Title:	Access and vertical propping to the max loads specified for use at The Market Car Park, Peterborough.	Job No:	1529-1-2-3- 4-5-6-7 1	Rev Date Of	20

Materials

Standard scaffold tube in accordance with TG20:13, All tube will be galvanised therefore take as new.
Fittings in accordance with BS 1139.

Properties of tube.	Outside diamete Weight Z I r Area Allowable BM. Allowable shear	$\begin{aligned} & =48.3 \mathrm{~mm} \\ & =4.37 \mathrm{~kg} / \mathrm{m} \\ & =5.70 \mathrm{~cm} 3 \\ & =13.8 \mathrm{~cm} 4 \\ & =1.57 \mathrm{~cm} \\ & =5.57 \mathrm{~cm} 2 \\ & =1.12 \mathrm{kNm} \\ & =29.1 \mathrm{kN} \end{aligned}$			
Scaffold boards	($225 \times 38 \mathrm{~mm}$) Allowable BM. Self weight			8 kNm $5 \mathrm{kN} / \mathrm{m} 2$	
Allowable tube strut loads.	$\begin{aligned} & \text { Length (mm) } \\ & 1000 \\ & 1200 \\ & 1400 \\ & 1600 \end{aligned}$	$\begin{aligned} & \text { Load (kN) } \\ & 58.6 \\ & 51.9 \\ & 45.3 \\ & 39.2 \end{aligned}$		$\begin{gathered} \text { Length (mm) } \\ 1800 \\ 2000 \\ 2200 \\ 2400 \end{gathered}$	$\begin{aligned} & \text { Load (kN) } \\ & 33.7 \\ & 29.1 \\ & 25.3 \\ & 22.0 \end{aligned}$
Allowable fitting loads.	Type of fitting Right Angle Right Angle SGB Mk3A Swivel Sleeve Brace DH Putlog Coupler Adj. Base/FH		Type of load Slip Slip Slip Slip Tension Slip Slip Axial		N) (class A) ass B)

Allowable BM. \& shear for scaffolding beams.

Type beam	Allowable BM.	Allowable reaction
Unit beam	27.7 kNm (bolt shear)	20.0 kN
Surebeam	13.5 kNm	18.0 kN
SGB Soldier Mk2	$38.0 \mathrm{kNm}(10.0 \mathrm{kNm}$ at joint)	75.0 kN
Haki 400 Aluminium Truss	15.7 kNm	12.7 kN
Haki 750 Aluminium Truss	41.3 kNm	30.6 kN

Note - Not all materials listed will be used in the following design

Title:	Access and vertical propping to the max loads specified for use at The Market Car Park, Peterborough.	Job No: Sheet No:	$\begin{aligned} & \text { 1529-1-2-3- } \\ & \text { 4-5-6-7 } \\ & 2 \end{aligned}$	Rev Date Of	20
Contractor:		Prepd By:	SMC	Date:	23.9.19
		Chkd By:		Date:	

These calculations are for the access and vertical propping all as shown on DSD drawings 19-1529-1, 19-1529-2, 19-1529-3, 19-1529-4, 19-1529-5, 19-1529-6 and 19-1529-7.
Loads allowed for to the scaffold

Vertical loads to propping scaffold =

Self weight of slab $=6.72 \mathrm{kN} / \mathrm{m}^{2}$
Live load on the slab $=1.5 \mathrm{kN} / \mathrm{m}^{2}$
Therefore total vertical load allowed for per floor level $=8.22 \mathrm{kN} / \mathrm{m}^{2}$ all as specified by Rolton Group.
No additional vertical or horizontal loads have been accounted for on this scaffold!

Live load to the access scaffold

Live load to the access scaffold is allowed for at $2.0 \mathrm{kN} / \mathrm{m}^{2}$ at one level plus second level all at $0.75 \mathrm{kN} / \mathrm{m}^{2}$. One additional level all at $0.75 \mathrm{kN} / \mathrm{m}^{2}$ is allowed for as protection at first lift.

All loads must be checked to ensure they are adequate and not exceeded and the existing ground / structure must be checked to ensure they can safely support the imposed loads in all areas. All checks to be done by others.

Access Leg loads

Scaffold constructed in 2.0 m lifts with a 2.7 m pavement gantry, in accordance with TG20 the effective length of scaffold uprights $=2.7 \mathrm{~m}$ therefore the permissible axial loads in uprights $=18.2 \mathrm{kN}$

Inside Leg

Inside Standards	kg	Fittings
$1 \times 2.0 \mathrm{~m}$ standard $=2.0 \mathrm{~m}$	$2.0 \mathrm{~m} \times 4.4 \mathrm{~kg} / \mathrm{m}=8.8 \mathrm{~kg}$	
$1 \times 2.0 \mathrm{~m}$ ledger $=2.0 \mathrm{~m}$	$2.0 \mathrm{~m} \times 4.4 \mathrm{~kg} / \mathrm{m}=8.8 \mathrm{~kg}$	$\mathbf{1 \times 1 \mathrm { kg } = \mathbf { 1 k g }}$
$4 \times 0.8 \mathrm{~m}$ transom $=3.2 \mathrm{~m}$	$3.2 \mathrm{~m} \times 4.4 \mathrm{~kg} / \mathrm{m}=14.08 \mathrm{~kg}$	$\mathbf{4 \times 1 \mathbf { k g } = \mathbf { 4 k g }}$
$1 \times 2.0 \mathrm{~m}$ handrail $=2.0 \mathrm{~m}$	$2.0 \mathrm{~m} \times 4.4 \mathrm{~kg} / \mathrm{m}=8.8 \mathrm{~kg}$	$\mathbf{1 \times 1 \mathbf { k g } = \mathbf { 1 k g }}$
$1 \times 1.3 \mathrm{~m}$ ledger brace $=1.3 \mathrm{~m}$	$1.3 \mathrm{~m} \times 4.4 \mathrm{~kg} / \mathrm{m}=5.72 \mathrm{~kg}$	$\mathbf{1 \times 1 \mathbf { k g } = \mathbf { 1 k g }}$
Total weight	46.2 kg	$\mathbf{7 k g}$
Total self weight per node $=$	$\mathbf{4 6 . 2 + \mathbf { 7 } = \mathbf { 5 3 . 2 } \mathbf { k g } =} \mathbf{0 . 5 2 \mathbf { k N }}$	

