDSoilDSoilARSoilDSoilARSoilARSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilDSoilARSoilClo-Cl2, aro: C5SoilARSoilARSoilARClo-Cl2, aro: C5	Moisture Content	Moisture content; determined gravimetrically	E003			
Soil AR Soil AR Soil D Soil AR Soil AR Soil D Soil AR Soil AR Soil AR Soil AR Soil AR Soil D Soil D Soil D Soil D Soil AR Soil Clorcl2, aro: C5 Soil AR Soil AR Soil AR	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009			
Soil AR Soil D Soil AR Soil AR Soil D Soil AR Soil AR Soil AR Soil D Soil D Soil D Soil D Soil AR Soil D Soil AR Soil Clo-Cl2, aro: C5 Soil AR Soil AR Soil AR	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010			
Soil D Soil AR Soil AR Soil D Soil D Soil D Soil D Soil D Soil D Soil AR Soil AR Soil AR Soil D Soil AR Soil D Soil AR Soil AR Soil C10-C12, aro: C5 Soil AR Soil AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005			
Soil AR Soil AR Soil D Soil D Soil D Soil D Soil D Soil AR Soil AR Soil AR Soil D Soil AR Soil Clo-Cl2, aro: C5 Soil AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008			
Soil AR Soil D Pr Soil D Sulphate (Soil D Sulphate (Soil D Sulphate (Soil AR Sulphate (Soil AR Sulphate (Soil AR Sulphate (Soil AR Sulphate (Soil D Sulphate (Soil D Sulphate (Soil AR Sulphate (Soil D Sulphate (Soil AR Sulphate (Soil AR Sulphate (Soil AR Sulphate (Soil AR Tolus Soil AR TPH CW(Soil AR TPH CU(Soil AR TPH CU(Soil AR TPH LQ Soil AR Sulphate (Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011			
Soil D Pf Soil D Sulphate (Soil D Sulphate (Soil D Sulphate (Soil AR Sulphate (Soil AR Sulphate (Soil AR Sulphate (Soil AR Sulphate (Soil D Sulphate (Soil D Sulphate (Soil AR Sulphate (Soil D Tolu Soil D Tolu Soil AR C10-C12, aro: C5 Soil AR TPH LQ Soil AR TPH LQ		Determination of pH by addition of water followed by electrometric measurement	E007			
Soil D Soil D Sulphate (Soil D Sulphate (Soil AR Image: Constraint of the constrant of the constraint of t	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021			
Soil D Sulphate (Soil D Sulphate (Soil AR Tolu Soil AR TPH CWU (10-C12, aro: C5) Soil AR TPH LQ Soil AR TPH LQ Soil AR C10-C12, aro: C5		Determination of phosphate by extraction with water & analysed by ion chromatography	E009			
Soil D Sulphate (Soil AR Soil D Soil AR Soil D Soil AR Soil AR Soil AR Soil AR Soil AR Soil AR TPH CWC C10-C12, aro: C5 Soil AR		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013			
Soil AR Soil D Soil AR Soil D Soil D Soil D Soil D Soil D Soil AR		Determination of sulphate by extraction with water & analysed by ion chromatography	E009			
Soil D Soil AR Soil AR Soil D Soil D Soil AR TPH CWL C10-C12, aro: C5 Soil AR		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014			
Soil AR Soil AR Soil D Soil D Soil AR TPH LQ Soil AR		Determination of sulphide by distillation followed by colorimetry	E018			
Soil AR Soil D Soil D Soil D Soil AR TPH CWC C10-C12, aro: C5 Soil AR Soil AR TPH LQ Soil AR	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by	E024			
Soil D Tole Soil D TPH CWR Soil AR TPH CWR Soil AR TPH CWR Soil AR TPH CUR Soil AR TPH LQ Soil AR TPH LQ Soil AR TPH LQ		GC-MS	E006			
Soil D Soil AR TPH CW C10-C12, aro: C5 Soil AR TPH LQ C10-C12, aro: C5 Soil AR TPH LQ C10-C12, aro: C5	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017			
Soil AR TPH CWC C10-C12, aro: C5 Soil AR TPH LQ C10-C12, aro: C5	luene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011			
Soil AR C10-C12, aro: C5 Soil AR TPH LQ C10-C12, aro: C5	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010			
Soil AR C10-C12, aro: C5		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004			
	5-C7, C7-C8, C8-C10, C10-C12, 5, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004			
Soil AR		Determination of volatile organic compounds by headspace GC-MS	E001			
Soil AR D Dried	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001			

 $\sim\!\!\text{Sample}$ details provided by customer and can affect the validity of results

Normec DETS Limited Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

ist of HWOL Acronyms and Operators	
DETS Report No: 25-01345	
Ashdown Site Investigations Ltd	
vSite Reference: Battle Sport Pavillion, North Trade Road, Battle, East Sussex	
vProject / Job Ref: P17031_2676	
vOrder No: 12045	
Reporting Date: 19/02/2025	

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total
~	Sample details provided by customer and can affect the validity of results

Det - Acronym

Project Ref: P17031 Report Ref: R16574 Issue No. 1

APPENDIX D

Aggressivity To Concrete Assessment Borehole Infiltration Test Results

AGGRESSIVITY TO CONCRETE ASSESSMENT

Site: Battle Sports Pavilion, North Trade Road, Battle, East sussex

Project Ref: P17031

Chemical Laboratory Test Results											
Sample Location	Sample Depth (m)	pH Value (Units)	Total Sulphate (AS % as SO₄)	Total Sulphur (TS % as S)	Water Soluble Sulphate (mg/l as SO₄)	Water Soluble Chloride (mg/l)	Water Soluble Nitrate (mg/l)	Water Soluble Magnesium (mg/l)			
WS01	2.80	4.3			10						
WS02	1.50	3.5			32						
WS03	2.30	5.3			13						
WS04	1.10	6.2			10						
Testing schedule	Notes: Chemical testing was undertaken by an external laboratory with recognised (UKAS and MCERTS) accreditation for quality control. Testing scheduled in line with the BRE Special Digest 1:2005 Concrete in Aggressive Ground Suites A-D and as such some determinands were not required to be tested.										
		Asses	sment of the	e Chemical A	nalysis of the	e Soil					
Ground	Condition	Natural Groun	d Conditions								
Groundwate			water Conditio	20							
-				leath the site are not expected to contain pyrite							
Pyrite Soli	Condition	Soits present i	beneath the site	e are not expec	ted to contain p	yrite					
			Character	istic Value	Design Sul	fate Class	ACEC Cla	ssification			
рН			3	.5	-		-				
Water Soluble Sulphate (mg/l as SO4) *			<100		DS-1		AC-2z				
Total Potential Sulphate (TPS % SO4)			N/A - Non Pyrite Soil Present		-		-				
Magnesium (mg/l) *			N/A - Natural Ground Conditions		-		-				
Water Soluble Sulphate including mineral			N/A - Natu	Iral Ground							
acids (mg/l as SO4) *				itions	-		-				
Notes: * Characteristic value rounded to nearest 100.											

The aggressivity of the soils to concrete has been assessed in accordance with guidance published by the BRE Special Digest 1:2005 Concrete in Aggressive Ground.

BOREHOLE INFILTRATION TEST RESULTS

Site: Battle Sports Pavilion, North Trade Road, Battle, East sussex

HDOWN

Project Ref: P17031

