



# **Phase 2 Ground Investigation**

Park Gerry at Park Rd, Camborne, TR148QB

## 28 February 2024

Wheal Jane Consultancy

Old Mine Offices, Wheal Jane, Baldhu, Truro, Cornwall, TR3 6EE

01872 560200

www.wheal-jane-consultancy.co.uk

consultancy@wheal-jane.co.uk

SI21655/PH2



#### **DOCUMENT CONTROL SHEET**

| Client         | Mei Loci                                  |
|----------------|-------------------------------------------|
| Project Title  | Park Gerry at Park Rd, Camborne, TR14 8QB |
| Document Title | Phase 2 Site Investigation                |
| Document No.   | SI21655/PH2                               |

| Date             | Status | Revision | Prepared By | Approved By |
|------------------|--------|----------|-------------|-------------|
| 28 February 2024 | Final  | 1        | TG/SLW/MV   | MJC         |



#### CONTENTS

| C O     |                      | T Sduction                                                                   |       |
|---------|----------------------|------------------------------------------------------------------------------|-------|
| •       | 1.1                  | Instruction1                                                                 | ••••  |
|         | 1.2                  | Scope and Objectives1                                                        |       |
|         | 1.3                  | Limitations 1                                                                |       |
| 2       | The S                | Site                                                                         | ••••  |
|         | 2.1                  | Site Location and Layout3                                                    |       |
|         | 2.2                  | Surrounding area3                                                            |       |
|         | 2.3                  | Proposed Development                                                         |       |
| 3       | <b>Site I</b><br>3.1 | nvestigation                                                                 | ••••• |
|         | 3.2                  | Site Works4                                                                  |       |
|         | 3.3                  | Windowless Sample Boring5                                                    |       |
|         | 3.4                  | Dynamic Probe5                                                               |       |
|         | 3.5                  | Installations and Monitoring5                                                |       |
|         | 3.6                  | Hand Excavated Trial Pitting6                                                |       |
|         | 3.7                  | Chemical Sampling and Testing6                                               |       |
| 4       | <b>Grou</b><br>4.1   | und Conditions                                                               |       |
|         | 4.2                  | Topsoil8                                                                     |       |
|         | 4.3                  | Cohesive Weathered Mylor Slate Formation                                     |       |
|         | 4.4                  | Water9                                                                       |       |
|         | 4.5                  | Contamination Indications9                                                   |       |
| 5       | Geo                  | technical assessment                                                         | 1     |
|         | 5.1                  | Introduction10                                                               |       |
|         | 5.2                  | Chemical Attack on Buried Concrete                                           |       |
| 6       | <b>Con</b> t 6.1     | tamination Assessment                                                        | 1     |
|         | 6.2                  | Ground Gas Risk15                                                            |       |
|         | 6.3                  | Comparison with Generic and Site-specific Assessment Criteria (Site Visit 2) |       |
|         | 6.4                  | Conceptual Site Model Matrix20                                               |       |
| 7       | Con                  | clusions                                                                     | 2     |
| 8       |                      | ommendations                                                                 |       |
| 9<br>10 |                      | rence listES                                                                 |       |
|         | 14011                | Ly                                                                           | Z     |



#### **FIGURES**

Figure 2.1: Site Location Plan
Figure 2.2: Current Site Layout
Figure 2.3: Proposed Development

Figure 3.1: Exploratory Hole Location Plan

#### **APPENDICES**

Appendix A: Exploratory Holes Logs Appendix B: Gas Monitoring Results Appendix C: Laboratory Test Results Appendix D: CLEA Statistical Analysis

#### **TABLES**

Table 3.1: Site Works June 2023
Table 3.2: Site Works January 2024
Table 3.3: Borehole Installations

Table 4.1: Ground Conditions Encountered

Table 4.2: SPT Results

Table 4.3: Water Encountered

Table 6.1: Soil Chemical Laboratory Results (June 2023 Site Visit)

Table 6.2: CLEA Software Inputs

Table 6.3: Ground Gas Monitoring Results

Table 6.4: Soil Chemical Laboratory Results (January 2024 Site Visit)

Table 6.5: Refined Conceptual Model



#### **EXECUTIVE SUMMARY**

|                                                                                                                                                                                                                                                       | Objectives                                                                                                                                                                                                         |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Wheal Jane Consultancy was commissioned by Mei Loci to undertake an intrusive investigation on the site of a recreational development  Site Investigation                                                                                             |                                                                                                                                                                                                                    |  |  |  |
| Previous<br>Investigations                                                                                                                                                                                                                            | A phase 1 environmental risk assessment was undertaken by Wheal Jane Consultancy in November 2022.  A phase 2 ground investigation was undertaken by Wheal Jane                                                    |  |  |  |
| Site Works                                                                                                                                                                                                                                            | Consultancy in June 2023.  Samples were taken during an intrusive investigation from 6no. windowless sampling (WS) boreholes during the first site investigation (Site Visit 1) and from 6no. hand excavated trial |  |  |  |
| Ground<br>Conditions                                                                                                                                                                                                                                  | pits (Site Visit 2).  Full ground profiles were obtained, showing topsoil overlaying cohesive weathered Mylor Slate Formation.                                                                                     |  |  |  |
| Water was encountered during the site investigation in exploratory hole WS03 at a depth of 4.50mBGL. However, due to the extensive mine workings in the area lowering the water table, this is considered likely to be a small area of perched water. |                                                                                                                                                                                                                    |  |  |  |
| Conclusions                                                                                                                                                                                                                                           |                                                                                                                                                                                                                    |  |  |  |

- The site was subject to a Phase 2 Ground Investigation to determine the level and risk of potential contamination.
- It can be concluded that arsenic levels within WS02 and HP01, in the northwestern corner of the site, present an unacceptable level of risk and targeted remediation will be required in this area of the site.
- Following favourable bioaccessibility testing, all other potential contaminants, including heavy metals, hydrocarbons, and ground gasses, across the remainder of the site, are within acceptable levels.
- Due to the contamination being present within a single area of the site, it is highly likely that a zoned remediation strategy, targeted specifically in the far extent of the northwestern corner of the site will be suitable.
- The site is likely to be suitable for its intended use, as long as the recommendations set out in this report are adhered to.

#### **Recommendations**

- A Phase 3 Remediation Strategy Report should be compiled which outlines the scope of remedial works required to reduce the level of contamination to such condition that the site can be deemed suitable for its proposed residential use.
- It is likely that a zoned remediation strategy localised within the far northwestern extent of the site will be suitable for the proposed development.
- Once the remediation strategy has been fully implemented and the work concluded to the required specifications, a Phase 4 Verification Report and Certificate must be produced.
- A flow chart detailing the phased approach to land contamination, as set out in CLR11, is contained to the rear of the report.



- The site is situated in an area where greater than 30% of the properties are above the action level. As the site is open-air, risk from radon build-up can be considered lower, however any enclosed structure on site will require full radon protection measures.
- Suitable safety measures should be taken by those working on site to mitigate the risks associated with contaminated media including undertaking the appropriate risk assessments and ensuring all workers are wearing the correct PPE.
- Waste removed from site shall be disposed of at a suitable facility with the appropriate Waste Transfer Notices obtained for future records. Asbestos waste should be handled by a suitable waste contractor.



#### 1 INTRODUCTION

#### 1.1 Instruction

- 1.1.1 Wheal Jane Consultancy (WJC) was commissioned by Mei Loci, to undertake a Phase 2 Ground Investigation at a site known as Park Gerry at Park Rd, Camborne, TR14 8QB.
- 1.1.2 This report has been prepared by Wheal Jane Consultancy solely for the benefit of the client. It shall not be relied upon or transferred to any third party without the prior written authorisation of WJC.

#### 1.2 Scope and Objectives

- 1.2.1 The objective of the initial investigation is to quantify any land contamination based on in-situ data collected from the actual site which will then be interpreted and evaluated.
- 1.2.2 The objective of the second site investigation is to further delineate and constrain the area of the site which may require remediation.
- 1.2.3 This investigation was developed to target the possible contamination related to the site's historic use and/or natural geology.
- 1.2.4 The objective of this investigation is also to evaluate the geotechnical parameters of the sub-surface material in order to aid foundation design.
- 1.2.5 The conclusions and recommendations of this report are valid for a period of 12 months from the date of issue. Outside of this time frame the report will require reviewing by a suitably qualified geoenvironmental engineer / environmental scientist, to ensure that the report complies with any changes to industry standards, policies and/or guidelines.
- 1.2.6 It is recommended that a copy of this report be submitted to the local authority for checking, prior to commissioning any further work which may be required.
- 1.2.7 This assessment has been undertaken with guidance from B\$10175:2011 and Environment Agency report CLR11, and as such represents a Phase 2 Ground Investigation.

#### 1.3 Limitations

- 1.3.1 Field work consisted of discrete sampling across the site, to assess the character and degree of contamination. Conditions of the ground at locations not included within the investigation may be different from the tested locations.
- 1.3.2 This report considers site conditions at the time of the ground investigation, but ground conditions may change with time. If future work discovers ground conditions that vary



- significantly from the findings available in this report, the conclusions should be reviewed in the context of the new information.
- 1.3.3 Findings were assessed in the context of standards and methodology current at the time of reporting.
- 1.3.4 The findings and conclusions in this report are based upon information derived from a variety of sources. WJC cannot accept liability for the accuracy or completeness of any information derived from third party sources.



#### 2 THE SITE

#### 2.1 Site Location and Layout

- 2.1.1 The site is located approximately 1.10 km South-West of the Camborne (East) A30 junction. The site is situated within Camborne town. The site is approximately centred on National Grid Reference SX 165280 40640.
- 2.1.2 The site is irregular in shape and covers an area of 3.79 ha.
- 2.1.3 A site location plan (SLP) is contained in Figure 2.1, to the rear of the report.
- 2.1.4 The current site plan is contained in Figure 2.2, to the rear of the report.

#### 2.2 Surrounding area

| Direction | Land Use    |
|-----------|-------------|
| North     | Residential |
| East      | Residential |
| South     | Residential |
| West      | Residential |

#### 2.3 Proposed Development

- 2.3.1 It is proposed to redevelop the public park extensively, adding areas to play sports, a skate park, flower beds, and pathways. For more information see PA22/00625/PREAPP.
- 2.3.2 The proposed site plan is contained in Figure 2.3, to the rear of the report.



#### 3 SITE INVESTIGATION

#### 3.1 Phase 1 Findings

- 3.1.1 A Phase 1 Desk Study was undertaken by Wheal Jane Consultancy in November 2022 (Ref: 21441/PH1; dated 15/11/2022).
- 3.1.2 The risks identified in the desk study were summarised within the Conceptual Site Model (CSM). It was concluded that an investigation would be required involving soil sampling and testing; focusing specifically on heavy metals, hydrocarbons, and ground gasses.

#### 3.2 Site Works

- 3.2.1 Two intrusive site investigations were conducted on 29/06/23 (Site Visit 1), and 30/01/2024 (Site Visit 2). The investigations were overseen by geoenvironmental engineers from Wheal Jane Consultancy.
- 3.2.2 The following table summarises the intrusive investigation techniques employed during the site investigation in June 2023:

Table 3.1: Site Works June 2023

|                       | Exploratory Hole | Hole Depths | Comments              |  |
|-----------------------|------------------|-------------|-----------------------|--|
| Exploratory Hole Type | ID               | (mBGL)      | Comments              |  |
| Windowless Sample     | WS01 – WS06      | 1.50 – 5.00 | Undertaken for site   |  |
| Borehole              |                  |             | coverage.             |  |
| Dynamic Probe         | DP01 – DP02      | DP01 – DP02 | To determine depth to |  |
| Dynamic Flobe         | DF01 - DF02      | DF01 - DF02 | Bedrock.              |  |

3.2.3 The following table summarises the intrusive investigation techniques employed during the site investigation in January 2024;

Table 3.2: Site Works January 2024

| Exploratory Hole Type    | Exploratory Hole ID | Hole Depths<br>(mBGL) | Comments                                                        |
|--------------------------|---------------------|-----------------------|-----------------------------------------------------------------|
| Hand Excavated Trial Pit | HP01 – HP06         | 0.75 – 1.20           | Undertaken to further constrain areas of contamination on site. |

- 3.2.4 Exploratory hole logs are included as Appendix A.
- 3.2.5 A plan showing the location of the exploratory holes is provided as Figure 3.1.



#### 3.3 Windowless Sample Boring

- 3.3.1 6no. Windowless Sample Boreholes, designated WS01 WS06 were advanced to depths of between 1.50 5.00mBGL using a premier 110 windowless sampler on the 29/06/23. Standard Penetration Tests (SPTs) and representative soil samples were taken at regular intervals for environmental analysis and logged on site by a suitably qualified Geoenvironmental Engineer.
- 3.3.2 The locations of all exploratory holes can be seen on the exploratory hole location plan, contained as Figure 3.1.

#### 3.4 Dynamic Probe

- 3.4.1 2no. Dynamic Probe tests, designated, DP01 DP02 were advanced to depths of between 7.00 14.00mBGL using a premier 110 windowless sampler on the 29/06/23.
- 3.4.2 DP01 was advanced from the base of WS01 and DP02 was advanced from the base of WS05.
- 3.4.3 The locations of all exploratory holes can be seen on the exploratory hole location plan, contained as Figure 3.1.

#### 3.5 Installations and Monitoring

3.5.1 Gas and groundwater monitoring standpipes were installed in the following exploratory holes in order to allow long term monitoring;

Table 3.3: Borehole Installations

| Exploratory Hole | Seal (mBGL)   | Filter Zone (mBGL) |
|------------------|---------------|--------------------|
| WS01             | 0 - 1.00 mBGL | 1.00 – 5.00 mBGL   |
| WS03             | 0 - 1.00 mBGL | 1.00 – 5.00 mBGL   |
| WS04             | 0 - 1.00 mBGL | 1.00 – 3.00 mBGL   |

- 3.5.2 Gas and Groundwater monitoring commenced on the 05/07/23, with further visits on the 12/07/23, 19/07/23 and 26/07/23.
- 3.5.3 In addition to groundwater levels, the following parameters were measured and recorded using a G505363 ground gas meter:
  - % Vol of; O<sub>2</sub>, H<sub>2</sub>S, CO<sub>2</sub>, CH<sub>4</sub>, CO,
  - Flow Rate

- Flow equalisation time
- Barometric pressure (incl. trend)
- 3.5.1 The results are included as Appendix C.

#### 3.6 Hand Excavated Trial Pitting

- 3.6.1 6no. Hand Excavated Trial Pits, designated, HP01 HP06 were advanced to depths of between 0.75 1.20 mBGL using insulated hand tools on the 30/01/24.
- 3.6.2 The locations of all exploratory holes can be seen on the exploratory hole location plan, contained as Figure 3.1.

#### 3.7 Chemical Sampling and Testing

- 3.7.1 The proposed end use of the site is recreational, and the subsequent data analysis will be conducted using this setting to test for levels of contaminants against generic assessment criteria.
- 3.7.2 The Phase 1 report highlighted heavy metals and hydrocarbons as the primary contaminants of concern. The sampling undertaken was designed to obtain site-wite representation.
- 3.7.3 All retrieved samples were logged in accordance with BS5930;2015 and BS EN ISO 14689.
  Collection of media for environmental testing was obtained, stored in plastic tubs and glass jars and kept within a temperature controlled cool box before being dispatched for testing.
- 3.7.4 Samples were taken during 'Site Visit 1' at varying depths and tested for potential contaminants including the following;
  - Heavy Metals (As, B, Cd, Cr, Cu, Hg, Pb, Ni, Se, Zn)
  - Sulphates
  - Polyaromatic Hydrocarbons
  - Ha
  - Total Petroleum Hydrocarbons
  - 3.7.1 All samples were tested by a UKAS and MCERT accredited laboratory.
  - 3.7.2 The results are included as Appendix C.
- 3.7.3 Samples were taken during 'Site Visit 2' at varying depths, and tested for potential contaminants including the following;
  - Heavy Metals (As, B, Cd, Cr, Cu, Hg, Pb, Ni, Se, Zn)
  - Sulphates
  - Polyaromatic Hydrocarbons
  - Ha
  - Total Petroleum Hydrocarbons



- 3.7.4 All samples were tested by a UKAS and MCERT accredited laboratory.
- 3.7.5 The results are included as Appendix C.



#### 4 GROUND CONDITIONS

#### 4.1 General

- 4.1.1 The BGS 1:50,000-scale bedrock geological map Sheet 352, Falmouth of the area shows the site to be underlain by the Mylor Slate Formation.
- 4.1.2 The following table represents a summary of the strata encountered beneath the site;

Table 4.1: Ground Conditions

| Strata                                       | Depth Encountered<br>(mBGL) |             | Typical<br>Thickness (m) | Brief Description &<br>Comments                                                                                                                                                                                                    |
|----------------------------------------------|-----------------------------|-------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              | 110111                      | 10          |                          |                                                                                                                                                                                                                                    |
| Topsoil                                      | 0                           | 0.10 – 0.45 | 0.20                     | Turf over light brown,<br>clayey, silty, sandy,<br>TOPSOIL. Sand is fine<br>to coarse, frequent<br>rootlets                                                                                                                        |
| Cohesive<br>Weather Mylor<br>Slate Formation | 0.10 – 0.45                 | 1.50 – 5.00 | Unproven                 | Light orangish brown and mottled reddish brown, clayey becoming very clayey, slightly sandy, gravelly SILT. Gravel is sub-angular to subrounded, f-c, of metasedimentary rock and quartz.  Occasional rounded cobbles up to 7.5cm. |

#### 4.2 Topsoil

- 4.2.1 Topsoil was encountered across the entirety of the site to depths of between 0.10 0.45mBGI.
- 4.2.2 The unit can be generally described as Turf over light brown, clayey, silty, sandy, TOPSOIL. Sand is fine to coarse, frequent rootlets.

#### 4.3 Cohesive Weathered Mylor Slate Formation

- 4.3.1 Material described as cohesive weather Mylor Slate Formation was encountered across the site to depths of up to 5.00mBGL.
- 4.3.2 The unit may be generally described as Light orangish brown and mottled reddish brown, clayey becoming very clayey, slightly sandy, gravelly SILT. Gravel is sub-angular to sub-

rounded, f-c, of metasedimentary rock and quartz. Occasional rounded cobbles up to 7.5cm.

4.3.3 Standard Penetration Tests (SPTs) were completed at regular intervals within the cohesive weathered Mylor Slate Formation can be summarised below:

**Table 4.2:** Standard Penetration Tests within the cohesive weathered Mylor Slate Formation.

| Depth (mBGL) — |     | SPT 'N' Value |         |
|----------------|-----|---------------|---------|
| Depin (mbGL) — | Min | Max           | Average |
| 1.00           | 8   | 13            | 10.7    |
| 2.00           | 8   | 84            | 30.3    |
| 3.00           | 9   | 61            | 23.3    |
| 4.00           | 4   | 14            | 10      |
| 5.00           | 8   | 26            | 19.3    |

#### 4.4 Water

4.4.1 Water was encountered the following exploratory holes:

Table 4.3: Water Encountered

| Exploratory Hole | Water Level (mBGL) | Stratum                                     |
|------------------|--------------------|---------------------------------------------|
| WS03             | 4.50               | Cohesive Weathered<br>Mylor Slate Formation |

4.4.2 Due to the extensive mine workings in the area lowering the water table, this is considered likely to be a small area of perched water.