Title:	Access and vertical propping to the max loads specified for use at The Market Car Park, Peterborough.	Job No:	1529-1-2-3- 4-5-6-7	Rev Date Of	
Contractor:		Sheet No:	3		
		Prepd By:	SMC	Date:	23.9 .19
	Chkd By:		Date:		

Boards $=0.225 \times 2.5 \times 2.0 \times 0.25 \mathrm{kN} / \mathrm{m}^{2}=0.28 \mathrm{kN}$
Live $=0.225 \times 2.5 \times 2.0 \times\left(2.0 \mathrm{kN} / \mathrm{m}^{2}+0.75 \mathrm{kN} / \mathrm{m}^{2}+0.75 \mathrm{kN} / \mathrm{m}^{2}\right)=3.94 \mathrm{kN}$
Total leg load $=0.52 \mathrm{kN} \times 8+0.28 \mathrm{kN} \times 9+3.94 \mathrm{kN}=10.62 \mathrm{kN}<18.2 \mathrm{kN}$ permissible therefore OK

Outside Leg

Outside Standards	kg	Fittings
$1 \times 2.0 \mathrm{~m}$ standard $=2.0 \mathrm{~m}$	$2.0 \mathrm{~m} \times 4.4 \mathrm{~kg} / \mathrm{m}=8.8 \mathrm{~kg}$	
$1 \times 2.0 \mathrm{~m}$ ledger $=2.0 \mathrm{~m}$	$2.0 \mathrm{~m} \times 4.4 \mathrm{~kg} / \mathrm{m}=8.8 \mathrm{~kg}$	$1 \times 1 \mathrm{~kg}=1 \mathrm{~kg}$
$4 \times 0.8 \mathrm{~m}$ transom $=3.2 \mathrm{~m}$	$3.2 \mathrm{~m} \times 4.4 \mathrm{~kg} / \mathrm{m}=14.08 \mathrm{~kg}$	$4 \times 1 \mathrm{~kg}=4 \mathrm{~kg}$
$1 \times 1.3 \mathrm{~m}$ ledger brace $=1.3 \mathrm{~m}$	$1.3 \mathrm{~m} \times 4.4 \mathrm{~kg} / \mathrm{m}=5.72 \mathrm{~kg}$	$1 \times 1 \mathrm{~kg}=1 \mathrm{~kg}$
$2 \times 2.0 \mathrm{~m}$ handrail $=4.0 \mathrm{~m}$	$4.0 \mathrm{~m} \times 4.4 \mathrm{~kg} / \mathrm{m}=17.6 \mathrm{~kg}$	$2 \times 1 \mathrm{~kg}=2 \mathrm{~kg}$
$1 \times 1.5 \mathrm{~m}$ face brace $=1.5 \mathrm{~m}$	$1.5 \mathrm{~m} \times 4.4 \mathrm{~kg} / \mathrm{m}=6.6 \mathrm{~kg}$	$1 \times 1 \mathrm{~kg}=1 \mathrm{~kg}$
Total weight	61.6 kg	9kg
Total weight per node =	$61.6+9=70$	0.69 kN

Boards $=0.225 \times 3.5 \times 2.0 \times 0.25 \mathrm{kN} / \mathrm{m}^{2}=0.393 \mathrm{kN}$
Live $=0.225 \times 2.5 \times 2.0 \times\left(2.0 \mathrm{kN} / \mathrm{m}^{2}+0.75 \mathrm{kN} / \mathrm{m}^{2}+0.75 \mathrm{kN} / \mathrm{m}^{2}\right)=3.94 \mathrm{kN}$
Total leg load $=0.69 \mathrm{kN} \times 8+0.393 \mathrm{kN} \times 9+3.94 \mathrm{kN}=12.99 \mathrm{kN}<18.2 \mathrm{kN}$ permissible therefore OK

Tie loads from external access

Wind loads from BS EN 1991-1-4
Fundamental basic wind speed $=$
$\mathrm{V}_{\mathrm{f}}=\mathrm{V}_{\mathrm{m}} \times \mathrm{C}_{\text {alt }}$

Title:	Access and vertical propping to the max loads specified for use at The Market Car Park, Peterborough.	Job No:	1529-1-2-3- 4-5-6-7	Rev Date Of	20
Contractor:		Sheet No:	4		Prepd By:
		SMC	Date:	23.9 .19	
	Chkd By:		Date:		

$\mathrm{V}_{\mathrm{m}}=$ From figure NA. $1=22$
Altitude from Google Earth at 14 m
$\mathrm{C}_{\text {alt }}=1+14 \div 1000$
$\mathrm{C}_{\text {alt }}=1.014$
$\mathrm{V}_{\mathrm{m}}=22 \times 1.014$
$V_{f}=22.308$
Basic wind speed $=$
$\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{f}} \times \mathrm{C}_{\text {dir }} \times \mathrm{C}_{\text {season }} \times \mathrm{C}_{\text {prob }}$
$V_{b}=22.308 \times 1 \times 1 \times 1$
$\mathrm{V}_{\mathrm{b}}=22.308$
Basic wind pressure $=$
$\mathrm{q}_{\mathrm{b}}=0.613 \times \mathrm{V}^{2} \div 1000$
$q_{b}=0.613 \times 22.308^{2} \div 1000$
$\mathrm{q}_{\mathrm{b}}=0.305$
Peak wind pressure $=$
$q_{p}=q_{b} \times C_{e}$
$\mathrm{q}_{\mathrm{b}}=0.305$
$\mathrm{C}_{\mathrm{e}}=$ Figure NA. 7 at max 18 m high at 40 km to shoreline $=2.8$
$\mathrm{C}_{\text {et }}=$ Figure NA. 8 at max 18 m high 0.1 km in town $=1.0$
$\mathrm{q}_{\mathrm{p}}=0.305 \times 2.8 \times 1$
$\mathrm{q}_{\mathrm{p}}=0.854$
$\mathrm{C}_{s} \mathrm{C}_{\mathrm{d}}$ taken as 1.0
Therefore wind $=0.854 \times 1.0=0.854 \mathrm{kN} / \mathrm{m}^{2}$
Temporary structure factor taken from EN $12811=0.7$ therefore wind $=0.854 \times 0.7=0.598 \mathrm{kN} / \mathrm{m}^{2}$
Car park considered with wind as for fully clad building due to full sheeting to perimeter (all sides to be clad at all times)
$\mathrm{C}_{\text {pe }}$ taken from BS EN 1991-1-4 table 7.1.
Wind considered to zone A, D \& B
$\mathrm{C}_{\text {pe }}$ zone $\mathrm{A}=-1.2 \times 0.598 \mathrm{kN} / \mathrm{m}^{2}=-0.7176 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{C}_{\text {pe }}$ zone D $=0.8 \times 0.598 \mathrm{kN} / \mathrm{m}^{2}=0.478 \mathrm{kN} / \mathrm{m}^{2}$
C_{pe} zone $\mathrm{B}=-0.8 \times 0.598 \mathrm{kN} / \mathrm{m}^{2}=-0.478 \mathrm{kN} / \mathrm{m}^{2}$

Title:	Access and vertical propping to the max loads specified for use at The Market Car Park, Peterborough.	Job No:	1529-1-2-3- 4-5-6-7	Rev Date Of	20
Contractor:		Sheet No:	5		
		Prepd By:	SMC	Date:	23.9 .19
	Chkd By:		Date:		

Scaffold to be tied to the existing structure with shear anchors to the underside of the slab or by box ties to the existing columns to every floor at every frame in zone A and at every other frame at Zone B therefore maximum area per tie =
Zone A $=2.0 \mathrm{~m} \times 2.55 \mathrm{~m}$ vertical $=5.1 \mathrm{~m}^{2}$
Zone $B=4.0 \mathrm{~m} \times 2.55 \mathrm{~m}$ vertical $=10.2 \mathrm{~m}^{2}$
Tie loads
Zone $A=5.1 \mathrm{~m}^{2} \mathrm{x}-0.7176 \mathrm{kN} / \mathrm{m}^{2}=3.66 \mathrm{kN}$
Zone $B=10.2 \mathrm{~m}^{2} \mathrm{x}-0.478 \mathrm{kN} / \mathrm{m}^{2}=4.87 \mathrm{kN}$
Increased tie area to top tie per frame $=2.0 \mathrm{~m} \times 4.1 \mathrm{~m}$ vertical $=8.2 \mathrm{~m}^{2}$
Fix ties to top lift at every frame therefore;
Zone A maximum tie load $=8.2 \mathrm{~m}^{2} \times-0.7176 \mathrm{kN} / \mathrm{m}^{2}=5.88 \mathrm{kN}$
Zone B maximum tie load $=8.2 \mathrm{~m}^{2} \mathrm{x}-0.478 \mathrm{kN} / \mathrm{m}^{2}=3.92 \mathrm{kN}$
Positive loads to zone $\mathrm{D}=8.2 \mathrm{~m}^{2} \times-0.478 \mathrm{kN} / \mathrm{m}^{2}=3.92 \mathrm{kN}$ max in all areas
Note - during the demolition process each level becomes the top tied lift and therefore all ties to be taken top tie level case

Check moment though two hole band for pull out load, anchor fixed in one hole only, furthest away from external scaffold as shown on drawing.