#### 4.5 Contamination Indications

4.5.1 There were no visual or olfactory signs of contamination noted on site.

Report No: 21655/PH2



#### 5 GEOTECHNICAL ASSESSMENT

#### 5.1 Introduction

- 5.1.1 It is proposed to redevelop the public park extensively, adding areas to play sports, a skate park, flower beds, and pathways
- 5.1.2 At the time of writing this report, no definitive structural loads have been provided by the client.

#### 5.2 Chemical Attack on Buried Concrete

- 5.2.1 Chemical testing indicates water soluble sulphate contents of 1.4- 55.9mg/l, with pH values of 6.0-7.9.
- 5.2.2 Based on the above results the site may be classified as falling into the Design Sulphate Class DS-1. The Aggressive Chemical Environment for Concrete (ACEC) class is based upon the pH and mobility of groundwater. The results indicate that the soils on site fall into class AC-1s.



#### **6 CONTAMINATION ASSESSMENT**

#### 6.1 Comparison with Generic Assessment Criteria (GACs) (Site Visit 1)

- 6.1.1 The laboratory results are contained as Appendix C.
- 6.1.2 Results from the environmental testing can be compared against Generic Assessment Criteria (GAC) to form the basis of a GQRA. The GAC's used are taken from the LQM/CIEH 'Suitable 4 Use Levels' publication. In the absence of a suitable S4UL value (such as Lead), reference has been made to DEFRA's Category 4 Screening Levels (C4SL) where deemed justifiable. Given the proposed land use for this site, the public park parameters have been chosen for the appropriate set of criteria. A comparison table can be found below.

Table 6.1: Comparison of soil results against GAC's (Public Park 2.5% organic matter; based on the average value recorded – all values in mg/kg unless stated)

| Contaminant         | GAC's: S4UL's – Public<br>Park (unless stated) | Minimum | Maximum | Exceedances |  |  |  |
|---------------------|------------------------------------------------|---------|---------|-------------|--|--|--|
|                     | Metals                                         |         |         |             |  |  |  |
| Arsenic             | 170                                            | 3.2     | 13000   | 7           |  |  |  |
| Boron               | 46000                                          | 0.3     | 1.1     | 0           |  |  |  |
| Cadmium             | 560                                            | <0.2    | 0.4     | 0           |  |  |  |
| Chromium (III)      | 33000                                          | 62      | 360     | 0           |  |  |  |
| Chromium (VI)       | 220                                            | <1.8    | 14      | 0           |  |  |  |
| Copper              | 44000                                          | 32      | 11000   | 0           |  |  |  |
| Lead                | 1300 (C4SL)                                    | 3       | 920     | 0           |  |  |  |
| Mercury (inorganic) | 240                                            | <0.3    | <0.3    | 0           |  |  |  |
| Nickel              | 800                                            | 37      | 130     | 0           |  |  |  |
| Selenium            | 1800                                           | <1.0    | <1.0    | 0           |  |  |  |
| Zinc                | 170000                                         | 190     | 1500    | 0           |  |  |  |
|                     | General                                        |         |         |             |  |  |  |
| рН                  | N/A                                            | 6       | 7.8     | -           |  |  |  |
| Organic Matter %    | N/A                                            | 0.3     | 6.6     | -           |  |  |  |



| Sulphates (water soluble,                               | N/A                   | 0.056            | 0.1348 |   |
|---------------------------------------------------------|-----------------------|------------------|--------|---|
| g/l)                                                    |                       |                  |        | - |
| Cyanide (total)                                         | 23 (USEPA)            | <1.0             | <1.0   | 0 |
| Phenols                                                 | 380                   | <1.0             | <1.0   | 0 |
|                                                         | Organ                 | nics             |        |   |
| Po                                                      | olycyclic Aromatic Hy | drocarbons (PAF  | l, 16) |   |
| Naphthalene                                             | 1900                  | <0.05            | <0.05  | 0 |
| Acenaphthylene                                          | 30000                 | <0.05            | 0.07   | 0 |
| Acenaphthene                                            | 30000                 | <0.05            | <0.05  | 0 |
| Fluorene                                                | 20000                 | <0.05            | <0.05  | 0 |
| Phenanthrene                                            | 62000                 | <0.05            | 0.55   | 0 |
| Anthracene                                              | 150000                | <0.05            | 0.14   | 0 |
| Fluoranthene                                            | 63000                 | <0.05            | 1.7    | 0 |
| Pyrene                                                  | 15000                 | <0.05            | 1.5    | 0 |
| Benzo(a)anthracene                                      | 56                    | <0.05            | 0.74   | 0 |
| Chrysene                                                | 110                   | <0.05            | 0.79   | 0 |
| Benzo(b)fluoranthene                                    | 15                    | <0.05            | 0.99   | 0 |
| Benzo(k)fluoranthene                                    | 410                   | <0.05            | 0.37   | 0 |
| Benzo(a)pyrene                                          | 12                    | <0.05            | 0.75   | 0 |
| Indeno (123-cd) pyrene                                  | 170                   | <0.05            | 0.5    | 0 |
| Dibenzo(ah)anthracene                                   | 1.3                   | <0.05            | 0.13   | 0 |
| Benzo(ghi)perylene                                      | 15000                 | <0.05            | 0.6    | 0 |
|                                                         | Total Petroleum Hye   | drocarbons (TPH) |        |   |
| Benzene                                                 | 100                   | <0.005           | <0.005 | 0 |
| Toluene                                                 | 95000                 | <0.005           | <0.005 | 0 |
| Ethylbenzene                                            | 22000                 | <0.005           | <0.005 | 0 |
| o-xylene                                                | 24000                 | <0.005           | <0.005 | 0 |
| m & p-xylene                                            | 24000                 | <0.005           | <0.005 | 0 |
| Methyl Tertiary Butyl Ether<br>(MTBE) (EIC/AGS/CL:AIRE) | 120                   | <0.005           | <0.005 | 0 |



| Aliphatic >C5-C6   | 130000 | < 0.10 | < 0.10 | 0 |
|--------------------|--------|--------|--------|---|
| Aliphatic >C6-C8   | 220000 | < 0.10 | < 0.10 | 0 |
| Aliphatic >C8-C10  | 18000  | < 0.10 | < 0.10 | 0 |
| Aliphatic >C10-C12 | 23000  | < 1.0  | < 1.0  | 0 |
| Aliphatic >C12-C16 | 25000  | < 2.0  | < 2.0  | 0 |
| Aliphatic >C16-C21 | 480000 | < 8.0  | < 8.0  | 0 |
| Aliphatic >C21-C35 | 480000 | < 8.0  | < 8.0  | 0 |
| Aromatic >C5-C7    | 84000  | < 0.10 | < 0.10 | 0 |
| Aromatic >C7-C8    | 95000  | < 0.10 | < 0.10 | 0 |
| Aromatic >C8-C10   | 8500   | < 0.10 | < 0.10 | 0 |
| Aromatic >C10-C12  | 9700   | < 1.0  | < 1.0  | 0 |
| Aromatic >C12-C16  | 10000  | < 2.0  | < 2.0  | 0 |
| Aromatic >C16-C21  | 7700   | < 10.0 | 16     | 0 |
| Aromatic >C21-C35  | 7800   | < 10.0 | 19     | 0 |
|                    |        |        |        |   |

- 6.1.3 Soil pH values ranged from 6 to 7.9, with an average of 6.7.
- 6.1.4 Soil Organic Matter (SOM) testing was undertaken on 5no. samples. An average value of 4.22% was calculated, resulting in a value of 2.5% SOM being adopted for risk assessment purposes.
- 6.1.5 Elevated levels of arsenic were noted across the site. Exceedances were within all horizons encountered. A maximum arsenic level of 13000mg/kg was recorded in WS02 at 0.50 mBGL within the cohesive weathered Mylor Slate Formation.
- 6.1.6 The average soil concentrations for arsenic were entered into the CLEA software. This enabled the ratio of Average Daily Exposure to each contaminant with the relevant Health Criteria Value to be determined. This corresponded with the exceedances reported above when the soil guideline values were used. Site specific data was also entered into the software to model the conditions in a representative manner. Several land use categories are available within CLEA, the most appropriate in this case is the



- residential with homegrown produce scenario. Values for average soil pH and soil organic matter were also included (6.7 and 2.5% respectively).
- 6.1.7 The bioaccessibility of arsenic was tested on samples from WS03 and WS04 at depths of 0.20 and 0.30 mBGL respectively. This type of testing shows the extent to which ingested contaminants are able to be absorbed by the body. The testing produced maximum bioaccessible fraction values of 0.8% for arsenic. The CLEA Software (Environment Agency) was then used to produce new site-specific assessment criteria for arsenic in the soil. The site-specific parameters listed below were entered into the software based on the plans and original site investigation.

#### 6.1.8 **Table 6.2**: CLEA Software Inputs

| CLEA Inputs                       |                          |  |  |
|-----------------------------------|--------------------------|--|--|
| Land Use Setting                  | Public Open Space (Park) |  |  |
| Receptor                          | Female resident          |  |  |
| Building                          | -                        |  |  |
| Soil Type                         | Sandy Loam               |  |  |
| рН                                | 6.70%                    |  |  |
| Soil Organic Matter               | 2.50%                    |  |  |
| Relative Bioaccessibility Arsenic | 0.80%                    |  |  |

6.1.9 A revised site-specific assessment criterion of 4600 mg/kg for arsenic in the soil was produced by the software. The average value for arsenic on site is 1244 mg/kg, which is

Report No: 21655/PH2

within the new the site-specific assessment criterion. However, a single exceedance in WS02, recording 13000 mg/kg of arsenic, is not mitigated.

- 6.1.10 No elevated levels of TPH were recorded.
- 6.1.11 No elevated levels of PAH were recorded.

#### 6.2 Ground Gas Risk

- 6.2.1 To assess the risk posed by ground gases at the site 4no. rounds of gas monitoring were undertaken following the intrusive investigation at one-week intervals.
- 6.2.2 Concentrations of CH<sub>4</sub>, CO<sub>2</sub>, CO, H<sub>2</sub>S and O<sub>2</sub> were recorded using a G505363 gas extraction monitor.
- 6.2.3 The measured concentrations of potential ground gases (volume in air) and flow rates (I/hr) have been used to calculate Gas Screening Values (GSVs). These have also been compared to CIRIA Report 665.
- 6.2.4 It is recommended that the gas risk should be assessed by the consideration of pathways as follows:
  - Future site users' exposure in open areas, including any, outbuildings or excavations for garden features.
- 6.2.5 The following table tabulates the ground gas parameters that have been recorded over 6nr rounds of gas monitoring. Full results are contained in Appendix C.

**Table 6.3:** Minimum and Maximum values taken from the 4no. gas monitoring visits.

|                         | Minimum | Maximum |
|-------------------------|---------|---------|
| Flow rate (I/hr)        | 0.1     | 0.4     |
| CH4 (%v/v)              | ND      | ND      |
| CO <sub>2</sub> (%v/v)  | 0.5     | 1.3     |
| CO (ppmv)               | ND      | 1       |
| H <sub>2</sub> S (%v/v) | ND      | ND      |
| O <sub>2</sub> (%v/v)   | 19.3    | 20.6    |



- 6.2.6 The maximum concentrations observed at the site were used to calculate the Gas Screening Value using the formula:
- 6.2.7 GSV (I/hr) = concentration of gas (% v/v converted to decimal) \* flow rate (I/hr)
- 6.2.8 Carbon dioxide: 0.013 \* 0.10 = 0.0013/hr (where flow rate is recorded as zero use limit of detection)
- 6.2.9 No concentration was observed for methane or hydrogen sulphide.
- 6.2.10 A single detectable instance of Carbon Monoxide (CO) was recorded, at a level of 1ppm during the first round of gas monitoring in WS04. No further CO was detected in any other boreholes or during any future monitoring visits. It can therefore be concluded that CO levels are unlikely to pose a significant risk to site users.
- 6.2.11 The type of development proposed is residential and owing to the likely foundation design it is considered that Situation A should be used to assess the risk to the site, according to the CIRIA guidance document (C659, 'Assessing risks posed by hazardous ground gases to buildings'). A clear ventilated underfloor void is not likely to be included in the building plans. From the Gas Screening Value calculated, 0.0013I/hr, the site is classified as 'Characteristic Situation' 1 (CS1) (Very Low Risk) In Table 8.5 of CIRIA 665. Special protection measures are therefore not required for this development.
- 6.2.12 The alternative assessment method, Situation B, is for low rise developments with a ventilated underfloor void. Using the gas screening value obtained above and the typical maximum gas concentrations (methane and carbon dioxide) the site should be categorised as 'green'.

# 6.3 Comparison with Generic and Site-specific Assessment Criteria (Site Visit2)

6.3.1 A second site visit was undertaken to further constrain the areas affected by contamination on site. The initial site investigation revealed a single instance of abnormally high concentrations of arsenic from within exploratory borehole WSO2 in the



- northwest region of the site that exceeded the Site-specific Assessment Criterion of 4600 mg/kg, generated by CLEA.
- 6.3.2 The sampling strategy for the second visit was designed to increase the sample density within the northwestern region of the site, in doing so further constraining the extent of the elevated arsenic concentrations.
- 6.3.3 The locations of all exploratory holes and adopted sampling strategies from 'Site Visit 1' and 'Site Visit 2' can be seen on the exploratory hole location plan, contained as Figure 3.1.
- 6.3.4 Results from the second round of environmental testing can be compared against Generic Assessment Criteria (GAC's) and the newly generated Site-specific Assessment Criteria (SAC's) to form the basis of a GQRA. The GAC's used are taken from the LQM/CIEH 'Suitable 4 Use Levels' publication. In the absence of a suitable S4UL value (such as Lead), reference has been made to DEFRA's Category 4 Screening Levels (C4SL) where deemed justifiable. Given the proposed land use for this site, the public park parameters have been chosen for the appropriate set of criteria. A comparison table can be found below.
- 6.3.5 The laboratory results are contained as Appendix C.

Table 6.4: Comparison of soil results against GAC's and SAC's (Public Park 2.5% organic matter; based on the average value recorded – all values in mg/kg unless stated)

|                     | GAC's and SAC's:                        |         |         |             |
|---------------------|-----------------------------------------|---------|---------|-------------|
| Contaminant         | S4UL's – Public Park<br>(unless stated) | Minimum | Maximum | Exceedances |
|                     | Metal                                   | s       |         |             |
| Arsenic             | 4600 (site-specific)                    | 17.0    | 5300    | 1           |
| Boron               | 46000                                   | <0.2    | 0.9     | 0           |
| Cadmium             | 560                                     | <0.2    | 1.8     | 0           |
| Chromium (III)      | 33000                                   | 59      | 290     | 0           |
| Chromium (VI)       | 220                                     | <1.8    | <1.8    | 0           |
| Copper              | 44000                                   | 47      | 5000    | 0           |
| Lead                | 1300 (C4SL)                             | 7.4     | 700     | 0           |
| Mercury (inorganic) | 240                                     | <0.3    | <0.3    | 0           |



| Nickel                         | 800                    | 23              | 140           | 0 |  |  |  |  |  |
|--------------------------------|------------------------|-----------------|---------------|---|--|--|--|--|--|
| Selenium                       | 1800                   | <1.0            | 2.10          | 0 |  |  |  |  |  |
| Zinc                           | 170000                 | 160             | 1400          | 0 |  |  |  |  |  |
|                                | General                |                 |               |   |  |  |  |  |  |
| рН                             | N/A                    | 7.1             | 7.9           | - |  |  |  |  |  |
| Organic Matter %               | N/A                    | 0.3             | 6.6           | - |  |  |  |  |  |
| Sulphates (water soluble, g/l) | N/A                    | 5.04            | 7.03          | - |  |  |  |  |  |
| Cyanide (total)                | 23 (USEPA)             | <1.0            | <1.0          | 0 |  |  |  |  |  |
| Phenols                        | 380                    | <1.0            | <1.0          | 0 |  |  |  |  |  |
|                                | Organ                  | nics            |               |   |  |  |  |  |  |
| Po                             | olycyclic Aromatic Hyd | drocarbons (PAH | l, <b>16)</b> |   |  |  |  |  |  |
| Naphthalene                    | 1900                   | <0.05           | <0.05         | 0 |  |  |  |  |  |
| Acenaphthylene                 | 30000                  | <0.05           | <0.05         | 0 |  |  |  |  |  |
| Acenaphthene                   | 30000                  | <0.05           | <0.05         | 0 |  |  |  |  |  |
| Fluorene                       | 20000                  | <0.05           | <0.05         | 0 |  |  |  |  |  |
| Phenanthrene                   | 62000                  | <0.05           | <0.05         | 0 |  |  |  |  |  |
| Anthracene                     | 1 50000                | <0.05           | <0.05         | 0 |  |  |  |  |  |
| Fluoranthene                   | 63000                  | <0.05           | <0.05         | 0 |  |  |  |  |  |
| Pyrene                         | 15000                  | <0.05           | <0.05         | 0 |  |  |  |  |  |
| Benzo(a)anthracene             | 56                     | <0.05           | <0.05         | 0 |  |  |  |  |  |
| Chrysene                       | 110                    | <0.05           | <0.05         | 0 |  |  |  |  |  |
| Benzo(b)fluoranthene           | 15                     | <0.05           | <0.05         | 0 |  |  |  |  |  |
| Benzo(k)fluoranthene           | 410                    | <0.05           | <0.05         | 0 |  |  |  |  |  |
| Benzo(a)pyrene                 | 12                     | <0.05           | <0.05         | 0 |  |  |  |  |  |
| Indeno (123-cd) pyrene         | 170                    | <0.05           | <0.05         | 0 |  |  |  |  |  |
| Dibenzo(ah)anthracene          | 1.3                    | <0.05           | <0.05         | 0 |  |  |  |  |  |
| Benzo(ghi)perylene             | 15000                  | <0.05           | <0.05         | 0 |  |  |  |  |  |
|                                |                        |                 |               |   |  |  |  |  |  |

#### Total Petroleum Hydrocarbons (TPH)



| Benzene                                              | 100    | <0.005  | <0.005  | 0 |
|------------------------------------------------------|--------|---------|---------|---|
| Toluene                                              | 95000  | <0.005  | <0.005  | 0 |
| Ethylbenzene                                         | 22000  | <0.005  | <0.005  | 0 |
| o-xylene                                             | 24000  | <0.005  | <0.005  | 0 |
| m & p-xylene                                         | 24000  | <0.005  | <0.005  | 0 |
| Methyl Tertiary Butyl Ether (MTBE) (EIC/AGS/CL:AIRE) | 120    | <0.005  | <0.005  | 0 |
| Aliphatic >C5-C6                                     | 130000 | < 0.020 | < 0.020 | 0 |
| Aliphatic >C6-C8                                     | 220000 | < 0.020 | < 0.020 | 0 |
| Aliphatic >C8-C10                                    | 18000  | < 0.050 | < 0.050 | 0 |
| Aliphatic >C10-C12                                   | 23000  | < 1.0   | < 1.0   | 0 |
| Aliphatic >C12-C16                                   | 25000  | < 2.0   | < 2.0   | 0 |
| Aliphatic >C16-C21                                   | 480000 | < 8.0   | < 8.0   | 0 |
| Aliphatic >C21-C35                                   | 480000 | < 8.0   | < 8.0   | 0 |
| Aromatic >C5-C7                                      | 84000  | < 0.010 | < 0.010 | 0 |
| Aromatic >C7-C8                                      | 95000  | < 0.010 | < 0.010 | 0 |
| Aromatic >C8-C10                                     | 8500   | < 0.050 | < 0.050 | 0 |
| Aromatic >C10-C12                                    | 9700   | < 1.0   | < 1.0   | 0 |
| Aromatic >C12-C16                                    | 10000  | < 2.0   | < 2.0   | 0 |
| Aromatic >C16-C21                                    | 7700   | < 10.0  | < 10.0  | 0 |
| Aromatic >C21-C35                                    | 7800   | < 10.0  | < 10.0  | 0 |
|                                                      |        |         |         |   |