Title:	Access and vertical propping to the max loads specified for use at The Market Car Park, Peterborough.	Job No:	1529-1-2-3- 4-5-6-7	Rev Date Of	
Contractor:		Sheet No:	6		

Zone A (negative loads) =
Moment $=5.88 \mathrm{kN} \times 0.075 \mathrm{~m}=0.441 \mathrm{kNm}$
Force $=0.441 \mathrm{kNm} \div 0.097 \mathrm{~m}=4.54 \mathrm{kN}$
Zone B (negative loads) =
Moment $=3.92 \mathrm{kN} \times 0.075 \mathrm{~m}=0.294 \mathrm{kNm}$
Force $=0.294 \mathrm{kNm} \div 0.097 \mathrm{~m}=3.03 \mathrm{kN}$
Zone D (positive loads) =
Moment $=3.92 \mathrm{kN} \times 0.075 \mathrm{~m}=0.294 \mathrm{kNm}$
Force $=0.294 \mathrm{kNm} \div 0.033 \mathrm{~m}=8.91 \mathrm{kN}$
Resulting worst case loads to anchor =
Zone A with 5.88 kN shear and 4.54 kN tension
Zone D with 3.92 kN shear and 8.91 kN tension
Anchors to be fixed as 130 mm long 12 mm ADI self-tapping concrete bolt through the back of a band and plate as shear tie each with permissible shear of 15 kN per bolt and permissible tension load of 13 kN

Check COMBINED anchor bolt loading:

$$
\begin{aligned}
& \text { Zone } \mathrm{A}= \\
& \begin{aligned}
& \text { Combined loading }=\frac{\mathrm{fs}}{\mathrm{Fs}}+\frac{\mathrm{ft}}{\mathrm{Ft}}<1.2 \text { as TG4:11 } \\
&=\frac{5.88}{15}+\frac{4.54}{13}=0.74(<1.2) \quad \text { OK } \\
& \text { Zone } \mathrm{D}= \\
& \text { Combined loading }=\frac{\mathrm{fs}}{\mathrm{Fs}}+\frac{\mathrm{ft}}{\mathrm{Ft}}<1.2 \text { as TG4:11 } \\
&=\frac{3.92}{15}+\frac{8.91}{13}=0.946(<1.2) \quad \text { OK }
\end{aligned}
\end{aligned}
$$

Ties to be tested in accordance with TG4 at $1.25 \times$ required load therefore increased proof test required $=$ $8.91 \times 1.25=11.14 \mathrm{kN}$

Title:	Access and vertical propping to the max loads specified for use at The Market Car Park, Peterborough.	Job No: Sheet No:	$\begin{aligned} & \text { 1529-1-2-3- } \\ & \text { 4-5-6-7 } \\ & 7 \end{aligned}$	$\begin{aligned} & \text { Rev } \\ & \text { Date } \\ & \text { Of } \end{aligned}$	20
Contractor:		Prepd By:	SMC	Date:	23.9.19
		Chkd By:		Date:	

Vertical propping

Total load allowed for per floor level $=8.22 \mathrm{kN} / \mathrm{m}^{2}$ all as specified by Rolton Group
All propping to be constructed in a maximum grid size of $2.0 \mathrm{~m} \times 2.0 \mathrm{~m}$ with props at each level positioned directly above props below. Therefor maximum load per prop line per floor $=2.0 \mathrm{~m} \times 2.0 \mathrm{~m} \times 8.22 \mathrm{kN} / \mathrm{m}^{2}=$ 32.88 kN

Self weight of the propping system at each level =
Tubular props on $5^{\text {th }}$ floor $=$
Uprights $=2.0 \mathrm{~m} \times 2=4 \mathrm{~m}$
Ledgers $/$ transoms $=2.0 \mathrm{~m} \times 4=8 \mathrm{~m}$
Ledger bracing $/$ face bracing $=1.5 \mathrm{~m} \times 2=3 \mathrm{~m}$
Total $=(4 \mathrm{~m}+8 \mathrm{~m}+3 \mathrm{~m}) \times 4.4 \mathrm{~kg} / \mathrm{m}+8$ fittings $\times 1 \mathrm{~kg}=74 \mathrm{~kg}$
$74 \mathrm{~kg} \times 9.81 \div 1000=0.725 \mathrm{kN}$
Soleboards $=0.225 \mathrm{~m} \times 0.7 \mathrm{~m} \times 4 \times 0.25 \mathrm{kN} / \mathrm{m}^{2}=0.15 \mathrm{kN}$
Total self weight $=0.15 \mathrm{kN}+0.725 \mathrm{kN}=0.88 \mathrm{kN}$
Single soldier props on $4^{\text {th }}$ floor $=$
Threaded shoring adaptor $=12.7 \mathrm{~kg}$
Tubular shoring adaptor $=5.2 \mathrm{~kg}$
1.125 m soldier $=25.43 \mathrm{~kg}$

Ledgers $/$ transoms $=2.0 \mathrm{~m} \times 4=8 \mathrm{~m}$
Ledger bracing $/$ face bracing $=1.5 \mathrm{~m} \times 2=3 \mathrm{~m}$
Total $=(8 \mathrm{~m}+3 \mathrm{~m}) \times 4.4 \mathrm{~kg} / \mathrm{m}+8$ fittings $\times 1 \mathrm{~kg}+25.43 \mathrm{~kg}+5.2 \mathrm{~kg}+12.7 \mathrm{~kg}=99.73 \mathrm{~kg}$
$99.73 \mathrm{~kg} \times 9.81 \div 1000=0.978 \mathrm{kN}$
Soleboards $=0.225 \mathrm{~m} \times 0.7 \mathrm{~m} \times 4 \times 0.25 \mathrm{kN} / \mathrm{m}^{2}=0.15 \mathrm{kN}$
Total self weight $=0.15 \mathrm{kN}+0.978 \mathrm{kN}=1.13 \mathrm{kN}$
Single soldier prop with single tubular prop on $3^{\text {rd }}$ floor $=$
Threaded shoring adaptor $=12.7 \mathrm{~kg}$
Tubular shoring adaptor $=5.2 \mathrm{~kg}$
1.125 m soldier $=25.43 \mathrm{~kg}$

Upright $=2.0 \mathrm{~m}$

Title:	Access and vertical propping to the max loads specified for use at The Market Car Park, Peterborough.	Job No:	1529-1-2-3- 4-5-6-7	Rev Date Of	20
Contractor:		Sheet No:	8		Prepd By:
		SMC	Date:	23.9 .19	
	Chkd By:		Date:		

Ledgers / transoms $=2.0 \mathrm{~m} \times 4=8 \mathrm{~m}$
Ledger bracing / face bracing $=1.5 \mathrm{~m} \times 2=3 \mathrm{~m}$
Total $=(2.0 \mathrm{~m}+8 \mathrm{~m}+3 \mathrm{~m}) \times 4.4 \mathrm{~kg} / \mathrm{m}+10$ fittings $\times 1 \mathrm{~kg}+25.43 \mathrm{~kg}+5.2 \mathrm{~kg}+12.7 \mathrm{~kg}=110.53 \mathrm{~kg}$ $110.53 \mathrm{~kg} \times 9.81 \div 1000=1.08 \mathrm{kN}$

Soleboards $=0.225 \mathrm{~m} \times 0.7 \mathrm{~m} \times 4 \times 0.25 \mathrm{kN} / \mathrm{m}^{2} \times 2=0.3 \mathrm{kN}$
Total self weight $=0.3 \mathrm{kN}+1.08 \mathrm{kN}=1.38 \mathrm{kN}$

Double soldier props on $2^{\text {nd }}$ and $1^{\text {st }}$ floors $=$
Threaded shoring adaptor $=12.7 \mathrm{~kg} \times 2=25.4 \mathrm{~kg}$
Tubular shoring adaptor $=5.2 \mathrm{~kg} \times 2=10.4 \mathrm{~kg}$
1.125 m soldier $=25.43 \mathrm{~kg} \times 2=50.86 \mathrm{~kg}$

Ledgers / transoms $=2.0 \mathrm{~m} \times 4=8 \mathrm{~m}$
Ledger bracing $/$ face bracing $=1.5 \mathrm{~m} \times 2=3 \mathrm{~m}$
Total $=(8 \mathrm{~m}+3 \mathrm{~m}) \times 4.4 \mathrm{~kg} / \mathrm{m}+12$ fittings $\times 1 \mathrm{~kg}+50.86 \mathrm{~kg}+10.4 \mathrm{~kg}+25.4 \mathrm{~kg}=147.06 \mathrm{~kg}$
$147.06 \mathrm{~kg} \times 9.81 \div 1000=1.44 \mathrm{kN}$
Soleboards $=0.225 \mathrm{~m} \times 0.7 \mathrm{~m} \times 4 \times 0.25 \mathrm{kN} / \mathrm{m}^{2} \times 2=0.3 \mathrm{kN}$
Total self weight $=0.3 \mathrm{kN}+1.44 \mathrm{kN}=1.74 \mathrm{kN}$
Double soldier props with tubular prop on ground floor $=$
Threaded shoring adaptor $=12.7 \mathrm{~kg} \times 2=25.4 \mathrm{~kg}$
Tubular shoring adaptor $=5.2 \mathrm{~kg} \times 2=10.4 \mathrm{~kg}$
1.8 m soldier $=37.42 \mathrm{~kg} \times 2=74.84 \mathrm{~kg}$

Upright $=2.0 \mathrm{~m}$
Ledgers / transoms $=2.0 \mathrm{~m} \times 4=8 \mathrm{~m}$
Ledger bracing $/$ face bracing $=1.5 \mathrm{~m} \times 2=3 \mathrm{~m}$
Total $=(2 \mathrm{~m}+8 \mathrm{~m}+3 \mathrm{~m}) \times 4.4 \mathrm{~kg} / \mathrm{m}+14$ fittings $\times 1 \mathrm{~kg}+74.84 \mathrm{~kg}+10.4 \mathrm{~kg}+25.4 \mathrm{~kg}=181.84 \mathrm{~kg}$
$181.84 \mathrm{~kg} \times 9.81 \div 1000=1.78 \mathrm{kN}$
Soleboards $=0.225 \mathrm{~m} \times 0.7 \mathrm{~m} \times 4 \times 0.25 \mathrm{kN} / \mathrm{m}^{2} \times 2=0.3 \mathrm{kN}$
Total self weight $=0.3 \mathrm{kN}+1.78 \mathrm{kN}=2.08 \mathrm{kN}$

Title:
Access and vertical propping to the max loads specified for use at The Market Car Park, Peterborough.

Contractor:

Job No:	1529-1-2-3- -1 4-5-6-7	Rev Date Of	20
Sheet No:	9		
Prepd By:	SMC	Date:	23.9 .19

Therefore loads per level from structure and self weight of propping system $=$
Tubular scaffold props constructed on floor level 5 load $=32.88 \mathrm{kN}+0.88 \mathrm{kN}=33.76 \mathrm{kN}$
Single soldier prop constructed on floor level 4 load $=33.76 \mathrm{kN}+32.88 \mathrm{kN}=66.64 \mathrm{kN}$
Single soldier prop with tubular prop constructed on floor level 3 load $=66.64 \mathrm{kN}+32.88 \mathrm{kN}=98.64 \mathrm{kN}$
Double soldier props constructed on floor level 2 load $=32.88 \mathrm{kN} \times 4=131.52 \mathrm{kN}$
Double soldier props constructed on floor level 1 load $=32.88 \mathrm{kN} \times 5=164.44 \mathrm{kN}$
Double soldier props with tubular prop constructed on floor level 1 load $=32.88 \mathrm{kN} \times 6=197.28 \mathrm{kN}$