#### 6.4 Conceptual Site Model Matrix

Table 6.5: Preliminary Conceptual Model Matrix

| Prelir   | Preliminary Conceptual Model     |                                         |                                                             |                                                              |                    |             |                                                                                                                                                                                                                                                                                                                                                                  |
|----------|----------------------------------|-----------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|--------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source   | ce(s)                            | Contaminant(s)                          | Pathway(s)                                                  | Receptor(s)                                                  | Probability        | Consequence | Risk Assessment                                                                                                                                                                                                                                                                                                                                                  |
|          |                                  | Radon gas                               | Ingress into proposed<br>buildings                          | Future site users                                            | High<br>Likelihood | Minor       | Moderate / Low Risk. – Development is within an area where greater than 30% of properties are above the action level. However, due to the lack of permanent residents or dwellings in the proposed development, the risks associated with the build-up of Radon gas are significantly lower.                                                                     |
| On Site  | Natural<br>Geology               | Arsenic                                 | Dermal contact<br>Soil and dust ingestion<br>and inhalation | Future site users<br>Site workers<br>Site flora and<br>fauna | Likely             | Medium      | Moderate Risk – Laboratory testing revealed elevated concentrations of arsenic above generic guideline values, resulting in bioaccessibility testing being undertaken.  The bioaccessibility testing resulted in a new site-specific assessment criterion of 4600 mg/kg for Arsenic. As a result of this, exceedances of arsenic are now noted in WS02 and HP01. |
| Off Site | Infilled<br>Land/Mine<br>Wastage | , , , , , , , , , , , , , , , , , , , , | Dermal contact Soil and dust ingestion and inhalation       | Future site users<br>Site workers                            | Likely             | Medium      | Moderate Risk – Estimated levels of arsenic within the soil were estimated at                                                                                                                                                                                                                                                                                    |



|                                    |                                                                                        |                                                                                                               | Site flora and                                               |          |        | >120mg/kg in Envirocheck data and 200-                                                                                                                                                                                                                                                                                                    |
|------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |                                                                                        |                                                                                                               | fauna                                                        |          |        | 400mg/kg using the Tellus SW Map.                                                                                                                                                                                                                                                                                                         |
|                                    |                                                                                        |                                                                                                               |                                                              |          |        | As discussed above, the bioaccessibility testing resulted in a new site-specific assessment criterion of 4600 mg/kg for Arsenic. As a result of this, exceedances of arsenic are now noted in WS02 and HP01.                                                                                                                              |
| Historic<br>Mining<br>Works/Shafts | Total Petroleum Hydrocarbons (TPH) Polycyclic Aromatic Hydrocarbons (PAH) Heavy Metals | Dermal contact<br>Soil and dust ingestion<br>and inhalation<br>Ground & surface<br>waters                     | Future site users<br>Site workers<br>Site flora and<br>fauna | Likely   | Medium | Moderate Risk – The closest historic works were located 150m W, at Wheal Gerry. The closest shaft is located 75m to the NE.  As discussed above, the bioaccessibility testing resulted in a new site-specific assessment criterion of 4600 mg/kg for Arsenic. As a result of this, exceedances of arsenic are now noted in WSO2 and HPO1. |
| Landfill                           | Ground Gas:<br>Methane, Carbon<br>Dioxide,<br>Leachate                                 | Dermal contact Soil and dust ingestion and inhalation Ground & surface waters Ingress into proposed buildings | Future site users Site workers Site flora and fauna          | Unlikely | Medium | Low Risk – Gas monitoring wells were installed on site and weekly monitoring visits were undertaken. No harmful quantities of ground gasses were detected.                                                                                                                                                                                |



| Pollution<br>Incidents | Various                                                                                         | Dermal contact Soil and dust ingestion and inhalation Ground & surface waters                                 | Future site users Site workers Site flora and fauna          | Low<br>Likelihood | Low    | Low Risk— There is one recorded pollution incident with 500m of the site, occurring in 1999 due to firefighting run-off. The incident was classified as category 3 (Minor Impact), but due to its proximity to the site, as well as occurring on an equal elevation, a contaminated pathway may be present. However, due to the isolated nature and low severity of the incident, this is considered a low risk to human health. |
|------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Industrial<br>Land Use | Total Petroleum Hydrocarbons (TPH) Polycyclic Aromatic Hydrocarbons (PAH)                       | Dermal contact Soil and dust ingestion and inhalation Ground & surface waters                                 | Future site users Site workers Site flora and fauna          | Unlikely          | Medium | Low Risk- There is an abundance of contemporary industrial land use in the surrounding area.  No exceedances of TPH or PAH were detected during laboratory testing.                                                                                                                                                                                                                                                              |
| Gas Storage            | Ground Gas: Methane  Total Petroleum Hydrocarbons (TPH)  Polycyclic Aromatic Hydrocarbons (PAH) | Dermal contact Soil and dust ingestion and inhalation Ground & surface waters Ingress into proposed buildings | Future site users<br>Site workers<br>Site flora and<br>fauna | Unlikely          | Medium | Low Risk- Beginning on the earliest Map (1879) a Gas Storage cylinder has been present on the 2m N of the site.  No exceedances of TPH or PAH were detected during laboratory testing. No harmful quantities of methane were detected during ground gas monitoring.                                                                                                                                                              |

Park Gerry at Park Rd, Camborne, TR14 8QB

Wheal Jane Consultancy
Phase 2 Ground Investigation

Page 22

Report No: 21655/PH2



| Military<br>Centre | Total Petroleum Hydrocarbons (TPH) Polycyclic Aromatic Hydrocarbons (PAH)                       | Dermal contact Soil and dust ingestion and inhalation Ground & surface waters                                 | Future site users Site workers Site flora and fauna          | Unlikely | Mild   | Low Risk: The earliest maps indicate the northern edge of the site is bordered with a military facility, containing an Armoury, Drill Yard, and Flagstaff.  No exceedances of TPH or PAH were detected during laboratory testing. |
|--------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel Station       | Ground Gas: Methane  Total Petroleum Hydrocarbons (TPH)  Polycyclic Aromatic Hydrocarbons (PAH) | Dermal contact Soil and dust ingestion and inhalation Ground & surface waters Ingress into proposed buildings | Future site users<br>Site workers<br>Site flora and<br>fauna | Unlikely | Medium | Low Risk – An Active Fuel Station is present 213m S of the site. Due to the distance and intervening hardstanding, it is unlikely a contaminated pathway exists, and this is therefore considered a low risk to human health.     |

#### 7 CONCLUSIONS

- 7.1.1 The site was subject to a Phase 2 Ground Investigation to determine the level and risk of potential contamination.
- 7.1.2 It can be concluded that arsenic levels within WS02 and HP01, in the northwestern corner of the site, present an unacceptable level of risk and targeted remediation will be required in this area of the site.
- 7.1.3 Following favourable bioaccessibility testing, all other potential contaminants, including heavy metals, hydrocarbons, and ground gasses, across the remainder of the site, are within acceptable levels.
- 7.1.4 Due to the contamination being present within a single area of the site, it is highly likely that a zoned remediation strategy, targeted specifically in the far extent of the northwestern corner of the site will be suitable.
- 7.1.5 The site is likely to be suitable for its intended use, as long as the recommendations set out in this report are adhered to.



#### 8 RECOMMENDATIONS

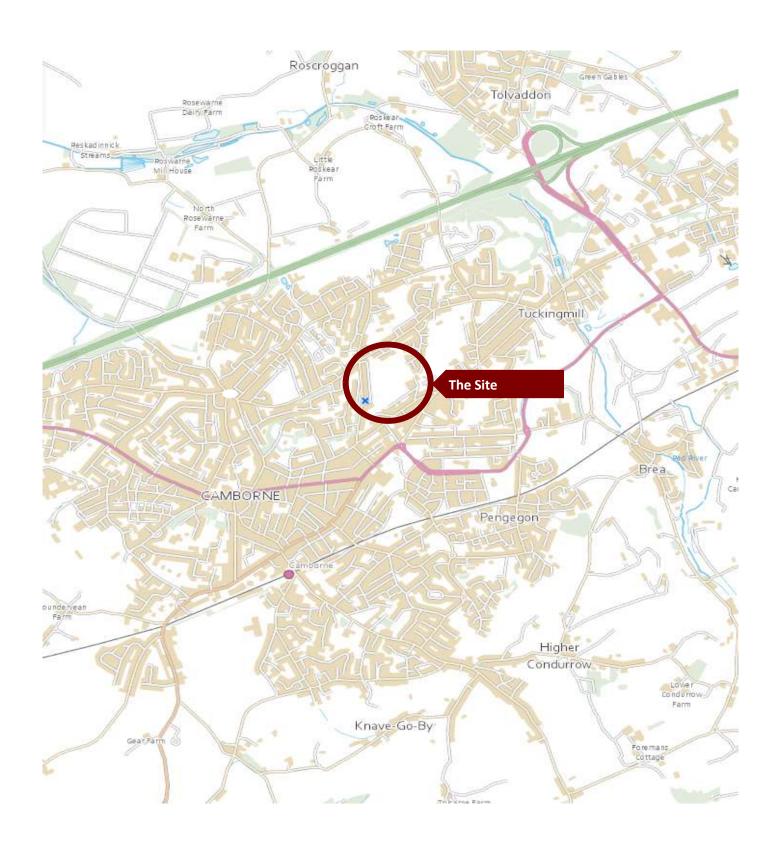
- 8.1.1 A Phase 3 Remediation Strategy Report should be compiled which outlines the scope of remedial works required to reduce the level of contamination to such condition that the site can be deemed suitable for its proposed residential use.
- 8.1.2 It is likely that a zoned remediation strategy localised within the far northwestern extent of the site will be suitable for the proposed development.
- 8.1.3 Once the remediation strategy has been fully implemented and the work concluded to the required specifications, a Phase 4 Verification Report and Certificate must be produced.
- 8.1.4 A flow chart detailing the phased approach to land contamination, as set out in CLR11, is contained to the rear of the report.
- 8.1.5 The site is situated in an area where greater than 30% of the properties are above the action level. As the site is open-air, risk from radon build-up can be considered lower, however any enclosed structure on site will require full radon protection measures.
- 8.1.6 Suitable safety measures should be taken by those working on site to mitigate the risks associated with contaminated media including undertaking the appropriate risk assessments and ensuring all workers are wearing the correct PPE.
- 8.1.7 Waste removed from site shall be disposed of at a suitable facility with the appropriate Waste Transfer Notices obtained for future records. Asbestos waste should be handled by a suitable waste contractor.



#### 9 REFERENCE LIST

- 9.1.1 BSI (2011) BS 10175:2011 Investigation of Potentially Contaminated Sites Code of Practice. London, British Standards Institution
- 9.1.2 BSI (2015) BS5930:2015. Code of Practice for Site Investigations. London, British Standards Institution
- 9.1.3 British Research Establishment (BRE) (2005) Special Digest 1 Concrete in Aggressive Ground. 3rd edn. Watford, BRE
- 9.1.4 Chartered Institute of Environmental Health (CIEH) and Contaminated Land: Applications in Real Environments (CL:AIRE) (2008) Guidance on Comparing Soil Contamination Data with a Critical Concentration. London, CIEH
- 9.1.5 CIRIA (2001) CIRIA C552 Contaminated land risk assessment: A guide to good practice. London, CIRIA
- 9.1.6 CIRIA (2007) CIRIA C665 Assessing Risks Posed by Hazardous Ground Gases to Buildings. London, CIRIA
- 9.1.7 Contaminated Land: Applications in Real Environments (CL:AIRE), Association of Geotechnical and Geo-environmental Specialists (AGS) and The Environmental Industries Commission (EIC) (2010) Soil Generic Assessment Criteria for Human Health Risk Assessment. London, CL:AIRE
- 9.1.8 Contaminated Land: Applications in Real Environments (CL:AIRE) (2012) A Pragmatic Approach to Ground Gas Risk Assessment. Research Bulletin 17
- 9.1.9 Contaminated Land: Applications in Real Environments (CL:AIRE) (2016) CAR SOIL: Control of Asbestos Regulations 2012. Interpretation for Managing and Working with Asbestos in Soil and Construction and Demolition Materials.
- 9.1.10 Environment Agency (2004) Contaminated Land Report 11 Model Procedures for the Management of Land Contamination. Bristol, Environment Agency
- 9.1.11 Environment Agency (2009) Updated Technical Background to the CLEA Model. Science Report SC050021/SR3. Bristol: Environment Agency
- 9.1.12 Environment Agency (2009) Human Health Toxicological Assessment of Contaminants in Soil. Science Report SC050021/SR2. Bristol: Environment Agency
- 9.1.13 Great Britain. Environmental Protection Act (1990). London, The Stationery Office
- 9.1.14 Great Britain. Water Act (2003) London, The Stationery Office
- 9.1.15 Great Britain. Environmental Permitting Regulations (2007). London, The Stationery Office
- 9.1.16 Great Britain. Environmental Damage (Prevention and Remediation) Regulations (2009). London, The Stationery Office




- 9.1.17 Great Britain. The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015. London, The Stationery Office
- 9.1.18 National House Building Council (NHBC), Environment Agency and Chartered Institute of Environmental Health (CIEH) (2008) Research & Development Publication 66: Guidance for the Safe Development of Housing on Land Affected by Contamination. Amersham, NHBC
- 9.1.19 Royal Institution of Chartered Surveyors (RICS) (2012) Japanese Knotweed and Residential Property, Coventry, RICS

#### 10 NOTES

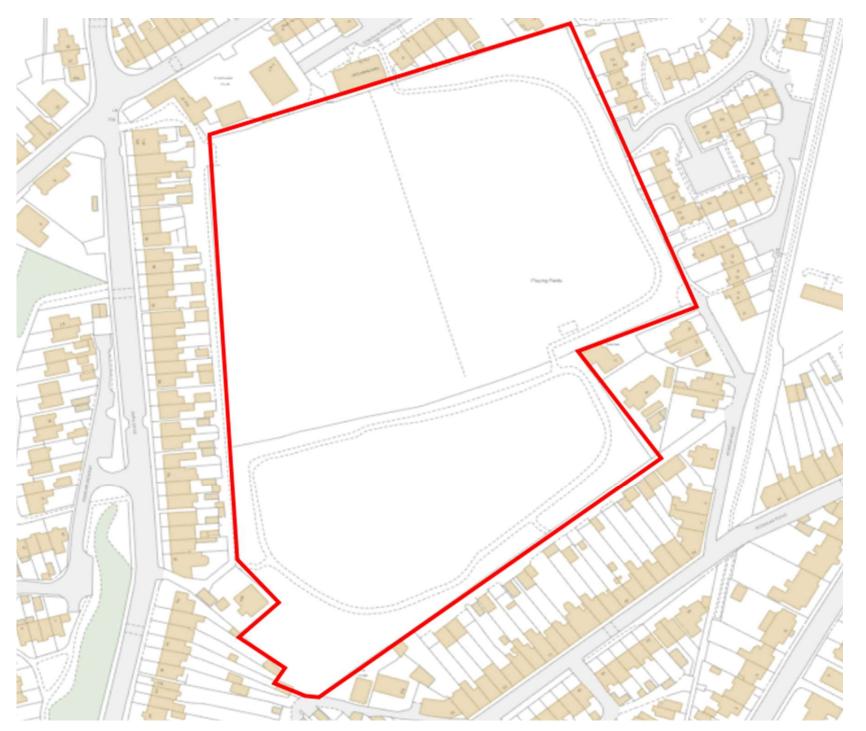
- 10.1.1 This report is concerned solely with the property, as defined by this report, or parts thereof examined.
- 10.1.2 The report should not be used in connection with adjacent properties.
- 10.1.3 In respect of site works, Wheal Jane Consultancy cannot accept any liabilities for any additional mine workings found outside the limits of any areas examined.
- 10.1.4 The information supplied by third parties which has been used in compiling this Phase 2 ground investigation report, is derived from a number of statutory and non-statutory sources. While every effort is made by the supplier to ensure accuracy, the supplier cannot guarantee the accuracy or completeness of such information or data, nor to identify all the factors that may be relevant.
- 10.1.5 The conclusions and recommendations relate to the type and extent of development outlined in this report for this specific property only and should not be taken as suitable for any other form or extent of development on this property without further consultation with Wheal Jane Consultancy.
- 10.1.6 This report is confidential to the client, the client's legal and professional advisors, and may not be reproduced or distributed without our permission other than to directly facilitate the sale or development of the property concerned.
- 10.1.7 We have no liability toward any person not party to commissioning this report.
- 10.1.8 Unless otherwise expressly stated, nothing in this report shall create or confer any rights or other benefits pursuant to the Contracts (Rights of Third Parties) Act 1999 in favour of any person other than the person commissioning this report.
- 10.1.9 This report is not an asbestos inspection that may fall within the control of Control of Asbestos Regulations 2006.