Floor level	Cumulative loads from existing structure and props from floors above	Total load at floor level immediately above prop level	Self weight propping	Total load at floor level
$6^{\text {th }}$ Floor	-	-	-	
$5^{\text {th }}$ Floor	-	32.88 kN	0.88 kN	33.76 kN
$4^{\text {th }}$ Floor	33.76 kN	32.88 kN	1.13 kN	67.77 kN
$3^{\text {td }}$ Floor	67.77 kN	32.88 kN	1.38 kN	102.03 kN
$2^{\text {td }}$ Floor	102.03 kN	32.88 kN	1.74 kN	136.65 kN
$1^{\text {st }}$ Floor	136.65 kN	32.88 kN	1.74 kN	171.27 kN
Ground	171.27 kN	32.88 kN	2.08 kN	206.23 kN

The existing structure must be checked to ensure that it is capable of safely transmitting the loads from one level to another and the existing ground level must be checked to ensure it is capable of safely supporting the loads specified, all by others. Some existing partition walls, toilets and toilet cubicles will need to be removed prior to the start of construction. All making good necessary of ground floor around toilet waste pipes etc to be designed supplied and fixed by other and must be capable of supporting the loads specified.

Title:	Access and vertical propping to the max loads specified for use at The Market Car Park, Peterborough.	Job No:	1529-1-2-3- 4-5-6-7 10	Rev Date Of	
Contractor:		Sheet No:			
		Prepd By:	SMC	Date:	23.9 .19
	Chkd By:		Date:		

Props fixed per level

$5^{\text {th }}$ Floor

Prop load = 33.76kN
Props to be fixed as pairs of tubular uprights each fixed with adjustable base plates with a minimum safe working load of 30 kN .
The scaffold is to be fully braced with 1.8 m maximum lift heights, in accordance with TG20 the effective length of the uprights including a k factor of $1.1=1.8 \mathrm{~m} \times 1.1=1.98 \mathrm{~m}$ taken as 2.0 m resulting in a permissible axial load of 29.1 kN .
Therefore capacity of props $=29.1 \mathrm{kN} \times 2=58.2 \mathrm{kN}>33.79 \mathrm{kN}$ therefore OK

$4^{\text {th }}$ Floor

Prop load = 67.77 kN
Props to be fixed as single lines of soldier props with a minimum safe working load of $100 \mathrm{kN}>$ 67.77 kN therefore OK

$3^{\text {rd }}$ Floor

Prop load $=102.03 \mathrm{kN}$
Props to be fixed as single lines of soldier props with an adjacent tubular prop.
Tubular props to be fixed with adjustable base plate with a minimum safe working load of 30 kN . The scaffold is to be fully braced with 1.0 m maximum lift heights, in accordance with TG20 the effective length of the uprights including a k factor of $1.1=1.0 \mathrm{~m} \times 1.1=1.1 \mathrm{~m}$ resulting in a permissible axial load of 51.9 kN . The top un braced lift of the tubular uprights is taken with an effective length of $\mathrm{I} \times 2=0.8 \mathrm{~m} \times 2=1.6 \mathrm{~m}$ resulting in a permissible axial load of 39.2 kN .
Therefore item limiting capacity of tubular upright is adjustable base at 30 kN
Soldier props to be fixed as single lines of soldier props with a minimum safe working load of 100 kN

Therefore capacity of props $=100 \mathrm{kN}+30 \mathrm{kN}=130 \mathrm{kN}>102.03 \mathrm{kN}$ therefore OK

Title:	Access and vertical propping to the max loads specified for use at The Market Car Park, Peterborough.	Job No: Sheet No:	$\begin{aligned} & \text { 1529-1-2-3- } \\ & \text { 4-5-6-7 } \\ & 11 \end{aligned}$	Rev Date Of	20
Contractor:		Prepd By:	SMC	Date:	23.9.19
		Chkd By:		Date:	

$2^{\text {nd }}$ Floor

Prop load $=136.65 \mathrm{kN}$
Props to be fixed as double lines of soldier props each with a minimum safe working load of 100 kN therefore capacity of props $=100 \mathrm{kN} \times 2=200 \mathrm{kN}>136.65 \mathrm{kN}$ therefore OK

$1^{\text {st }}$ Floor

Prop load $=171.27 \mathrm{kN}$
Props to be fixed as double lines of soldier props each with a minimum safe working load of 100 kN therefore capacity of props $=100 \mathrm{kN} \times 2=200 \mathrm{kN}>171.27 \mathrm{kN}$ therefore OK

Ground Floor

Prop load $=206.23 \mathrm{kN}$
Props to be fixed as double lines of soldier props with an adjacent tubular prop.
Tubular props to be fixed with adjustable base plate with a minimum safe working load of 30 kN . The scaffold is to be fully braced with 1.6 m maximum lift heights, in accordance with TG20 the effective length of the uprights including a k factor of $1.1=1.6 \mathrm{~m} \times 1.1=1.76 \mathrm{~m}$ taken as 1.8 m resulting in a permissible axial load of 33.7 kN . The top un braced lift of the tubular uprights is taken with an effective length of $\mathrm{I} \times 2=0.8 \mathrm{~m} \times 2=1.6 \mathrm{~m}$ resulting in a permissible axial load of 39.2 kN . Therefore item limiting capacity of tubular upright is adjustable base at 30 kN

Soldier props to be fixed as double lines of soldier props with a minimum safe working load of 100 kN x $2=200 \mathrm{kN}$

Therefore capacity of props $=200 \mathrm{kN}+30 \mathrm{kN}=230 \mathrm{kN}>206.23 \mathrm{kN}$ therefore OK

Title:	Access and vertical propping to the max loads specified for use at The Market Car Park, Peterborough.	Job No: Sheet No:	$\begin{aligned} & \text { 1529-1-2-3- } \\ & \text { 4-5-6-7 } \\ & 12 \end{aligned}$	Rev Date Of	20
Contractor:		Prepd By:	SMC	Date:	23.9.19
		Chkd By:		Date:	

Props to car park ramps

Props to car park ramps to be fixed with swivel shoring base with 90 kN capacity.