### FIGURES:



Title: Site Location Plan


Project: Park Gerry

Client: Mei Loci

Report Title: Site Investigation - Handpitting

Date: **28/02/2024** Ref: **21999** Figure: **2.1** 







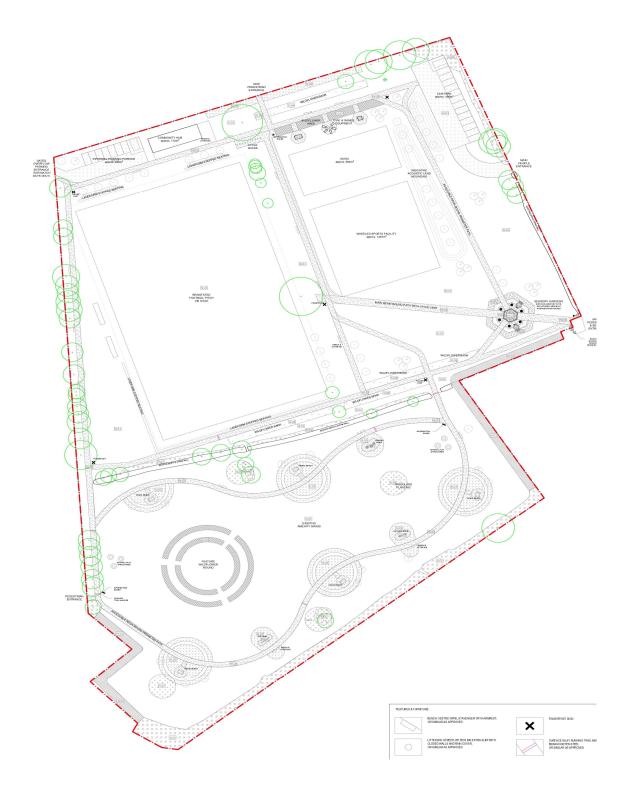
Legend:



Title:

**Current Site Layout** 

Project:


Park Gerry

21999

Client:

#### Mei Loci

| Date:     | 28/02/2024 |
|-----------|------------|
| Scale:    | NTS        |
| Drawn by: | TG         |
| Revision: | Α          |
| Figure:   | 2.2        |
|           |            |





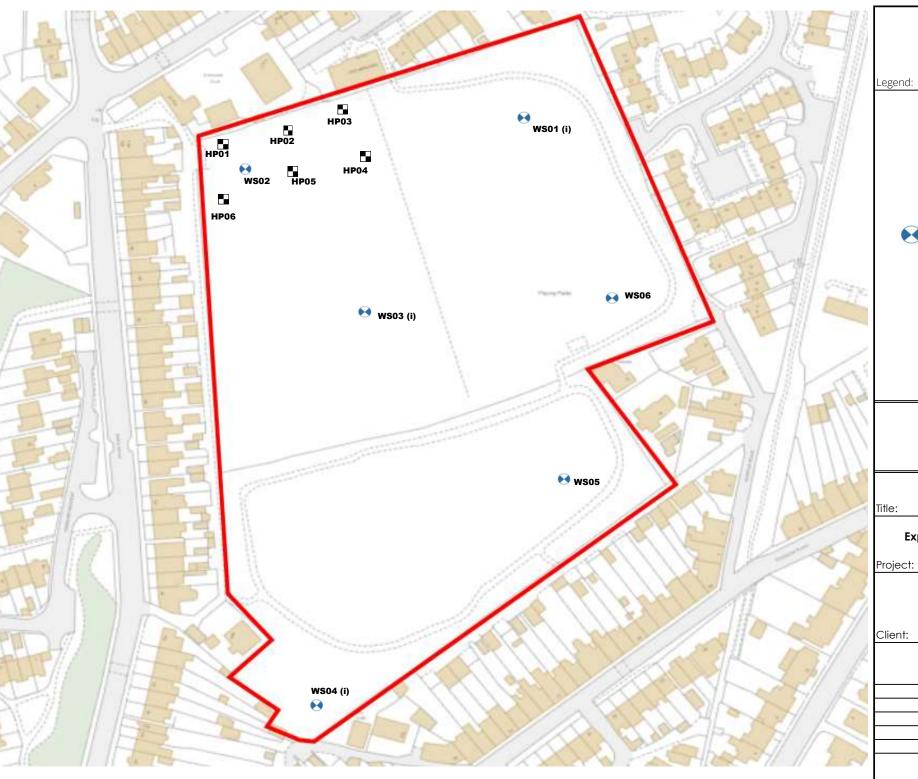
Legend:



| _ | _ |    |   |
|---|---|----|---|
| Ш | ı | ıt | ᆷ |

#### **Proposed Site Layout**

Project:


Park Gerry

21999

Client:

#### Mei Loci

| Date:     | 28/02/2024 |
|-----------|------------|
| Scale:    | NTS        |
| Drawn by: | Mei Loci   |
| Revision: | Α          |
| Figure:   | 2.3        |
|           |            |





**Windowless Sample** Borehole (i) Indicates Gas **Monitoring Installation** 



**Exploratory Hole Location Plan** 

**Park Gerry** 

21999

Mei Loci

|     | Date:   | 28/02/2024 |  |
|-----|---------|------------|--|
|     | Scale:  | NTS        |  |
| Dra | wn by:  | MV         |  |
| Re  | vision: | Α          |  |
|     | Figure: | 3.1        |  |
|     |         |            |  |



# APPENDIX A Exploratory Hole Logs

| Wheal Jan<br>Consultan                     | ne                                                       |                       |                       |                | Site                                 |                                                                                                                                                                                                                                                                                                            | Numbe            | er           |       |
|--------------------------------------------|----------------------------------------------------------|-----------------------|-----------------------|----------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|-------|
|                                            | ent & mining services                                    |                       |                       |                |                                      | Park Gerry, Camborne                                                                                                                                                                                                                                                                                       |                  | WS0          |       |
| Excavation                                 |                                                          | Dimens                | ions                  | Ground         | Level (mOD)                          |                                                                                                                                                                                                                                                                                                            |                  | Job<br>Numbe | er    |
| Windowless                                 | Sample Borehole                                          |                       |                       |                |                                      | Mei Loci                                                                                                                                                                                                                                                                                                   |                  | 21665        |       |
|                                            |                                                          | <b>Locatio</b><br>Pa  | <b>n</b><br>ırk Gerry | Dates<br>29    | 0/06/2023                            | Engineer<br>WJC                                                                                                                                                                                                                                                                                            |                  | Sheet<br>1/1 |       |
| Depth<br>(m)                               | Sample / Tests                                           | Water<br>Depth<br>(m) | Field Records         | Level<br>(mOD) | Depth<br>(m)<br>(Thickness)          | Description                                                                                                                                                                                                                                                                                                |                  | Legend       | Water |
| 0.10                                       | ES                                                       |                       |                       |                | (0.15)<br>0.15<br>                   | Turf over light brown, clayey, silty, sandy, TOPSOIL. Sine to coarse, frequent rootlets  Light orangish brown and mottled reddish brown, clabecoming very clayey, slightly sandy, gravelly SILT. Gis sub-angular to sub-rounded, f-c, of metasedimenta rock and quartz. Occasional rounded cobbles up to 7 |                  |              |       |
| 0.50                                       | ES                                                       |                       |                       |                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Took and quartz. Sociasional rounded copples up to 7                                                                                                                                                                                                                                                       | .50111.          |              |       |
| 1.00-1.45                                  | SPT N=11                                                 |                       | 1,2/2,3,3,3           |                | <u></u>                              |                                                                                                                                                                                                                                                                                                            |                  |              |       |
| 1.20                                       | ES                                                       |                       |                       |                |                                      |                                                                                                                                                                                                                                                                                                            |                  |              |       |
| 2.00-2.45                                  | SPT N=10                                                 |                       | 1,2/2,2,3,3           |                |                                      |                                                                                                                                                                                                                                                                                                            |                  |              |       |
| 3.00-3.45                                  | SPT N=9                                                  |                       | 1,1/1,2,3,3           |                |                                      |                                                                                                                                                                                                                                                                                                            |                  |              |       |
| 4.00-4.45                                  | SPT N=4                                                  |                       | 1,1/1,1,1,1           |                |                                      |                                                                                                                                                                                                                                                                                                            |                  |              |       |
| 4.50                                       | ES                                                       |                       |                       |                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                                                                                                                                                                                                                                            |                  |              |       |
| 5.00-5.45<br>Remarks                       | SPT N=8                                                  |                       | 2,2/2,2,2,2           |                | 5.00                                 |                                                                                                                                                                                                                                                                                                            |                  |              |       |
| No groundwa<br>Gas monitor<br>Hole continu | ater encountered<br>ing standpipe and m<br>led with DP01 | etal cover            | rinstalled in WS01    |                |                                      | (a                                                                                                                                                                                                                                                                                                         | Scale<br>approx) | Logge<br>By  |       |
|                                            |                                                          |                       |                       |                |                                      |                                                                                                                                                                                                                                                                                                            | 1:25<br>Figure N | SLW          |       |
|                                            |                                                          |                       |                       |                |                                      | 1                                                                                                                                                                                                                                                                                                          |                  | o.<br>5.WS01 |       |

| Wheal Jar<br>Consultan               | ne<br>ICU<br>nent & mining services |                       |                 | Site Park Gerry, Camborne |                                | Number<br>WS02                                                                                                                                                                                                                                                                                                                      |                         |                                        |       |
|--------------------------------------|-------------------------------------|-----------------------|-----------------|---------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------|-------|
| Excavation Windowless                | Method<br>S Sample Borehole         | Dimens                | sions           | Ground                    | Level (mOD)                    | Client<br>Mei Loci                                                                                                                                                                                                                                                                                                                  |                         | Job<br>Number<br>21665                 |       |
|                                      |                                     | <b>Locatio</b>        | on<br>ark Gerry | Dates 29                  | 9/06/2023                      | Engineer<br>WJC                                                                                                                                                                                                                                                                                                                     |                         | Sheet<br>1/1                           | _     |
| Depth<br>(m)                         | Sample / Tests                      | Water<br>Depth<br>(m) | Field Records   | Level<br>(mOD)            | Depth<br>(m)<br>(Thickness)    | Description                                                                                                                                                                                                                                                                                                                         |                         | Legend k                               | Maici |
| 0.10                                 | ES                                  |                       |                 |                           | (0.15)<br>0.15<br><br><br><br> | Turf over light brown, clayey, silty, sandy, TOPSOIL. Safine to coarse, frequent rootlets  Light orangish brown and mottled reddish brown, claye becoming very clayey, slightly sandy, gravelly SILT. Grais sub-angular to sub-rounded, fine to coarse, of metasedimentary rock and quartz. Occasional rounded cobbles up to 7.5cm. | and is<br>ey<br>avel    | ************************************** |       |
| 1.00-1.45                            | SPT N=10                            |                       | 1,1/2,2,2,4     |                           | (1.55)                         |                                                                                                                                                                                                                                                                                                                                     |                         | X                                      |       |
| 1.50                                 | ES                                  |                       |                 |                           |                                |                                                                                                                                                                                                                                                                                                                                     | >                       | * * * * * * * * * * * * * * * * * * *  |       |
| 1.70-2.15                            | SPT N=0                             |                       | 24,50/          |                           | 1.70                           | Complete at 1.70m                                                                                                                                                                                                                                                                                                                   |                         |                                        |       |
| Remarks<br>Hole comple<br>No groundw | ete at refusal<br>vater encountered |                       |                 |                           |                                |                                                                                                                                                                                                                                                                                                                                     | Scale<br>oprox)<br>1:25 | <b>Logged</b><br><b>By</b><br>SLW      |       |
|                                      |                                     |                       |                 |                           |                                |                                                                                                                                                                                                                                                                                                                                     | igure No                |                                        |       |

| Wheal Jar<br>Consultan    | TE<br>CU<br>ent & mining services                           |                       |                           |                | Site Park Gerry, Camborne            | Number<br>WS03                                                                                                                                                                                                                         |                                       |
|---------------------------|-------------------------------------------------------------|-----------------------|---------------------------|----------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Excavation<br>Windowless  | Method<br>Sample Borehole                                   | Dimens                | ions                      | Ground         | Level (mOD)                          | Client<br>Mei Loci                                                                                                                                                                                                                     | Job<br>Number<br>21665                |
|                           |                                                             | <b>Locatio</b><br>Pa  | n<br>ırk Gerry            | Dates 29       | 9/06/2023                            | Engineer<br>WJC                                                                                                                                                                                                                        | Sheet<br>1/1                          |
| Depth<br>(m)              | Sample / Tests                                              | Water<br>Depth<br>(m) | Field Records             | Level<br>(mOD) | Depth<br>(m)<br>(Thickness)          | Description                                                                                                                                                                                                                            | Vater Water                           |
| 0.20                      | ES                                                          |                       |                           |                | (0.40)                               | Turf over light brown, clayey, silty, sandy, TOPSOIL. Sand is fine to coarse, frequent rootlets                                                                                                                                        |                                       |
| 0.60                      | ES                                                          |                       |                           |                | -<br>-<br>-<br>-<br>-<br>-<br>-      | Light orangish brown becoming dark grey, clayey becoming very clayey, slightly sandy, gravelly SILT. Gravel is sub-angular to sub-rounded, fine to coarse, of metasedimentary rock and quartz. Occasional rounded cobbles up to 7.5cm. | X                                     |
| 1.00-1.45<br>1.00         | SPT N=11<br>ES                                              |                       | 1,2/2,3,3,3               |                |                                      |                                                                                                                                                                                                                                        |                                       |
| 2.00-2.45                 | SPT N=12                                                    |                       | 3,3/3,3,3,3               |                |                                      |                                                                                                                                                                                                                                        |                                       |
| 3.00-3.45                 | SPT N=11                                                    |                       | 3,3/3,2,3,3               |                |                                      |                                                                                                                                                                                                                                        |                                       |
| 4.00-4.45                 | SPT N=12                                                    |                       | 3,3/3,3,3,3               |                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                                                                                                                                                                        | X X X X X X X X X X X X X X X X X X X |
| 4.50                      | ES                                                          |                       | Water strike(1) at 4.50m. |                | -<br>-<br>-<br>-<br>-<br>-<br>-      |                                                                                                                                                                                                                                        | ▼                                     |
| 5.00-5.45  Remarks        | SPT N=24                                                    |                       | 5,5/5,6,5,8               |                | 5.00                                 | Scale (approx                                                                                                                                                                                                                          | Logged<br>By                          |
| Gas monitor<br>Groundwate | ete at depth<br>ing standpipe and m<br>r encountered at 4.5 | etal cover<br>0mBGL   | rinstalled in WS03        |                |                                      | 1:25 Figure                                                                                                                                                                                                                            | SLW                                   |

| Wheal Jane                                | e                   |                       |                     |                | Site                                 |                                                                                                                                                                                                                       | Number                             |                     |       |
|-------------------------------------------|---------------------|-----------------------|---------------------|----------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------|-------|
|                                           | C W mining services |                       |                     |                |                                      | Park Gerry, Camborne                                                                                                                                                                                                  |                                    | WS0                 |       |
| Excavation N                              | Method              | Dimens                | sions               | Ground         | Level (mOD)                          | Client                                                                                                                                                                                                                |                                    | Job                 |       |
| Windowless                                | Sample Borehole     |                       |                     |                |                                      | Mei Loci                                                                                                                                                                                                              |                                    | Number 2166         |       |
|                                           |                     | Locatio               | n                   | Dates          |                                      | Engineer                                                                                                                                                                                                              |                                    | Sheet               |       |
|                                           |                     | Pa                    | ark Gerry           | 29             | 9/06/2023                            | WJC                                                                                                                                                                                                                   |                                    | 1/1                 |       |
| Depth<br>(m)                              | Sample / Tests      | Water<br>Depth<br>(m) | Field Records       | Level<br>(mOD) | Depth<br>(m)<br>(Thickness)          | Description                                                                                                                                                                                                           |                                    | Legend              | Water |
|                                           |                     |                       |                     |                | (0.10)                               | Turf over light brown, clayey, silty, sandy, TOPSOIL fine to coarse, frequent rootlets                                                                                                                                |                                    |                     |       |
| 0.30                                      | ES                  |                       |                     |                | -<br>-<br>-<br>-<br>-                | Light orangish brown and mottled reddish brown, cl<br>becoming very clayey, slightly sandy, gravelly SILT.<br>is sub-angular to sub-rounded, f-c, of metasedimen<br>rock and quartz. Occasional rounded cobbles up to | layey<br>Gravel<br>Itary<br>7.5cm. |                     |       |
| 0.70                                      | ES                  |                       |                     |                | -<br>-<br>-<br>-                     |                                                                                                                                                                                                                       |                                    |                     |       |
| 1.00-1.45                                 | SPT N=11            |                       | 1,2/2,3,3,3         |                |                                      |                                                                                                                                                                                                                       |                                    |                     |       |
| 2.00-2.45                                 | SPT N=18            |                       | 2,3/3,4,5,6         |                | -<br>-<br>-<br>-<br>-<br>-<br>-      |                                                                                                                                                                                                                       |                                    |                     |       |
| 2.50                                      | ES                  |                       |                     |                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                                                                                                                                                       |                                    |                     |       |
| 3.00-3.45                                 | SPT N=61            |                       | 8,11/13,14,16,18    |                | 3.00                                 | Complete at 3.00m                                                                                                                                                                                                     |                                    |                     |       |
| Remarks<br>Hole complete<br>Gas monitorin | ng standpipe and m  | etal cover            | r installed in WS04 |                | <u> </u>                             |                                                                                                                                                                                                                       | Scale<br>(approx)                  | Logge<br>By         | d     |
| No groundwa                               | iter encountered    |                       |                     |                |                                      |                                                                                                                                                                                                                       | 1:25                               | SLW                 |       |
|                                           |                     |                       |                     |                |                                      |                                                                                                                                                                                                                       | Figure N                           | <b>o.</b><br>5.WS04 |       |

| Wheal Jane Consultancy Environment & mining services                                    |                       |                      |                | Site Park Gerry, Camborne                                     | Number<br>WS05                                                                                                                                                                                                                         |                                         |
|-----------------------------------------------------------------------------------------|-----------------------|----------------------|----------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Excavation Method Windowless Sample Borehole                                            | Dimens                | ions                 | Ground         | Level (mOD)                                                   | Client<br>Mei Loci                                                                                                                                                                                                                     | Job<br>Number<br>21665                  |
|                                                                                         | <b>Locatio</b><br>Pa  | <b>n</b><br>rk Gerry | Dates<br>29    | )/06/2023                                                     | Engineer<br>WJC                                                                                                                                                                                                                        | Sheet<br>1/1                            |
| Depth (m) Sample / Tests                                                                | Water<br>Depth<br>(m) | Field Records        | Level<br>(mOD) | Depth<br>(m)<br>(Thickness)                                   | Description                                                                                                                                                                                                                            | Legend Nater                            |
| 0.10 ES                                                                                 |                       |                      |                | (0.10)<br>- 0.10                                              | Turf over light brown, clayey, silty, sandy, TOPSOIL. Sand is fine to coarse, frequent rootlets  Light orangish brown becoming dark grey, clayey becoming                                                                              | X X                                     |
| 0.40 ES                                                                                 |                       |                      |                | -<br>-<br>-<br>-<br>-<br>-                                    | Light orangish brown becoming dark grey, clayey becoming very clayey, slightly sandy, gravelly SILT. Gravel is sub-angular to sub-rounded, fine to coarse, of metasedimentary rock and quartz. Occasional rounded cobbles up to 7.5cm. | X * X * X * X * X * X * X * X * X * X * |
| 0.80 ES                                                                                 |                       |                      |                |                                                               |                                                                                                                                                                                                                                        | × × × × × × × × × × × × × × × × × × ×   |
| 1.00-1.45 SPT N=8                                                                       |                       | 1,2/2,2,2,2          |                |                                                               |                                                                                                                                                                                                                                        |                                         |
| 2.00-2.45 SPT N=8                                                                       |                       | 1,1/1,2,2,3          |                |                                                               |                                                                                                                                                                                                                                        |                                         |
| 3.00-3.45 SPT N=12                                                                      |                       | 2,2/3,3,3,3          |                |                                                               |                                                                                                                                                                                                                                        |                                         |
| 4.00-4.45 SPT N=14                                                                      |                       | 3,4/3,4,3,4          |                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                                                                                                                                                                        |                                         |
| 4.70 ES                                                                                 |                       |                      |                | _<br>-<br>-                                                   |                                                                                                                                                                                                                                        | X                                       |
| 5.00-5.45 SPT N=26  Remarks                                                             |                       | 3,4/5,5,7,9          |                | 5.00                                                          |                                                                                                                                                                                                                                        | × × × × × × × × × × × × × × × × × × ×   |
| No groundwater encountered<br>Gas monitoring standpipe and me<br>Hole complete at depth | etal cover            | installed in WS05    |                |                                                               | Scale (approx)  1:25  Figure                                                                                                                                                                                                           | SLW                                     |

| Wheal Jar<br>Consultan                     | Wheal Jane Consultancy Environment & mining services        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |                                                | Site Park Gerry, Camborne                                                                                                                                                                                                                                                                                                                     |                                       | Number WS0                                                       |       |
|--------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------|-------|
| Excavation<br>Windowless                   | Method<br>Sample Borehole                                   | Dimens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sions           | Ground         | Level (mOD)                                    | Client<br>Mei Loci                                                                                                                                                                                                                                                                                                                            |                                       | Job<br>Number<br>21665                                           |       |
|                                            |                                                             | <b>Locatio</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on<br>ark Gerry | Dates 29       | 9/06/2023                                      | Engineer<br>WJC                                                                                                                                                                                                                                                                                                                               |                                       | Sheet<br>1/1                                                     |       |
| Depth<br>(m)                               | Sample / Tests                                              | Water<br>Depth<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Field Records   | Level<br>(mOD) | Depth<br>(m)<br>(Thickness)                    | Description                                                                                                                                                                                                                                                                                                                                   |                                       | Legend                                                           | Water |
| 0.10                                       | ES                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                | (0.15)<br>- 0.15<br>- 0.15                     | Turf over light brown, clayey, silty, sandy, TOPSOI fine to coarse, frequent rootlets  Light orangish brown becoming dark grey, clayey very clayey, slightly sandy, gravelly SILT. Gravel is sub-angular to sub-rounded, fine to coarse, of metasedimentary rock and quartz. Occasional rou cobbles up to 7.5cm. Quartz vein encountered at 1 |                                       | X - X - X - X - X - X - X - X - X - X -                          |       |
| 0.60                                       | ES                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |                                                |                                                                                                                                                                                                                                                                                                                                               |                                       |                                                                  | ,     |
| 1.20                                       | SPT N=13                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,1/2,3,3,5     |                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                                                                                                                                                                                                                                                                               |                                       | **************************************                           |       |
|                                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                | 1.60                                           | Complete at 5.00m                                                                                                                                                                                                                                                                                                                             |                                       | 3. x - 1. x - 1.<br>x - 2. x + 1. x - 2.<br>x - 2. x - 2. x - 2. | •     |
| Remarks Hole backfill                      | SPT N=84                                                    | ampletion in the state of the s | 11,13/19,28,37  |                |                                                |                                                                                                                                                                                                                                                                                                                                               | Scale                                 | Logge                                                            | ed    |
| Hole backfill<br>No groundw<br>Hole comple | ed with arising on co<br>ater encountered<br>ete at refusal | mpletion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                |                                                |                                                                                                                                                                                                                                                                                                                                               | Scale<br>(approx)<br>1:25<br>Figure N | Logge<br>By<br>SLW                                               |       |
|                                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |                                                |                                                                                                                                                                                                                                                                                                                                               | 2166                                  | 5.WS06                                                           |       |

| Wheal Ja<br>Consulta                             | Site<br>Park G                                                                                                       | Site Park Gerry, Camborne |                |                            |                     |     |   |  |  |  | obe<br>imber<br>P01 |           |              |             |                  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|----------------------------|---------------------|-----|---|--|--|--|---------------------|-----------|--------------|-------------|------------------|
| Method<br>Dynamic P                              | robe, advanced of WS01 starting at 5.5m                                                                              | Cone Dimensions           | Ground I       | Level (mOD)                | O) Client  Mei Loci |     |   |  |  |  |                     |           |              | Job<br>Numl | ber              |
| a depth of                                       | 5.5m                                                                                                                 | Location Park Gerry       | Dates          | 06/2023                    | Engineer<br>WJC     |     |   |  |  |  |                     |           |              |             | e <b>t</b><br>/2 |
| Depth<br>(m)                                     | Blows for<br>Depth Increment                                                                                         | Field Records             | Level<br>(mOD) | Depth<br>(m)               | 0 3                 | 3 6 | 6 |  |  |  | rement              | 1 24      | 2            | 27          | 30               |
|                                                  |                                                                                                                      |                           |                | 0.00                       |                     |     |   |  |  |  |                     |           |              |             | _                |
|                                                  |                                                                                                                      |                           |                | 0.50                       |                     |     |   |  |  |  |                     |           |              |             | _                |
|                                                  |                                                                                                                      |                           |                | 1.00                       |                     |     |   |  |  |  |                     |           |              |             |                  |
|                                                  |                                                                                                                      |                           |                | =<br>=<br>=<br>=<br>=<br>= |                     |     |   |  |  |  |                     |           |              |             |                  |
|                                                  |                                                                                                                      |                           |                | 1.50                       |                     |     |   |  |  |  |                     |           |              |             | _                |
|                                                  |                                                                                                                      |                           |                | 2.00                       |                     |     |   |  |  |  |                     |           |              |             | _                |
|                                                  |                                                                                                                      |                           |                | 2.50                       |                     |     |   |  |  |  |                     |           |              |             | _                |
|                                                  |                                                                                                                      |                           |                | 2.50<br>                   |                     |     |   |  |  |  |                     |           |              |             | _                |
|                                                  |                                                                                                                      |                           |                | 3.00                       |                     |     |   |  |  |  |                     |           |              |             |                  |
|                                                  |                                                                                                                      |                           |                | 3.50                       |                     |     |   |  |  |  |                     |           |              |             |                  |
|                                                  |                                                                                                                      |                           |                | <u>-</u><br>-              |                     |     |   |  |  |  |                     |           |              |             | _                |
|                                                  |                                                                                                                      |                           |                | 4.00                       |                     |     |   |  |  |  |                     |           |              |             | _                |
|                                                  |                                                                                                                      |                           |                | 4.50                       |                     |     |   |  |  |  |                     |           |              |             | _                |
|                                                  |                                                                                                                      |                           |                | 5.00                       |                     |     |   |  |  |  |                     |           |              |             | _                |
|                                                  |                                                                                                                      |                           | 1              | 5.00<br>                   |                     |     |   |  |  |  |                     |           |              |             |                  |
| 5.50-5.60<br>5.60-5.70<br>5.70-5.80<br>5.80-5.90 | 1<br>1<br>1<br>1                                                                                                     |                           |                | 5.50                       |                     |     |   |  |  |  |                     |           |              |             |                  |
| 5.90-6.00<br>6.00-6.10<br>6.10-6.20<br>6.20-6.30 | 1<br>1<br>1<br>1                                                                                                     |                           |                | 6.00<br>6.00               |                     |     |   |  |  |  |                     |           |              |             |                  |
| 6.30-6.40<br>6.40-6.50<br>6.50-6.60              | 1                                                                                                                    |                           |                |                            |                     |     |   |  |  |  |                     |           |              |             | $\blacksquare$   |
| 6.60-6.70<br>6.70-6.80<br>6.80-6.90<br>6.90-7.00 | 2<br>2<br>2<br>2                                                                                                     |                           |                | -<br>-<br>-<br>-           |                     |     |   |  |  |  |                     |           |              |             | _                |
| 7.00-7.10<br>7.10-7.20<br>7.20-7.30<br>7.30-7.40 | 2 2 2                                                                                                                |                           |                | 7.00                       |                     |     |   |  |  |  |                     |           |              |             | _                |
| 7.40-7.50<br>7.50-7.60<br>7.60-7.70              | 1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>3<br>4<br>3<br>4<br>4<br>4<br>4 |                           |                | 7.50                       |                     |     |   |  |  |  |                     |           |              |             | _                |
| 7.70-7.80<br>7.80-7.90<br>7.90-8.00              | 3 4                                                                                                                  |                           |                | 7.50<br>                   |                     |     |   |  |  |  |                     |           |              |             |                  |
| Remarks                                          |                                                                                                                      |                           |                |                            |                     |     |   |  |  |  |                     | Sc<br>(ap | ale<br>prox) | Logg<br>By  | ed               |
|                                                  |                                                                                                                      |                           |                |                            |                     |     |   |  |  |  |                     |           | 40<br>gure N | SL'         | W                |
|                                                  |                                                                                                                      |                           |                |                            |                     |     |   |  |  |  |                     |           |              | 35 DP0      | )1               |

| Wheal Jar                                          | Site                                       |                 |                |                    |                                               |     |   |  |      | Probe<br>Numb | er<br>oer |          |                   |             |          |
|----------------------------------------------------|--------------------------------------------|-----------------|----------------|--------------------|-----------------------------------------------|-----|---|--|------|---------------|-----------|----------|-------------------|-------------|----------|
| Consultan                                          | ent & mining services                      | Park            | Gerry, (       | Cambo              | rne                                           |     |   |  |      |               | DP        | 01       |                   |             |          |
| Method<br>Dynamic Profrom base of<br>a depth of 5. | obe, advanced<br>f WS01 starting at<br>.5m | Cone Dimensions | Ground         | Level (mOD)        | Client<br>Mei L                               | oci |   |  |      |               |           |          |                   | Job<br>Numb |          |
| ,                                                  |                                            | Location        | Dates          |                    | Engine                                        | er  |   |  | Shee | t             |           |          |                   |             |          |
|                                                    |                                            | Park Gerry      | 29/0           | 06/2023            | WJC                                           |     |   |  |      |               |           |          |                   | 2/:         | 2        |
| Depth<br>(m)                                       | Blows for<br>Depth Increment               | Field Records   | Level<br>(mOD) | Depth<br>(m)       | Blows for Depth Increment 0 3 6 9 12 15 18 21 |     |   |  |      |               |           |          |                   | 27          | 30       |
| 8.00-8.10<br>8.10-8.20                             | 2 4                                        |                 |                | 8.00               |                                               |     |   |  |      |               |           |          |                   |             | +        |
| 8.20-8.30<br>8.30-8.40                             | 7 10                                       |                 |                |                    |                                               |     |   |  |      |               |           |          |                   |             | $\top$   |
| 8.40-8.50<br>8.50-8.60                             | 9 4                                        |                 |                | 8.50               |                                               |     |   |  |      |               |           |          |                   |             |          |
| 8.60-8.70<br>8.70-8.80<br>8.80-8.90                | 4<br>5<br>7<br>5<br>5                      |                 |                |                    |                                               |     |   |  |      |               |           |          |                   |             |          |
| 8.90-9.00<br>9.00-9.10                             | 5 4                                        |                 |                | 9.00               |                                               |     |   |  |      |               |           |          |                   |             | _        |
| 9.10-9.20<br>9.20-9.30                             | 4 8                                        |                 |                | <u></u>            |                                               |     |   |  |      |               |           |          |                   |             | <u> </u> |
| 9.30-9.40<br>9.40-9.50                             | 15<br>8                                    |                 |                | <del>-</del>       |                                               |     |   |  |      |               |           | -        |                   |             | _        |
| 9.50-9.60<br>9.60-9.70                             | 7 3                                        |                 |                | 9.50               |                                               |     | F |  |      |               |           |          |                   |             | _        |
| 9.70-9.80<br>9.80-9.90<br>9.90-10.00               | 7<br>3<br>2<br>3<br>5<br>6                 |                 |                |                    |                                               |     |   |  |      |               |           |          |                   |             | $\vdash$ |
| 10.00-10.10<br>10.10-10.20                         | 6 4                                        |                 |                | 10.00              |                                               |     |   |  |      |               |           |          |                   |             | $\vdash$ |
| 10.20-10.30<br>10.30-10.40                         | 3 3                                        |                 |                | <u>-</u><br>-<br>- |                                               |     |   |  |      |               |           |          |                   |             | $\vdash$ |
| 10.40-10.50<br>10.50-10.60                         | 3 4                                        |                 |                | 10.50              |                                               |     |   |  |      |               |           |          |                   |             | $\top$   |
| 10.60-10.70<br>10.70-10.80                         | 3                                          |                 |                | <u>-</u>           |                                               |     |   |  |      |               |           |          |                   |             |          |
| 10.80-10.90<br>10.90-11.00<br>11.00-11.10          | 3                                          |                 |                | 11.00              |                                               |     |   |  |      |               |           |          |                   |             |          |
| 11.10-11.20<br>11.20-11.30                         | 4<br>5<br>5                                |                 |                |                    |                                               |     |   |  |      |               |           |          |                   |             |          |
| 11.30-11.40<br>11.40-11.50                         | 5<br>6<br>6                                |                 |                | <u>-</u>           |                                               |     |   |  |      |               |           |          |                   |             | _        |
| 11.50-11.60<br>11.60-11.70                         | 6 4                                        |                 |                | 11.50              |                                               |     |   |  |      |               |           |          |                   |             | _        |
| 11.70-11.80<br>11.80-11.90                         | 4<br>5<br>9<br>9                           |                 |                | <u>-</u><br>-<br>- |                                               |     |   |  |      |               |           |          |                   |             | _        |
| 11.90-12.00<br>12.00-12.10<br>12.10-12.20          | 9 9                                        |                 |                | 12.00              |                                               |     |   |  |      |               |           |          |                   |             | $\vdash$ |
| 12.20-12.30<br>12.30-12.40                         | 7                                          |                 |                | <u>-</u><br>-      |                                               |     |   |  |      |               |           |          |                   |             | $\vdash$ |
| 12.40-12.50<br>12.50-12.60                         | 17<br>16                                   |                 |                | 12.50<br>12.50     |                                               |     |   |  |      |               |           |          |                   |             | $\vdash$ |
| 12.60-12.70<br>12.70-12.80                         | 6                                          |                 |                | <u>-</u>           |                                               |     | Ħ |  |      |               |           |          |                   |             | $\vdash$ |
| 12.80-12.90<br>12.90-13.00<br>13.00-13.10          | 8                                          |                 |                | 13.00              |                                               |     |   |  |      |               |           |          |                   |             |          |
| 13.10-13.20<br>13.20-13.30                         | 17                                         |                 |                | _                  |                                               |     |   |  |      |               |           |          |                   |             |          |
| 13.30-13.40<br>13.40-13.50                         | 12                                         |                 |                |                    |                                               |     |   |  |      |               |           |          |                   |             |          |
| 13.50-13.60<br>13.60-13.70                         | 11<br>11                                   |                 |                | 13.50              |                                               |     |   |  |      |               |           |          |                   |             | _        |
| 13.70-13.80<br>13.80-13.90<br>13.90-14.00          | 13                                         |                 |                | <u>-</u><br>-<br>- |                                               |     |   |  |      |               |           |          |                   |             | _        |
| 14.00-14.10<br>14.10-14.20                         | 19                                         |                 |                | 14.00              |                                               |     |   |  |      |               |           |          |                   |             | $\vdash$ |
| 14.20-14.30<br>14.30-14.40                         | 18                                         |                 |                | <u>-</u><br>-<br>- |                                               |     |   |  |      |               |           |          |                   |             | $\vdash$ |
| 14.40-14.50                                        | 0                                          |                 |                | 14.50              |                                               |     |   |  |      |               |           |          |                   |             | $\vdash$ |
|                                                    |                                            |                 |                | <u>-</u>           |                                               |     |   |  |      |               |           |          |                   |             | $\vdash$ |
|                                                    |                                            |                 |                | 15.00              |                                               |     |   |  |      |               |           |          |                   |             |          |
|                                                    |                                            |                 |                | 13.00<br>          |                                               |     |   |  |      |               |           |          |                   |             |          |
|                                                    |                                            |                 |                | <u>-</u><br>-      |                                               |     |   |  |      |               |           |          |                   |             |          |
|                                                    |                                            |                 |                | 15.50<br>          |                                               | _   |   |  |      |               |           |          |                   |             | $\perp$  |
|                                                    |                                            |                 |                | 15.50              |                                               |     |   |  |      |               |           |          |                   |             | $\perp$  |
|                                                    |                                            |                 |                | 16.00              |                                               |     |   |  |      |               |           | <u> </u> |                   |             | $\perp$  |
| Remarks                                            |                                            |                 |                |                    |                                               |     |   |  |      |               |           | (        | Scale<br>(approx) | Logg<br>By  | ed       |
|                                                    |                                            |                 |                |                    |                                               |     |   |  |      |               |           |          | 1:40              | SL          | N        |
|                                                    |                                            |                 |                |                    |                                               |     |   |  |      |               |           | İ        | Figure            | No.         |          |
|                                                    |                                            |                 |                |                    |                                               |     |   |  |      |               |           |          | 216               | 35.DP0      | )1       |

| Wheal Jar<br>Consultan                      | ne<br>Icu                                                           |                 |                |                         | Site            |          |       |     |   |   |                 |             |               | Prob<br>Numl       | e<br>ber  |
|---------------------------------------------|---------------------------------------------------------------------|-----------------|----------------|-------------------------|-----------------|----------|-------|-----|---|---|-----------------|-------------|---------------|--------------------|-----------|
|                                             | ent & mining services                                               |                 |                |                         | Park            | Gerry, C | Cambo | rne |   |   |                 |             |               | DP                 | 02        |
| Method Dynamic Profrom base of a depth of 5 | obe, advanced<br>f WS05 starting at<br>.5m                          | Cone Dimensions | Ground I       | Level (mOD)             | Client<br>Mei L | oci      |       |     |   |   |                 |             |               | Job<br>Numl<br>216 |           |
| a aspa. 5. 5.                               |                                                                     | Location        | Dates          |                         | Engine          | er       |       |     |   |   |                 |             |               | Shee               |           |
|                                             |                                                                     | Park Gerry      | 29/0           | 06/2023                 | WJC             |          |       |     |   |   |                 |             |               | 1/                 | 1         |
| Depth<br>(m)                                | Blows for<br>Depth Increment                                        | Field Records   | Level<br>(mOD) | Depth<br>(m)            | 0               | 4        | 8     |     |   |   | rement<br>24 28 | 3 32        | 36            | 6                  | 40        |
|                                             |                                                                     |                 |                | 0.00                    |                 |          |       |     |   |   |                 |             | $\mp$         |                    | Ħ         |
|                                             |                                                                     |                 |                | <del>-</del>            |                 |          |       |     |   |   |                 |             |               |                    | T         |
|                                             |                                                                     |                 |                | 0.50                    |                 |          |       |     |   |   |                 |             |               |                    |           |
|                                             |                                                                     |                 |                | <u></u>                 |                 |          |       |     |   |   |                 |             | $\dashv$      |                    | <u> </u>  |
|                                             |                                                                     |                 |                | 1.00                    |                 |          |       |     |   |   |                 |             | $\rightarrow$ |                    | +         |
|                                             |                                                                     |                 |                |                         |                 |          |       |     |   |   |                 |             | $\dashv$      |                    | +         |
|                                             |                                                                     |                 |                | 1.50                    |                 |          |       |     |   |   |                 |             | -             |                    | +         |
|                                             |                                                                     |                 |                |                         |                 |          |       |     |   |   |                 |             | _             |                    | $\vdash$  |
|                                             |                                                                     |                 |                | _                       |                 |          |       |     |   |   |                 |             |               |                    | T         |
|                                             |                                                                     |                 |                | 2.00                    |                 |          |       |     |   |   |                 |             |               |                    | $\square$ |
|                                             |                                                                     |                 |                | <u>-</u>                |                 |          |       |     |   |   |                 |             | $\dashv$      |                    | ₩         |
|                                             |                                                                     |                 |                | 2.50                    |                 |          |       |     |   |   |                 |             | $\rightarrow$ |                    | -         |
|                                             |                                                                     |                 |                | <u> </u>                |                 |          |       |     |   |   |                 |             | $\dashv$      |                    | $\vdash$  |
|                                             |                                                                     |                 |                | 3.00                    |                 |          |       |     |   |   |                 |             | -             |                    | +         |
|                                             |                                                                     |                 |                | <u>-</u>                |                 |          |       |     |   |   |                 |             | _             |                    | $\vdash$  |
|                                             |                                                                     |                 |                | 3.50                    |                 |          |       |     |   |   |                 |             |               |                    |           |
|                                             |                                                                     |                 |                |                         |                 |          |       |     |   |   |                 |             |               |                    |           |
|                                             |                                                                     |                 |                | 4.00                    |                 |          |       |     |   |   |                 |             | _             |                    | 1         |
|                                             |                                                                     |                 |                | <u>-</u><br>-<br>-      |                 |          |       |     |   |   |                 |             | $\dashv$      |                    | $\vdash$  |
|                                             |                                                                     |                 |                |                         |                 |          |       |     |   |   |                 |             | $\rightarrow$ |                    | $\vdash$  |
|                                             |                                                                     |                 |                | 4.50                    |                 |          |       |     |   |   |                 |             | $\dashv$      |                    | +         |
|                                             |                                                                     |                 |                |                         |                 |          |       |     |   |   |                 |             | -             |                    | +         |
|                                             |                                                                     |                 |                | 5.00                    |                 |          |       |     |   |   |                 |             |               |                    | $\top$    |
|                                             |                                                                     |                 |                | <u>-</u>                |                 |          |       |     |   |   |                 |             |               |                    |           |
| 5.50-5.60<br>5.60-5.70                      | 3 3                                                                 |                 |                | 5.50                    |                 |          |       |     |   |   |                 |             | $\rightarrow$ |                    | $\perp$   |
| 5.70-5.80<br>5.80-5.90                      | 3<br>3<br>3<br>3<br>5<br>3<br>3<br>3<br>2<br>2<br>3<br>4<br>8<br>12 |                 |                | 5.50                    |                 |          |       |     |   | - |                 |             | $\dashv$      |                    | $\vdash$  |
| 5.90-6.00<br>6.00-6.10<br>6.10-6.20         | 3 3                                                                 |                 |                | 6.00                    |                 |          |       |     |   |   |                 |             | $\dashv$      |                    | $\vdash$  |
| 6.10-6.20<br>6.20-6.30<br>6.30-6.40         | 3 2                                                                 |                 |                | 6.50                    |                 |          |       |     |   |   |                 |             | +             |                    | +         |
| 6.40-6.50<br>6.50-6.60                      | 3 4                                                                 |                 |                | 6.50                    |                 |          |       |     |   |   |                 |             |               |                    | $\top$    |
| 6.60-6.70<br>6.70-6.80<br>6.80-6.90         | 12<br>10                                                            |                 |                | <u>-</u><br>-<br>-<br>- |                 |          |       |     |   |   |                 |             |               |                    |           |
| 6.90-7.00<br>7.00-7.10                      | 10<br>10                                                            |                 |                | 7.00                    |                 |          |       |     |   |   |                 |             |               |                    | $\perp$   |
| 7.10-7.20<br>7.20-7.30                      | 16<br>22                                                            |                 |                |                         |                 |          |       |     |   |   |                 |             | $\dashv$      |                    | ₩         |
| 7.30-7.40<br>7.40-7.50                      | 22<br>36<br>0                                                       |                 |                |                         |                 |          |       |     |   |   |                 |             |               |                    | -         |
|                                             |                                                                     |                 |                | 7.50<br>                |                 |          |       |     |   |   |                 |             | $\dashv$      |                    | +         |
|                                             |                                                                     |                 |                | 7.50                    |                 |          |       |     |   |   |                 |             | $\dashv$      |                    | +         |
| Remarks                                     |                                                                     |                 |                | 8.00                    |                 | -        |       | -   | - | + |                 | Sca<br>(app | ile<br>prox)  | Logg<br>By         | ed        |
|                                             |                                                                     |                 |                |                         |                 |          |       |     |   |   |                 |             |               |                    |           |
|                                             |                                                                     |                 |                |                         |                 |          |       |     |   |   |                 | 1:4<br>Figu | ure N         | SL'<br>lo.         | vv        |
|                                             |                                                                     |                 |                |                         |                 |          |       |     |   |   |                 |             |               | 5.DP0              | )2        |