Therefore props fixed per level

$5^{\text {th }}$ Floor

Prop load $=33.76 \mathrm{kN}$
Props to be fixed as single lines of soldier props with a minimum safe working load of $90 \mathrm{kN}>$ 33.76 kN therefore OK

$4^{\text {th }}$ Floor

Prop load $=67.77 \mathrm{kN}$
Props to be fixed as single lines of soldier props with a minimum safe working load of 90 kN > 67.77 kN therefore OK

$3^{\text {rd }}$ Floor

Prop load $=102.03 \mathrm{kN}$
Props to be fixed as double lines of soldier props each with a minimum safe working load of 90 kN therefore capacity of props $=90 \mathrm{kN} \times 2=180 \mathrm{kN}>102.03 \mathrm{kN}$ therefore OK

$2^{\text {nd }}$ Floor

Prop load $=136.65 \mathrm{kN}$
Props to be fixed as double lines of soldier props each with a minimum safe working load of 90 kN therefore capacity of props $=90 \mathrm{kN} \times 2=180 \mathrm{kN}>136.65 \mathrm{kN}$ therefore OK

Rolton Group

Title:	Access and vertical propping to the max loads specified for use at The Market Car Park, Peterborough.	Job No:	1529-1-2-3- 4-5-6-7 13	Rev Date Of	20

$1^{\text {st }}$ Floor

Prop load $=171.27 \mathrm{kN}$
Props to be fixed as double lines of soldier props each with a minimum safe working load of 100 kN therefore capacity of props $=90 \mathrm{kN} \times 2=180 \mathrm{kN}>171.27 \mathrm{kN}$ therefore OK

Ground Floor

Prop load $=206.23 \mathrm{kN}$
Props to be fixed as triple cluster of soldier props each with a minimum safe working load of 90 kN therefore capacity of props $=90 \mathrm{kN} \times 3=270 \mathrm{kN}>206.23 \mathrm{kN}$ therefore OK

Title:
Access and vertical propping to the max Job No: loads specified for use at The Market Car Park, Peterborough.

Sheet No:
Prepd By: SMC
Chkd By:

1529-1-2-3- Rev 4-5-6-7 Date 14

Of

Contractor:

Date:

MKII SOLDIER - System - Soldiers

3600 (nin
310 ROM2
200
DMOR M M M M M = Monk

${ }^{125}$ BRE 2

900

675

450

Soldier Length	Code No. (Painted)	Code No. (Galv))	Weight kg
3600	$\mathbf{4 4 3 0 0 6}$	$\mathbf{4 4 3 0 9 6}$	70.97
3150	$\mathbf{4 4 3 0 0 5}$	$\mathbf{4 4 3 0 9 5}$	62.58
2700	$\mathbf{4 4 3 0 0 4}$	$\mathbf{4 4 3 0 9 4}$	54.20
1800	$\mathbf{4 4 3 0 0 3}$	$\mathbf{4 4 3 0 9 3}$	37.42
1125	$\mathbf{4 4 3 0 0 2}$	$\mathbf{4 4 3 0 9 2}$	25.43
900	$\mathbf{4 4 3 0 0 1}$	$\mathbf{4 4 3 0 9 1}$	$\mathbf{2 1 . 4 3}$
675	$\mathbf{4 4 3 0 0 8}$	$\mathbf{4 4 3 0 9 8}$	19.48
450	$\mathbf{4 4 3 0 0 7}$	$\mathbf{4 4 3 0 9 7}$	11.65

Specification / Properties				
Material	BSC Tenform XF450		Axial Comp. (Facade)	300 kN
Finish	As speci		Axial Comp. (Shore)	100 kN
Weight		kg	Axial Tension	120 kN
Weight/m	20.8	kg / m	End Reaction (see note 2)	115 kN
C.S. Area (Gross)	25.73	cm 2	Centre Reac. (see note 2)	115 kN
C.S. Area (Avge)	22.52	cm2	B. Mo. (Hog) Max *	38 kNm
E	206000	N/mm2	B. Mo. (Sag) Max*	38 kNm
lxx	1578	cm4	B. Mo. (at joint)	10 kNm
lyy	534.6	cm4	B. Mo. (Reinf. joint)	15 kN
Tx	7.83	cm	Tie Load (443020 Washer)	115 kN
ry	4.55	cm	Shear Max *	100 kN
Minimum F.O.S.	2.1		*See page 25	
Guidance Notes				
1) Comp/Tension loads may be limited by end attachment/strut length. See relevant sheets.				
2) Minimum bearing length 155 mm (as Tie washer 443020)				
3) Weight excludes timber insert. (Additional weight approx, $1.1 \mathrm{~kg} / \mathrm{m}$)				
4) For detail dimensions see page 2				
5) See also (limited availability)	343 mm	5, packe	\& 75 mm page 3	

Title: Access and vertical propping to the max loads specified for use at The Market Car Park, Peterborough.