| Wheal Jan<br>Consultan             | DE<br>CU<br>ent & mining services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Site Park Gerry Handpitting                                                                                                      |                                                                                                                         | Trial Pit<br>Number<br>HP01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Excavation Excavated u hand tools. | Method<br>sing insulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Dimensio</b> 0.40 m di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ns<br>ameter x 1.05 m deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level (mOD)                 | Client<br>Mei Loci                                                                                                               |                                                                                                                         | Job<br>Number<br>21999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>Location</b><br>Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gerry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dates<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )/01/2024                   | Engineer                                                                                                                         |                                                                                                                         | Sheet<br>1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Depth<br>(m)                       | Sample / Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water<br>Depth<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Field Records                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Level<br>(mOD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Depth<br>(m)<br>(Thickness) | D                                                                                                                                | escription                                                                                                              | Legend sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.20                               | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Grass over light brown, cla<br>is fine to coarse, frequent                                                                       | ayey, silty, sandy TOPSOIL. :<br>rootlets.                                                                              | Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.30<br>-<br>-<br>-       | Light orangish-brown and slightly sandy, gravelly SIL sub-rounded, fine to coars and quartz. Sand is fine to cobbles up to 6 cm. | mottled reddish-brown, clay<br>T. Gravel is sub-angular to<br>se of metasedimentary muds<br>o coarse. Occasional rounde | ey, tone and the state of the s |
| 0.50                               | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                  |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>-                 |                                                                                                                                  |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.00                               | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>1.05              | Complete at 1.05m                                                                                                                |                                                                                                                         | X 2 - 2 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                           |                                                                                                                                  |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                           |                                                                                                                                  |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    | Octoo<br>Corrigo<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control<br>Control | COMMUNITY IN THE PROPERTY OF T | HPO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A CONTROL STATE & CONTROL STAT |                             | Remarks  Hole backfilled with arisings Sidewalls were stable with n Hole complete at depth. No groundwater encountere            | upon completion.<br>no collapse.<br>rd.                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    | HP06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 502 HP09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                  |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PERSONAL PROPERTY OF THE PROPE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S                           | Scale (approx)<br>1:10                                                                                                           | Logged By                                                                                                               | <b>Figure No.</b> 21999.HP01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Wheal Jar<br>Consultar            | ne<br>ncy<br>nent & mining services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | Site Park Gerry Handpitting                                                                                                      |                                                                                                                       | Trial Pit<br>Number<br>HP02 |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Excavation Excavated thand tools. | Method<br>using insulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dimension 0.40 m c     | ons<br>diameter x 1.00 m deep               | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Level (mOD)                 | Client<br>Mei Loci                                                                                                               |                                                                                                                       | Job<br>Number<br>21999      |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Location</b><br>Par | ı<br>k Gerry                                | Dates<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0/01/2024                   | Engineer                                                                                                                         |                                                                                                                       | Sheet<br>1/1                |
| Depth<br>(m)                      | Sample / Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water<br>Depth<br>(m)  | Field Records                               | Level<br>(mOD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth<br>(m)<br>(Thickness) | D                                                                                                                                | escription                                                                                                            | Legend reg                  |
| 0.10                              | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br>                        | Grass over light brown, cla<br>is fine to coarse, frequent                                                                       | ayey, silty, sandy TOPSOIL.<br>rootlets.                                                                              | Sand                        |
| 0.40                              | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 0.25<br>(0.75)            | Light orangish-brown and slightly sandy, gravelly SIL sub-rounded, fine to coars and quartz. Sand is fine to cobbles up to 6 cm. | mottled reddish-brown, clay<br>T. Gravel is sub-angular to<br>ie of metasedimentary muds<br>coarse. Occasional rounde | ey, stone d                 |
| 0.80                              | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | Complete at 1.00m                                                                                                                |                                                                                                                       |                             |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                           |                                                                                                                                  |                                                                                                                       |                             |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                                                                                                                                  |                                                                                                                       |                             |
|                                   | HPOT well-and the state of the | HPO2                   | HPO4                                        | Management of the state of the |                             | Remarks  Hole backfilled with arisings Sidewalls were stable with r Hole complete at depth. No groundwater encountere            | upon completion.<br>no collapse.<br>ed.                                                                               |                             |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | NG 487.47ED<br>TOO 487.46ED<br>TOO 487.46ED |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                           | Scale (approx)                                                                                                                   | Logged By                                                                                                             | Figure No.                  |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | 1:10                                                                                                                             | TG                                                                                                                    | 21999.HP02                  |

| Wheal Jan<br>Consultant               | ECU<br>t & mining services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Site Park Gerry Handpitting                                                                                           |                                                                                                                     | Trial Pit<br>Number<br>HP03  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------|
| Excavation I Excavated us hand tools. | Method<br>sing insulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Dimensio</b> 0.40 m di | ns<br>ameter x 1.20 m deep                              | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level (mOD)                          | Client<br>Mei Loci                                                                                                    |                                                                                                                     | Job<br>Number<br>21999       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Location</b><br>Park   | Gerry                                                   | Dates<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )/01/2024                            | Engineer                                                                                                              |                                                                                                                     | Sheet<br>1/1                 |
| Depth<br>(m)                          | Sample / Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water<br>Depth<br>(m)     | Field Records                                           | Level<br>(mOD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Depth<br>(m)<br>(Thickness)          | D                                                                                                                     | escription                                                                                                          | Legend b                     |
| 0.15                                  | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                                                       | mottled reddish-brown, very velly SILT. Gravel is sub-ang arse of metasedimentary and is fine to coarse. Occasio m. |                              |
| 0.60                                  | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                                                       |                                                                                                                     |                              |
| 1.20                                  | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Complete at 1.20m                                                                                                     |                                                                                                                     |                              |
|                                       | HPO7 was a series of the serie | HP02                      | HPO3  HPO4  HPO4                                        | The state of the s |                                      | Remarks  Hole backfilled with arisings Sidewalls were stable with n Hole complete at depth. No groundwater encountere |                                                                                                                     |                              |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | FE ASSEMBLE<br>FE ASSEMBLE<br>FEOTOMAL PECH<br>INSTALLE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S                                    | Scale (approx)                                                                                                        | Logged By                                                                                                           | <b>Figure No.</b> 21999.HP03 |

| Wheal Jan<br>Consultant               | E<br>CU<br>at & mining services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Site Park Gerry Handpitting                                                                                                      |                                                                                                                       | Trial Pit<br>Number<br>HP04  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------|
| Excavation I Excavated us hand tools. | Method<br>sing insulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Dimensio</b> 0.40 m di | ns<br>ameter x 0.90 m deep          | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level (mOD)                 | Client<br>Mei Loci                                                                                                               |                                                                                                                       | Job<br>Number<br>21999       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>Location</b><br>Park   | Gerry                               | Dates<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )/01/2024                   | Engineer                                                                                                                         |                                                                                                                       | Sheet<br>1/1                 |
| Depth<br>(m)                          | Sample / Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water<br>Depth<br>(m)     | Field Records                       | Level<br>(mOD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Depth<br>(m)<br>(Thickness) | D                                                                                                                                | escription                                                                                                            | Legend Nate                  |
| 0.20                                  | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>(0.30)            | Grass over light brown, cla<br>is fine to coarse, frequent                                                                       | ayey, silty, sandy TOPSOIL.<br>rootlets.                                                                              | Sand                         |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.30<br>-<br>-            | Light orangish-brown and slightly sandy, gravelly SIL sub-rounded, fine to coars and quartz. Sand is fine to cobbles up to 6 cm. | mottled reddish-brown, clay<br>T. Gravel is sub-angular to<br>se of metasedimentary muds<br>coarse. Occasional rounde | ey, Stone d                  |
| 0.50                                  | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                  |                                                                                                                       |                              |
| 0.90                                  | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.90                      | Complete at 0.90m                                                                                                                |                                                                                                                       |                              |
|                                       | HPO7 we see the second of the | HPO2                      | HPO3 HPO4 HPO4                      | Secretary Services and Services |                             | Remarks  Hole backfilled with arisings Sidewalls were stable with r Hole complete at depth. No groundwater encountere            | upon completion.<br>to collapse.                                                                                      |                              |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | West-AND<br>TOO INC. STOK<br>10 SAM |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$                          | Scale (approx)                                                                                                                   | Logged By                                                                                                             | <b>Figure No.</b> 21999.HP04 |

| Wheal Jan<br>Consultant                     | E<br>CU<br>at & mining services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | Site Park Gerry Handpitting                                                                                                      |                                                                                                                      | Trial Pit<br>Number<br>HP05  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------|
| Excavation I<br>Excavated us<br>hand tools. | Method<br>sing insulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dimensi<br>0.40 m d    | ons<br>diameter x 0.75 m deep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level (mOD)                               | Client<br>Mei Loci                                                                                                               |                                                                                                                      | Job<br>Number<br>21999       |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Location</b><br>Par | k Gerry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dates<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0/01/2024                                 | Engineer                                                                                                                         |                                                                                                                      | Sheet<br>1/1                 |
| Depth<br>(m)                                | Sample / Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water<br>Depth<br>(m)  | Field Records                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Level<br>(mOD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Depth<br>(m)<br>(Thickness)               | D                                                                                                                                | escription                                                                                                           | Legend                       |
| 0.10                                        | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>(0.20)                          | Grass over light brown, cla<br>is fine to coarse, frequent                                                                       | ayey, silty, sandy TOPSOIL.<br>rootlets.                                                                             | Sand                         |
| 0.40                                        | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.20<br>-<br>-<br>-<br>-<br>-<br>(0.55) | Light orangish-brown and slightly sandy, gravelly SIL sub-rounded, fine to coars and quartz. Sand is fine to cobbles up to 6 cm. | mottled reddish-brown, clay<br>T. Gravel is sub-angular to<br>e of metasedimentary muds<br>coarse. Occasional rounde | ey, stone d                  |
| 0.75                                        | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>-<br>0.75                       | Complete at 0.75m                                                                                                                |                                                                                                                      |                              |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>-<br>-                          |                                                                                                                                  |                                                                                                                      |                              |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-<br>-<br>-                          |                                                                                                                                  |                                                                                                                      |                              |
|                                             | HPO7 at distinct to the property of the proper | HPO2                   | Decomposition with the property of the propert | AND COMMENT OF A COMMENT OF THE COMM |                                           | Remarks  Hole backfilled with arisings Sidewalls were stable with r Hole complete at depth. No groundwater encountere            | upon completion.<br>to collapse.                                                                                     |                              |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | M SOLECTED<br>FOOTBALFFOR<br>FOOTBALFFOR<br>100 X Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$                                        | Scale (approx)                                                                                                                   | Logged By                                                                                                            | <b>Figure No.</b> 21999.HP05 |

| Wheal Jan<br>Consultan             | DE<br>CU<br>unt & mining services                            |                           |                                       |                |                             | Site Park Gerry Handpitting                                                                                                         |                                                                                                                                | Trial Pit<br>Number<br>HP06           |
|------------------------------------|--------------------------------------------------------------|---------------------------|---------------------------------------|----------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Excavation Excavated u hand tools. | <b>Method</b><br>sing insulated                              | <b>Dimensio</b> 0.40 m di | ons<br>iameter x 1.00 m deep          | Ground         | Level (mOD)                 | Client<br>Mei Loci                                                                                                                  |                                                                                                                                | Job<br>Number<br>21999                |
|                                    |                                                              | <b>Location</b><br>Park   | Gerry                                 | Dates<br>30    | 0/01/2024                   | Engineer                                                                                                                            |                                                                                                                                | Sheet<br>1/1                          |
| Depth<br>(m)                       | Sample / Tests                                               | Water<br>Depth<br>(m)     | Field Records                         | Level<br>(mOD) | Depth<br>(m)<br>(Thickness) | D                                                                                                                                   | escription                                                                                                                     | Legend Nate                           |
| 0.25                               | ES                                                           |                           |                                       |                | -<br>-<br>-<br>(0.30)       | Grass over light brown, cla<br>is fine to coarse, frequent                                                                          | ayey, silty, sandy TOPSOIL.<br>rootlets.                                                                                       | Sand                                  |
|                                    |                                                              |                           |                                       |                | - 0.30<br>-<br>-<br>-<br>-  | Light orangish-brown and clayey, slightly sandy, grav to sub-rounded, fine to coamudstone and quartz. San rounded cobbles up to 6 c | mottled reddish-brown, very<br>relly SILT. Gravel is sub-ang<br>arse of metasedimentary<br>id is fine to coarse. Occasio<br>m. | ular nal                              |
| 0.60                               | ES                                                           |                           |                                       |                | - (0.70)<br>                |                                                                                                                                     |                                                                                                                                |                                       |
| 0.90                               | ES                                                           |                           |                                       |                | <br>-<br>1.00               | Complete at 1.00m                                                                                                                   |                                                                                                                                | A   X   X   X   X   X   X   X   X   X |
|                                    |                                                              |                           |                                       |                | -<br>-<br>-                 | Complete at 1.com                                                                                                                   |                                                                                                                                |                                       |
|                                    |                                                              |                           |                                       |                | -                           |                                                                                                                                     |                                                                                                                                |                                       |
|                                    |                                                              |                           |                                       |                | -<br>-<br>-                 |                                                                                                                                     |                                                                                                                                |                                       |
|                                    | OSATIO HPOY & GASAGE AND | HPO2                      | HPO3                                  | Win Lock       |                             | Remarks  Hole backfilled with arisings Sidewalls were stable with n Hole complete at depth. No groundwater encountere               | upon completion.<br>lo collapse.<br>d.                                                                                         |                                       |
|                                    | HP06                                                         | 502 HP0                   |                                       |                |                             |                                                                                                                                     |                                                                                                                                |                                       |
|                                    |                                                              |                           | BESSTATED<br>FOOTBALFOCK<br>190 2 Men |                | \$                          | Scale (approx)  1:10                                                                                                                | Logged By TG                                                                                                                   | <b>Figure No.</b> 21999.HP06          |



## **APPENDIX B**

# **Ground Gas Monitoring Results**

# Park Gerry, Camborne – Monitoring

# **Gas/Groundwater Monitoring Results**

| Date:        |                  | 0.                | 5/07/202 | 3    |                      |          |              |           |             |
|--------------|------------------|-------------------|----------|------|----------------------|----------|--------------|-----------|-------------|
| All measurer | nents tal        | ken after         | 120 seco | nds. |                      |          |              |           |             |
|              |                  |                   |          |      |                      |          |              |           |             |
| Borehole     | O <sub>2</sub> % | CO <sub>2</sub> % | CH₄ %    | CO   | H <sub>2</sub> S ppm | Depth to | Depth to     | Flow Rate | Atmospheric |
|              |                  |                   |          | ppm  |                      | water (m | base (m bgl) |           | Pressure    |
|              |                  |                   |          |      |                      | bgl)     |              |           |             |
| WS01         | 19.9             | 1.3               | 0        | 0    | 0                    | DRY      | 5.24         | 0.1       | 1006        |
| WS03         | 20.2             | 0.9               | 0        | 0    | 0                    | DRY      | 5.03         | 0.2       | 1008        |
| WS04         | 20.4             | 0.5               | 0        | 1    | 0                    | DRY      | 3.06         | 0.2       | 1008        |

# No.1 Pentire Avenue, Newquay – Monitoring

# **Gas/Groundwater Monitoring Results**

| Date:        |                  | 1                 | 2/07/202  | 3    |                      |          |              |           |             |
|--------------|------------------|-------------------|-----------|------|----------------------|----------|--------------|-----------|-------------|
| All measurer | nents tal        | ken after         | 120 secon | nds. |                      |          |              |           |             |
|              |                  |                   |           |      |                      |          |              |           |             |
| Borehole     | O <sub>2</sub> % | CO <sub>2</sub> % | CH₄ %     | CO   | H <sub>2</sub> S ppm | Depth to | Depth to     | Flow Rate | Atmospheric |
|              |                  |                   |           | ppm  |                      | water (m | base (m bgl) |           | Pressure    |
|              |                  |                   |           |      |                      | bgl)     |              |           |             |
| BH01         | 19.8             | 1.1               | 0         | 0    | 0                    | DRY      | 5.24         | 0.4       | 1011        |
| BH02         | 19.9             | 1.1               | 0         | 0    | 0                    | DRY      | 5.03         | 0.4       | 1009        |
| BH03         | 20.6             | 0.5               | 0         | 0    | 0                    | DRY      | 3.06         | 0.4       | 1008        |

# Park Gerry, Camborne – Monitoring

# **Gas/Groundwater Monitoring Results**

| Date:        |                  | 1                 | 9/07/202          | 3    |                      |          |              |           |             |
|--------------|------------------|-------------------|-------------------|------|----------------------|----------|--------------|-----------|-------------|
| All measurer | nents tak        | ken after         | 120 seco          | nds. |                      |          |              |           |             |
|              |                  |                   |                   |      |                      |          |              |           |             |
| Borehole     | O <sub>2</sub> % | CO <sub>2</sub> % | CH <sub>4</sub> % | CO   | H <sub>2</sub> S ppm | Depth to | Depth to     | Flow Rate | Atmospheric |
|              |                  |                   |                   | ppm  |                      | water (m | base (m bgl) | (l/h)     | Pressure    |
|              |                  |                   |                   |      |                      | bgl)     |              |           | (mbar)      |
| BH01         | 19.3             | 1.2               | 0                 | 0    | 0                    | DRY      | 5.24         | 0.4       | 1014        |
| BH02         | 19.6             | 1.2               | 0                 | 0    | 0                    | DRY      | 5.03         | 0.3       | 1015        |
| BH03         | 20.3             | 0.7               | 0                 | 0    | 0                    | DRY      | 3.06         | 0.3       | 1009        |

# Park Gerry, Camborne – Monitoring

# **Gas/Groundwater Monitoring Results**

| Date:        |                  | 2                 | 6/07/202          | 3         |         |                              |                          |                    |                                   |
|--------------|------------------|-------------------|-------------------|-----------|---------|------------------------------|--------------------------|--------------------|-----------------------------------|
| All measurer | nents tal        | ken after         | 120 seco          | nds.      |         |                              |                          |                    |                                   |
| Borehole     | O <sub>2</sub> % | CO <sub>2</sub> % | CH <sub>4</sub> % | CO<br>ppm | H₂S ppm | Depth to<br>water (m<br>bgl) | Depth to<br>base (m bgl) | Flow Rate<br>(I/h) | Atmospheric<br>Pressure<br>(mbar) |
| BH01         | 20.0             | 1.3               | 0                 | 0         | 0       | DRY                          | 5.24                     | 0.3                | 1003                              |
| BH02         | 20.0             | 1.3               | 0                 | 0         | 0       | DRY                          | 5.03                     | 0.3                | 1002                              |
| BH03         | 20.4             | 0.8               | 0                 | 0         | 0       | DRY                          | 3.06                     | 0.3                | 1002                              |



## **APPENDIX C**

# **Chemical Laboratory Results**





#### Sebastian Lea Wurzbach

Wheal Jane Services Old Mine Offices Wheal Jane Baldhu Truro Cornwall TR3 6EE

t: 01872 560200 **f:** 01872 560826

e: swurzbach@wheal-jane.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS** 

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

## **Analytical Report Number: 23-43534**

**Project / Site name:** Park Gerry Samples received on: 05/07/2023

Your job number: 21665 Samples instructed on/

**Analysis started on:** 

06/07/2023

Your order number: 21665 Analysis completed by: 17/07/2023

Report Issue Number: Report issued on: 17/07/2023

Samples Analysed: 15 soil samples

Izabela Wojcik

Signed:

Izabela Wójcik Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





| Lab Sample Number                       | <u> </u> |                    |                         | 2738960       | 2738961       | 2738962       | 2738963       | 2738964       |
|-----------------------------------------|----------|--------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Sample Reference                        |          |                    |                         | WS01          | WS01          | WS02          | WS02          | WS02          |
| Sample Number                           |          |                    |                         | None Supplied |
| Depth (m)                               |          |                    |                         | 0.10          | 0.50          | 0.10          | 0.50          | 1.50          |
| Date Sampled                            |          |                    |                         | 29/06/2023    | 29/06/2023    | 29/06/2023    | 29/06/2023    | 29/06/2023    |
| Time Taken                              |          |                    |                         | None Supplied |
| Analytical Parameter<br>(Soil Analysis) | Units    | Limit of detection | Accreditation<br>Status |               |               |               |               |               |
| Stone Content                           | %        | 0.1                | NONE                    | < 0.1         | < 0.1         | < 0.1         | < 0.1         | < 0.1         |
| Moisture Content                        | %        | 0.01               | NONE                    | 7.1           | 9.4           | 5             | 11            | 14            |
| Total mass of sample received           | kg       | 0.001              | NONE                    | 0.8           | 0.9           | 0.9           | 0.8           | 0.9           |

#### **General Inorganics**

| Control and Entrol Summer                                      |          |         |        |        |        |        |       |       |
|----------------------------------------------------------------|----------|---------|--------|--------|--------|--------|-------|-------|
| pH - Automated                                                 | pH Units | N/A     | MCERTS | 6      | -      | -      | 7.8   | -     |
| Total Cyanide                                                  | mg/kg    | 1       | MCERTS | < 1.0  | < 1.0  | < 1.0  | < 1.0 | < 1.0 |
| Free Cyanide                                                   | mg/kg    | 1       | MCERTS | < 1.0  | < 1.0  | < 1.0  | < 1.0 | < 1.0 |
| Thiocyanate as SCN                                             | mg/kg    | 5       | NONE   | < 5.0  | -      | -      | < 5.0 | -     |
| Total Sulphate as SO4                                          | mg/kg    | 50      | MCERTS | 960    | 370    | 1200   | 3900  | 1400  |
| Water Soluble Sulphate as SO4 16hr extraction (2:1)            | mg/kg    | 2.5     | MCERTS | 14     | 7.8    | 18     | 40    | 110   |
| Water Soluble SO4 16hr extraction (2:1 Leachate<br>Equivalent) | g/l      | 0.00125 | MCERTS | 0.0068 | 0.0039 | 0.0089 | 0.02  | 0.056 |
| Water Soluble SO4 16hr extraction (2:1 Leachate<br>Equivalent) | mg/l     | 1.25    | MCERTS | 6.8    | 3.9    | 8.9    | 20    | 55.9  |
| Sulphide                                                       | mg/kg    | 1       | MCERTS | < 1.0  | < 1.0  | < 1.0  | 1.1   | < 1.0 |
| Organic Matter (automated)                                     | %        | 0.1     | MCERTS | 6.6    | -      | -      | 2.5   | -     |

### Total Phenols

| Total Phenols (monohydric) | mg/kg | 1 | MCERTS | < 1.0 | - | - | < 1.0 | - |
|----------------------------|-------|---|--------|-------|---|---|-------|---|

#### **Speciated PAHs**

| Naphthalene            | mg/kg | 0.05 | MCERTS    | < 0.05 | - | ÷ | < 0.05 | - |
|------------------------|-------|------|-----------|--------|---|---|--------|---|
| Acenaphthylene         | mg/kg | 0.05 | MCERTS    | < 0.05 | - | - | < 0.05 | - |
| Acenaphthene           | mg/kg | 0.05 | MCERTS    | < 0.05 | - | - | < 0.05 | - |
| Fluorene               | mg/kg | 0.05 | MCERTS    | < 0.05 | - | - | < 0.05 | - |
| Phenanthrene           | mg/kg | 0.05 | MCERTS    | 0.09   | - | ì | < 0.05 | - |
| Anthracene             | mg/kg | 0.05 | MCERTS    | < 0.05 | - | - | < 0.05 | - |
| Fluoranthene           | mg/kg | 0.05 | MCERTS    | 0.24   | - | - | < 0.05 | - |
| Pyrene                 | mg/kg | 0.05 | MCERTS    | 0.25   | - | ì | < 0.05 | - |
| Benzo(a)anthracene     | mg/kg | 0.05 | MCERTS    | 0.09   | - | ì | < 0.05 | - |
| Chrysene               | mg/kg | 0.05 | MCERTS    | 0.12   | - | - | < 0.05 | - |
| Benzo(b)fluoranthene   | mg/kg | 0.05 | ISO 17025 | 0.14   | - | - | < 0.05 | - |
| Benzo(k)fluoranthene   | mg/kg | 0.05 | ISO 17025 | < 0.05 | - | ì | < 0.05 | - |
| Benzo(a)pyrene         | mg/kg | 0.05 | MCERTS    | 0.11   | - | i | < 0.05 | - |
| Indeno(1,2,3-cd)pyrene | mg/kg | 0.05 | MCERTS    | 0.07   | - | - | < 0.05 | - |
| Dibenz(a,h)anthracene  | mg/kg | 0.05 | MCERTS    | < 0.05 | - | - | < 0.05 | - |
| Benzo(ghi)perylene     | mg/kg | 0.05 | MCERTS    | 0.09   | - | - | < 0.05 | - |

#### Total PAH

| Speciated Total EPA-16 PAHs | mg/kg | 0.8 | ISO 17025 | 1.2 | - | - | < 0.80 | - |
|-----------------------------|-------|-----|-----------|-----|---|---|--------|---|
|                             |       |     |           |     |   |   |        |   |





| Lab Sample Number                                                                                                                                                |                         |                    |                         | 2738960                  | 2738961       | 2738962       | 2738963                  | 2738964       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|-------------------------|--------------------------|---------------|---------------|--------------------------|---------------|
| Sample Reference                                                                                                                                                 |                         |                    |                         | WS01                     | WS01          | WS02          | WS02                     | WS02          |
| Sample Number                                                                                                                                                    |                         |                    |                         | None Supplied            | None Supplied | None Supplied | None Supplied            | None Supplied |
| Depth (m)                                                                                                                                                        |                         |                    |                         | 0.10                     | 0.50          | 0.10          | 0.50                     | 1.50          |
| Date Sampled                                                                                                                                                     |                         |                    |                         | 29/06/2023               | 29/06/2023    | 29/06/2023    | 29/06/2023               | 29/06/2023    |
| Time Taken                                                                                                                                                       |                         |                    |                         | None Supplied            | None Supplied | None Supplied | None Supplied            | None Supplied |
| Analytical Parameter<br>(Soil Analysis)                                                                                                                          | Units                   | Limit of detection | Accreditation<br>Status |                          |               |               |                          |               |
| Heavy Metals / Metalloids                                                                                                                                        | -                       | -                  | -                       |                          |               |               |                          |               |
| Arsenic (aqua regia extractable)                                                                                                                                 | mg/kg                   | 1                  | MCERTS                  | 360                      | 110           | 1200          | 13000                    | 2000          |
| Boron (water soluble)                                                                                                                                            | mg/kg                   | 0.2                | MCERTS                  | 0.5                      | 0.5           | 1.1           | 0.6                      | 0.8           |
| Cadmium (aqua regia extractable)                                                                                                                                 | mg/kg                   | 0.2                | MCERTS                  | < 0.2                    | < 0.2         | < 0.2         | < 0.2                    | < 0.2         |
| Chromium (hexavalent)                                                                                                                                            | mg/kg                   | 1.8                | MCERTS                  | 7.5                      | < 1.8         | 14            | < 1.8                    | < 1.8         |
| Chromium (aqua regia extractable)                                                                                                                                | mg/kg                   | 1                  | MCERTS                  | 100                      | 73            | 100           | 110                      | 150           |
| Copper (aqua regia extractable)                                                                                                                                  | mg/kg                   | 1                  | MCERTS                  | 340                      | 79            | 1300          | 11000                    | 5600          |
| Lead (aqua regia extractable)                                                                                                                                    | mg/kg                   | 1                  | MCERTS                  | 110                      | 52            | 160           | 920                      | 79            |
| Mercury (aqua regia extractable)                                                                                                                                 | mg/kg                   | 0.3                | MCERTS                  | < 0.3                    | < 0.3         | < 0.3         | < 0.3                    | < 0.3         |
| Nickel (aqua regia extractable)                                                                                                                                  | mg/kg                   | 1                  | MCERTS                  | 60                       | 37            | 52            | 37                       | 79            |
| Selenium (aqua regia extractable)                                                                                                                                | mg/kg                   | 1                  | MCERTS                  | < 1.0                    | < 1.0         | < 1.0         | < 1.0                    | < 1.0         |
| Zinc (agua regia extractable)                                                                                                                                    | mg/kg                   | 1                  | MCERTS                  | 370                      | 190           | 580           | 930                      | 610           |
| Benzene~<br>Toluene~<br>Ethylbenzene^                                                                                                                            | μg/kg<br>μg/kg<br>μg/kg | 5<br>5<br>5        | MCERTS MCERTS NONE      | < 5.0<br>< 5.0<br>< 5.0  | -             | -<br>-        | < 5.0<br>< 5.0<br>< 5.0  | -<br>-<br>-   |
| p & m-xylene^                                                                                                                                                    | μg/kg                   | 5                  | NONE                    | < 5.0                    | -             | -             | < 5.0                    | -             |
| o-xylene^                                                                                                                                                        | μg/kg                   | 5                  | NONE                    | < 5.0                    | -             | -             | < 5.0                    | -             |
| MTBE (Methyl Tertiary Butyl Ether)~                                                                                                                              | μg/kg                   | 5                  | NONE                    | < 5.0                    | -             | -             | < 5.0                    | -             |
| Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL                                                                                                   | mg/kg                   | 0.1                | NONE                    | < 0.10                   | -             | -             | < 0.10                   | -             |
| TPH-CWG - Aliphatic >EC6 - EC8 <sub>HS 1D AL</sub>                                                                                                               | mg/kg                   | 0.1                | NONE                    | < 0.10                   | -             | -             | < 0.10                   | _             |
| TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL                                                                                                                         | mg/kg                   | 0.1                | NONE                    | < 0.10                   | _             | -             | < 0.10                   | _             |
| TPH-CWG - Aliphatic > EC10 - EC12 <sub>EH_CU_1D_AL</sub>                                                                                                         | mg/kg                   | 1                  | MCERTS                  | < 1.0                    | _             | _             | < 1.0                    | _             |
| TPH-CWG - Aliphatic > EC12 - EC16 EH_CU_1D_AL                                                                                                                    | mg/kg                   | 2                  | MCERTS                  | < 2.0                    | _             | -             | < 2.0                    | _             |
| TPH-CWG - Aliphatic > EC16 - EC21 <sub>EH_CU_1D_AL</sub>                                                                                                         | mg/kg                   | 8                  | MCERTS                  | < 8.0                    | -             | -             | < 8.0                    | -             |
| TPH-CWG - Aliphatic >EC21 - EC35 <sub>EH_CU_1D_AL</sub>                                                                                                          | mg/kg                   | 8                  | MCERTS                  | < 8.0                    | -             | -             | < 8.0                    | -             |
| TPH-CWG - Aliphatic (EC5 - EC35) <sub>EH_CU+HS_1D_AL</sub>                                                                                                       | mg/kg                   | 10                 | NONE                    | < 10                     | -             | -             | < 10                     | -             |
|                                                                                                                                                                  |                         |                    | B.                      | -                        |               |               | -                        |               |
| TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR                                                                                                                           | mg/kg                   | 0.1                | NONE                    | < 0.10                   | -             | -             | < 0.10                   | -             |
| TPH-CWG - Aromatic >EC7 - EC8 HS 1D AR                                                                                                                           | mg/kg                   | 0.1                | NONE                    | < 0.10                   | -             | -             | < 0.10                   | -             |
| IFII-CWG - AIUIIIduc >LC/ - LCO HC 1D AD                                                                                                                         |                         |                    |                         |                          |               |               |                          |               |
|                                                                                                                                                                  | mg/kg                   | 0.1                | NONE                    | < 0.10                   | -             | -             | < 0.10                   | -             |
| TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR                                                                                                                          | mg/kg                   | 0.1                | NONE<br>MCERTS          |                          | -             | -             |                          | -             |
| TPH-CWG - Aromatic >EC8 - EC10 <sub>HS_1D_AR</sub> TPH-CWG - Aromatic >EC10 - EC12 <sub>EH_CU_1D_AR</sub>                                                        |                         |                    |                         | < 0.10<br>< 1.0<br>< 2.0 |               |               | < 0.10<br>< 1.0<br>< 2.0 |               |
| TPH-CWG - Aromatic >EC8 - EC10 <sub>H5_1D_AR</sub> TPH-CWG - Aromatic >EC10 - EC12 <sub>EH_CU_1D_AR</sub> TPH-CWG - Aromatic >EC12 - EC16 <sub>EH_CU_1D_AR</sub> | mg/kg<br>mg/kg          | 1                  | MCERTS                  | < 1.0                    |               | -             | < 1.0                    |               |
| TPH-CWG - Aromatic >EC8 - EC10 <sub>HS_1D_AR</sub> TPH-CWG - Aromatic >EC10 - EC12 <sub>EH_CU_1D_AR</sub>                                                        | mg/kg<br>mg/kg          | 1 2                | MCERTS<br>MCERTS        | < 1.0<br>< 2.0           | -             | -             | < 1.0<br>< 2.0           | -             |

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{ Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$ 