Job No:
Sheet No:
Prepd By: SMC
1529-1-2-3- Rev
4-5-6-7 Date
15
Of
Date:
23.9.19

MKII SOLDIER - Bracing Coupler Assembly

[^0]Title:
Access and vertical propping to the max Job No: loads specified for use at The Market Car Park, Peterborough.

Sheet No:

Prepd By: SMC
1529-1-2-3- Rev 4-5-6-7 Date
16
Of

Components	
Issue C Date 06/12/06	Page 41

MKII SOLDIER - Swivel Shoring Base

Specification / Properties			
Material: Finish:		Safe Working Loads:	
	Steel	Swivel Shoring Base:	$\pm 90 \mathrm{kN}$
	As Specified	..Connected to Tubular Shoring	
		Adaptor:	$\pm 90 \mathrm{kN}$
Minimum F.O.S:		..Connected to Threaded	
		Shoring Adaptor: (Solid stem)	$\pm 90 \mathrm{kN}$
Code No.	443024 (Painted)	...Connected to Threaded	
	443087 (Galvanised)	Shoring Adaptor: (Hollow Stem)	-50 kN (Tension) +90 kN (Compression)
Guidance Notes			
1) Comp/Tension loads may be limited by attached components. See relevant sheets.			
2) Comp/Tension loads may be limited by anchorage or foundations. Anchors are not supplied by SG For guidance on anchor tensile/shear loads see page 62.			
3) Tubular Shoring Adaptor (443037) or		Base with 1 No M24 x 90 HT Bolt \& Nut (584235).	ted to Swivel Shoring

Title: Access and vertical propping to the max loads specified for use at The Market Car Park, Peterborough.

Job No:
Sheet No:

1529-1-2-3- Rev 4-5-6-7 Date 17

Of

MKII SOLDIER - Threaded Shoring Adaptor (Solid Stem)

Guidance Notes

1) Comp/Tension loads may be limited by attached components. See relevant sheets.
2) Adaptor fixes to Soldier using 4 No M16 $\times 35$ HT Screws \& Nuts (584233)

3a) Head/Base Plate (443022) or Forkhead (443018) fix to jack using 1 No M12 $\times 80$ Bolt \& Nut (584207) (No tensile value).

3b) Swivel Base (443024), Heavy Duty Push-Pull Adaptor (443025, Push-Pull Bracket (443027) or Web Bearing Plates (443026) fix to Jack using 1 No M24 x 90 HT Bolt \& Nut (584235)
4) For adjustment lengths see page 58 .
5) *In Special cases the allowable compression may be 200 kN . Contact the Formwork design office for more information.

Title:
Access and vertical propping to the max Job No: loads specified for use at The Market Car Park, Peterborough.

	4-5-6-7 18	Date Of	20
Sheet No:			
Prepd By:	SMC	Date:	23.9 .19

MKII SOLDIER	
Component	Tubular Shoring Adaptor

TYPE B2

1529-1-2-3- Rev 4-5-6-7 Date 18 SMC

Date:23.9.19

TYPE B

PE B
Base Plate to match
MKII Soldier End Plate
(See Page 2)

Rolton Group

Title: Access and vertical propping to the max loads specified for use at The Market Car Park, Peterborough.

Job No:

	4-5-6-7	Date Of	20
Sheet No:	19	Date:	23.9.19

1529-1-2-3- Rev 4-5-6-7 Date

Of
Date: 23.9.19

Technical Data Sheet

 Product Designation Material $\begin{array}{ll}\text { Material } & \text { : Zinc \& Yellow Passivated (thickness 3~5 Microns } \\ \text { Finish }\end{array}$ CS Bolts are a single fixing solution for the majority of construction materials which are very easy to install and have high pull out and shear values. They can also be used close to an edge without breaking the substrate. Suitable for brick, wood, marble, block \& stone.

Rolton Group

Title:	Access and vertical propping to the max loads specified for use at The Market Car Park, Peterborough.	Job No:	1529-1-2-3- 4-5-6-7	Rev Date Of	
Contractor:		Sheet No:	20		

[^0]: Guidance Notes

 1) For specification \& properties of Soldier Bracing Coupler refer to page 40
 2) Allowable load on a Soldier shore is limited by its unrestrained length.
 3) For Shores up to 10 m high and 100 kN load, lacing \& bracing may be required
 4) Lift heights of not greater than 4.5 m will allow full 100 kN loading, however for practical purposes,
 (e.g. erection or lace / brace load) smaller lift heights may be required.
 5) Lacing should resist $21 / 2 \%$ of applied load in shore via bracing or physical ties to permanent works.
 (Ref : BS 5975)
 6) Laced / braced Shores may also require bracing to Tubular \& Threaded Adaptors. Refer to page 35 (Tubular Adaptor) or page 36 (Threaded Adaptor).
 7) For minor axes of Soldiers lace tubes are fixed using the Soldier Bracing Couplers. For major axes of Soldiers lace tubes are fixed to minor axis lacing using Double Couplers. Brace tubes may be fixed to lace tubes with Swivel Couplers (lace \& brace parallel) or to lace tubes with Double Couplers (lace \& brace at right angles). S.W.L SGB Double \& Swivel Couplers 6.25 kN, SGB Mk3A Double Coupler 12.5 kN