**Total PAH** 

Speciated Total EPA-16 PAHs

| Lab Sample Number                                                                                   | Lab Sample Number |                    |                         |                |               |               | 2738968       | 2738969          |
|-----------------------------------------------------------------------------------------------------|-------------------|--------------------|-------------------------|----------------|---------------|---------------|---------------|------------------|
| Sample Reference                                                                                    |                   |                    |                         | WS03           | WS03          | WS03          | WS04          | WS04             |
| Sample Number                                                                                       |                   |                    |                         | None Supplied  | None Supplied | None Supplied | None Supplied | None Supplied    |
| Depth (m)                                                                                           |                   |                    |                         | 0.20           | 0.60          | 4.50          | 0.30          | 2.50             |
| Date Sampled                                                                                        |                   |                    |                         | 29/06/2023     | 29/06/2023    | 29/06/2023    | 29/06/2023    | 29/06/2023       |
| Time Taken                                                                                          |                   |                    |                         | None Supplied  | None Supplied | None Supplied | None Supplied | None Supplied    |
| Analytical Parameter<br>(Soil Analysis)                                                             | Units             | Limit of detection | Accreditation<br>Status | ··             | ··            | ··            |               | ·                |
| Stone Content                                                                                       | %                 | 0.1                | NONE                    | < 0.1          | < 0.1         | < 0.1         | < 0.1         | < 0.1            |
| Moisture Content                                                                                    | %                 | 0.01               | NONE                    | 8.1            | 13            | 17            | 8.1           | 12               |
| Total mass of sample received                                                                       | kg                | 0.001              | NONE                    | 0.8            | 0.9           | 0.9           | 0.9           | 0.8              |
| General Inorganics<br>pH - Automated                                                                | pH Units          | N/A                | MCERTS                  | 6.2            | -             | -             | -             | 6.9              |
| Total Cyanide                                                                                       | mg/kg             | 1                  | MCERTS                  | < 1.0          | < 1.0         | < 1.0         | < 1.0         | < 1.0            |
| Free Cyanide                                                                                        | mg/kg             | 1                  | MCERTS                  | < 1.0          | < 1.0         | < 1.0         | < 1.0         | < 1.0            |
| Thiocyanate as SCN                                                                                  | mg/kg             | 5                  | NONE                    | < 5.0          | -             | -             | -             | < 5.0            |
| Total Sulphate as SO4                                                                               | mg/kg             | 50                 | MCERTS                  | 1100           | 300           | 200           | 860           | 280              |
| Water Soluble Sulphate as SO4 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate | mg/kg             | 2.5                | MCERTS                  | 9.5            | 10            | 8.9           | 10            | 6.4              |
| Equivalent)                                                                                         | g/l               | 0.00125            | MCERTS                  | 0.0047         | 0.0051        | 0.0045        | 0.005         | 0.0032           |
| Water Soluble SO4 16hr extraction (2:1 Leachate<br>Equivalent)                                      | mg/l              | 1.25               | MCERTS                  | 4.7            | 5.1           | 4.5           | 5             | 3.2              |
| Sulphide                                                                                            | mg/kg             | 1                  | MCERTS                  | < 1.0          | < 1.0         | < 1.0         | < 1.0         | < 1.0            |
| Organic Matter (automated)                                                                          | %                 | 0.1                | MCERTS                  | 6              | -             | -             | -             | 0.3              |
| Total Phenois                                                                                       |                   |                    |                         |                |               |               |               |                  |
| Total Phenols (monohydric)                                                                          | mg/kg             | 1                  | MCERTS                  | < 1.0          | -             | -             | -             | < 1.0            |
| Speciated PAHs                                                                                      |                   |                    |                         |                |               |               |               |                  |
| Naphthalene                                                                                         | mg/kg             | 0.05               | MCERTS                  | < 0.05         | -             | -             | -             | < 0.05           |
| Acenaphthylene                                                                                      | mg/kg             | 0.05               | MCERTS                  | < 0.05         | -             | -             | -             | < 0.05           |
| Acenaphthene                                                                                        | mg/kg             | 0.05               | MCERTS<br>MCERTS        | < 0.05         | -             | -             | -             | < 0.05           |
| Fluorene                                                                                            | mg/kg             | 0.05               | MCERTS                  | < 0.05<br>0.23 | -             |               | -             | < 0.05<br>< 0.05 |
| Phenanthrene Anthracene                                                                             | mg/kg<br>mg/kg    | 0.05               | MCERTS                  | 0.23           | -             | -             | -             | < 0.05<br>< 0.05 |
| Fluoranthene                                                                                        | mg/kg             | 0.05               | MCERTS                  | 0.07           | -             | -             | -             | < 0.05<br>< 0.05 |
| Pyrene                                                                                              | mg/kg             | 0.05               | MCERTS                  | 0.75           | -             | -             | _             | < 0.05           |
| Benzo(a)anthracene                                                                                  | mg/kg             | 0.05               | MCERTS                  | 0.39           | -             |               |               | < 0.05           |
| Chrysene                                                                                            | mg/kg             | 0.05               | MCERTS                  | 0.4            | -             | -             | -             | < 0.05           |
| Benzo(b)fluoranthene                                                                                | mg/kg             | 0.05               | ISO 17025               | 0.53           | _             | -             | -             | < 0.05           |
| Benzo(k)fluoranthene                                                                                | mg/kg             | 0.05               | ISO 17025               | 0.17           | -             | -             | -             | < 0.05           |
| Benzo(a)pyrene                                                                                      | mg/kg             | 0.05               | MCERTS                  | 0.41           | -             | -             | -             | < 0.05           |
| Indeno(1,2,3-cd)pyrene                                                                              | mg/kg             | 0.05               | MCERTS                  | 0.28           | -             | -             | -             | < 0.05           |
| Dibenz(a,h)anthracene                                                                               | mg/kg             | 0.05               | MCERTS                  | < 0.05         | -             | -             | -             | < 0.05           |
| Benzo(ghi)perylene                                                                                  | mg/kg             | 0.05               | MCERTS                  | 0.34           | -             | -             | -             | < 0.05           |

mg/kg

0.8

ISO 17025

4.4

< 0.80





| Lab Sample Number                                                                                                  |                |                    |                         | 2738965        | 2738966       | 2738967       | 2738968       | 2738969        |
|--------------------------------------------------------------------------------------------------------------------|----------------|--------------------|-------------------------|----------------|---------------|---------------|---------------|----------------|
| Sample Reference                                                                                                   |                |                    |                         | WS03           | WS03          | WS03          | WS04          | WS04           |
| Sample Number                                                                                                      |                |                    |                         | None Supplied  | None Supplied | None Supplied | None Supplied | None Supplied  |
| Depth (m)                                                                                                          |                |                    |                         | 0.20           | 0.60          | 4.50          | 0.30          | 2.50           |
| Date Sampled                                                                                                       |                |                    |                         | 29/06/2023     | 29/06/2023    | 29/06/2023    | 29/06/2023    | 29/06/2023     |
| Time Taken                                                                                                         |                |                    |                         | None Supplied  | None Supplied | None Supplied | None Supplied | None Supplied  |
| Analytical Parameter<br>(Soil Analysis)                                                                            | Units          | Limit of detection | Accreditation<br>Status |                |               |               |               |                |
| Heavy Metals / Metalloids                                                                                          |                |                    |                         |                |               |               |               |                |
| Arsenic (aqua regia extractable)                                                                                   | mg/kg          | 1                  | MCERTS                  | 390            | 96            | 3.2           | 420           | 130            |
| Boron (water soluble)                                                                                              | mg/kg          | 0.2                | MCERTS                  | 0.5            | 0.4           | 0.3           | 0.8           | 0.9            |
| Cadmium (aqua regia extractable)                                                                                   | mg/kg          | 0.2                | MCERTS                  | < 0.2          | < 0.2         | 0.4           | < 0.2         | < 0.2          |
| Chromium (hexavalent)                                                                                              | mg/kg          | 1.8                | MCERTS                  | < 1.8          | < 1.8         | < 1.8         | < 1.8         | < 1.8          |
| Chromium (aqua regia extractable)                                                                                  | mg/kg          | 1                  | MCERTS                  | 73             | 180           | 310           | 88            | 320            |
| Copper (aqua regia extractable)                                                                                    | mg/kg          | 1                  | MCERTS                  | 400            | 120           | 32            | 400           | 290            |
| Lead (aqua regia extractable)                                                                                      | mg/kg          | 1                  | MCERTS                  | 120            | 54            | 3             | 110           | 16             |
| Mercury (aqua regia extractable)                                                                                   | mg/kg          | 0.3                | MCERTS                  | < 0.3          | < 0.3         | < 0.3         | < 0.3         | < 0.3          |
| Nickel (aqua regia extractable)                                                                                    | mg/kg          | 1                  | MCERTS                  | 47             | 84            | 110           | 51            | 110            |
| Selenium (aqua regia extractable)                                                                                  | mg/kg          | 1                  | MCERTS                  | < 1.0          | < 1.0         | < 1.0         | < 1.0         | < 1.0          |
| Zinc (aqua regia extractable)                                                                                      | mg/kg          | 1                  | MCERTS                  | 370            | 470           | 1500          | 430           | 610            |
| Monoaromatics & Oxygenates Benzene~ Toluene~                                                                       | μg/kg<br>μg/kg | 5                  | MCERTS<br>MCERTS        | < 5.0<br>< 5.0 | -             | -             | -             | < 5.0<br>< 5.0 |
| Ethylbenzene^                                                                                                      | μg/kg          | 5                  | NONE                    | < 5.0          | -             |               | -             | < 5.0          |
| p & m-xylene^                                                                                                      | μg/kg          | 5                  | NONE                    | < 5.0          | -             |               |               | < 5.0          |
| o-xylene^                                                                                                          | μg/kg          | 5                  | NONE                    | < 5.0          | _             | _             | _             | < 5.0          |
| MTBE (Methyl Tertiary Butyl Ether)~                                                                                | μg/kg          | 5                  | NONE                    | < 5.0          | _             | _             | _             | < 5.0          |
| Petroleum Hydrocarbons                                                                                             |                |                    |                         |                |               |               |               |                |
| TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL                                                                            | mg/kg          | 0.1                | NONE                    | < 0.10         | -             | -             | -             | < 0.10         |
| TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL                                                                            | mg/kg          | 0.1                | NONE                    | < 0.10         | -             | -             | -             | < 0.10         |
| TPH-CWG - Aliphatic >EC8 - EC10 <sub>HS_1D_AL</sub>                                                                | mg/kg          | 0.1                | NONE                    | < 0.10         | -             | -             | -             | < 0.10         |
| TPH-CWG - Aliphatic >EC10 - EC12 <sub>EH_CU_1D_AL</sub>                                                            | mg/kg          | 1                  | MCERTS                  | < 1.0          | -             | -             | -             | < 1.0          |
| TPH-CWG - Aliphatic >EC12 - EC16 <sub>EH_CU_1D_AL</sub>                                                            | mg/kg          | 2                  | MCERTS                  | < 2.0          | -             | -             | -             | < 2.0          |
| TPH-CWG - Aliphatic >EC16 - EC21 <sub>EH_CU_1D_AL</sub>                                                            | mg/kg          | 8                  | MCERTS                  | < 8.0          | -             | -             | -             | < 8.0          |
| TPH-CWG - Aliphatic >EC21 - EC35 <sub>EH_CU_1D_AL</sub> TPH-CWG - Aliphatic (EC5 - EC35) <sub>EH_CU+HS_1D_AL</sub> | mg/kg<br>mg/kg | 8<br>10            | MCERTS<br>NONE          | < 8.0          | -             | -             | -             | < 8.0          |
| TFTT-CWG - Allphatic (LC3 - LC33) EH_CU+HS_1D_AL                                                                   | ilig/kg        | 10                 | NONE                    | < 10           | -             | -             | -             | < 10           |
| TPH-CWG - Aromatic >EC5 - EC7 <sub>HS_1D_AR</sub>                                                                  | mg/kg          | 0.1                | NONE                    | < 0.10         | -             | -             | -             | < 0.10         |
| TPH-CWG - Aromatic >EC7 - EC8 <sub>HS_1D_AR</sub>                                                                  | mg/kg          | 0.1                | NONE                    | < 0.10         | -             | -             | -             | < 0.10         |
| TPH-CWG - Aromatic >EC8 - EC10 <sub>HS_1D_AR</sub>                                                                 | mg/kg          | 0.1                | NONE                    | < 0.10         | -             | -             | -             | < 0.10         |
| TPH-CWG - Aromatic > EC10 - EC12 <sub>EH_CU_1D_AR</sub>                                                            | mg/kg          | 2                  | MCERTS<br>MCERTS        | < 1.0          | -             | -             | -             | < 1.0          |
| TPH-CWG - Aromatic > EC12 - EC16 <sub>EH_CU_1D_AR</sub>                                                            | mg/kg          | 10                 | MCERTS                  | < 2.0          | -             | -             | -             | < 2.0          |
| TPH-CWG - Aromatic > EC16 - EC21 <sub>EH_CU_ID_AR</sub>                                                            | mg/kg<br>mg/kg | 10                 | MCERTS                  | < 10<br>< 10   |               |               |               | < 10<br>< 10   |
| TPH-CWG - Aromatic >EC21 - EC35 <sub>EH_CU_1D_AR</sub> TPH-CWG - Aromatic (EC5 - EC35) <sub>EH_CU+HS_1D_AR</sub>   | mg/kg          | 10                 | NONE                    | < 10<br>11     |               | -             | -             | < 10           |
| THE COST AND MIGHT (LCS - LCSS) EH_CU+HS_1D_AR                                                                     | 9/149          |                    |                         | 11             | _             | _             | _             | < 10           |

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{ Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$ 





Analytical Report Number: 23-43534 Project / Site name: Park Gerry Your Order No: 21665

| Lab Sample Number                                              |          |                    |                         | 2738970       | 2738971       | 2738972       | 2738973       | 2738974       |
|----------------------------------------------------------------|----------|--------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Sample Reference                                               |          |                    |                         | WS05          | WS05          | WS05          | WS06          | WS06          |
| Sample Number                                                  |          |                    |                         | None Supplied |
| Depth (m)                                                      |          |                    |                         | 0.10          | 0.40          | 4.70          | 0.60          | 1.20          |
| Date Sampled                                                   |          |                    |                         | 29/06/2023    | 29/06/2023    | 29/06/2023    | 29/06/2023    | 29/06/2023    |
| Time Taken                                                     |          |                    |                         | None Supplied |
| Analytical Parameter<br>(Soil Analysis)                        | Units    | Limit of detection | Accreditation<br>Status |               |               |               |               |               |
| Stone Content                                                  | %        | 0.1                | NONE                    | < 0.1         | < 0.1         | < 0.1         | < 0.1         | < 0.1         |
| Moisture Content                                               | %        | 0.01               | NONE                    | 6.3           | 12            | 18            | 15            | 15            |
| Total mass of sample received                                  | kg       | 0.001              | NONE                    | 0.8           | 0.9           | 0.9           | 0.9           | 0.9           |
| General Inorganics pH - Automated                              | pH Units | N/A                | MCERTS                  | 6.6           | l -           | -             | <u> </u>      | -             |
| Total Cyanide                                                  | mg/kg    | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Free Cyanide                                                   | mg/kg    | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Thiocyanate as SCN                                             | mg/kg    | 5                  | NONE                    | < 5.0         | - 1.0         | - 1.0         | - 1.0         |               |
| Total Sulphate as SO4                                          | mg/kg    | 50                 | MCERTS                  | 970           | 480           | 120           | 420           | 180           |
| Water Soluble Sulphate as SO4 16hr extraction (2:1)            | mg/kg    | 2.5                | MCERTS                  | 9             | 8.3           | 9.5           | 2.8           | 4             |
| Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)    | g/l      | 0.00125            | MCERTS                  | 0.0045        | 0.0041        | 0.0047        | 0.0014        | 0.002         |
| Water Soluble SO4 16hr extraction (2:1 Leachate<br>Equivalent) | mg/l     | 1.25               | MCERTS                  | 4.5           | 4.1           | 4.7           | 1.4           | 2             |
| Sulphide                                                       | mg/kg    | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Organic Matter (automated)                                     | %        | 0.1                | MCERTS                  | 5.7           | -             | -             | -             | -             |
| Total Phenois                                                  |          |                    |                         |               |               |               |               |               |
| Total Phenols (monohydric)                                     | mg/kg    | 1                  | MCERTS                  | < 1.0         | -             | -             | -             | =             |
| Speciated PAHs                                                 |          |                    |                         |               |               |               |               |               |
| Naphthalene                                                    | mg/kg    | 0.05               | MCERTS                  | < 0.05        | -             | -             | -             | -             |
| Acenaphthylene                                                 | mg/kg    | 0.05               | MCERTS                  | 0.07          | -             | -             | -             | -             |
| Acenaphthene                                                   | mg/kg    | 0.05               | MCERTS                  | < 0.05        | -             | -             | -             | -             |
| Fluorene                                                       | mg/kg    | 0.05               | MCERTS                  | < 0.05        | -             | -             | -             | -             |
| Phenanthrene                                                   | mg/kg    | 0.05               | MCERTS                  | 0.55          | -             | -             | -             | -             |
| Anthracene                                                     | mg/kg    | 0.05               | MCERTS                  | 0.14          | -             | -             | -             | -             |
| Fluoranthene                                                   | mg/kg    | 0.05               | MCERTS                  | 1.7           | -             | -             | -             | -             |
| Pyrene                                                         | mg/kg    | 0.05               | MCERTS                  | 1.5           | -             | -             | -             | -             |
|                                                                |          |                    |                         |               |               |               |               |               |

| Total | PAH |
|-------|-----|
|       |     |

Benzo(a)anthracene

Benzo(b)fluoranthene Benzo(k)fluoranthene

Dibenz(a,h)anthracene

Benzo(ghi)perylene

Benzo(a)pyrene Indeno(1,2,3-cd)pyrene

Chrysene

| Total PAII                  |       |     |           |      |   |   |   |   |
|-----------------------------|-------|-----|-----------|------|---|---|---|---|
| Speciated Total EPA-16 PAHs | mg/kg | 0.8 | ISO 17025 | 8.88 | - | - | - | - |

0.74

0.79

0.99

0.37

0.75

0.5

0.13

0.6

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.05

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

MCERTS

MCERTS

ISO 17025

ISO 17025

MCERTS

MCERTS

MCERTS

MCERTS





| Lab Sample Number                                           |                         |                    |                         | 2738970                 | 2738971       | 2738972       | 2738973       | 2738974       |
|-------------------------------------------------------------|-------------------------|--------------------|-------------------------|-------------------------|---------------|---------------|---------------|---------------|
| Sample Reference                                            |                         |                    |                         | WS05                    | WS05          | WS05          | WS06          | WS06          |
| Sample Number                                               |                         |                    |                         | None Supplied           | None Supplied | None Supplied | None Supplied | None Supplied |
| Depth (m)                                                   |                         |                    |                         | 0.10                    | 0.40          | 4.70          | 0.60          | 1.20          |
| Date Sampled                                                |                         |                    |                         | 29/06/2023              | 29/06/2023    | 29/06/2023    | 29/06/2023    | 29/06/2023    |
| Time Taken                                                  |                         |                    |                         | None Supplied           | None Supplied | None Supplied | None Supplied | None Supplied |
| Analytical Parameter<br>(Soil Analysis)                     | Units                   | Limit of detection | Accreditation<br>Status |                         |               |               |               |               |
| Heavy Metals / Metalloids                                   |                         |                    |                         |                         |               |               |               |               |
| Arsenic (aqua regia extractable)                            | mg/kg                   | 1                  | MCERTS                  | 450                     | 160           | 91            | 120           | 130           |
| Boron (water soluble)                                       | mg/kg                   | 0.2                | MCERTS                  | 1                       | 0.7           | 0.4           | 0.8           | 0.5           |
| Cadmium (aqua regia extractable)                            | mg/kg                   | 0.2                | MCERTS                  | < 0.2                   | < 0.2         | < 0.2         | < 0.2         | < 0.2         |
| Chromium (hexavalent)                                       | mg/kg                   | 1.8                | MCERTS                  | < 1.8                   | < 1.8         | < 1.8         | < 1.8         | < 1.8         |
| Chromium (aqua regia extractable)                           | mg/kg                   | 1                  | MCERTS                  | 62                      | 74            | 360           | 200           | 140           |
| Copper (aqua regia extractable)                             | mg/kg                   | 1                  | MCERTS                  | 380                     | 100           | 160           | 150           | 100           |
| Lead (aqua regia extractable)                               | mg/kg                   | 1                  | MCERTS                  | 160                     | 62            | 8.8           | 87            | 95            |
| Mercury (aqua regia extractable)                            | mg/kg                   | 0.3                | MCERTS                  | < 0.3                   | < 0.3         | < 0.3         | < 0.3         | < 0.3         |
| Nickel (aqua regia extractable)                             | mg/kg                   | 1                  | MCERTS                  | 41                      | 47            | 130           | 95            | 72            |
| Selenium (aqua regia extractable)                           | mg/kg                   | 1                  | MCERTS                  | < 1.0                   | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Zinc (aqua regia extractable)                               | mg/kg                   | 1                  | MCERTS                  | 410                     | 260           | 1300          | 680           | 480           |
| Benzene~ Toluene~ Ethylbenzene^                             | μg/kg<br>μg/kg<br>μg/kg | 5<br>5<br>5        | MCERTS MCERTS NONE NONE | < 5.0<br>< 5.0<br>< 5.0 | -<br>-<br>-   | -<br>-<br>-   | -<br>-<br>-   | -<br>-<br>-   |
| p & m-xylene^                                               | μg/kg                   |                    |                         | < 5.0                   | -             | -             | -             | -             |
| o-xylene^                                                   | μg/kg<br>μg/kg          | 5<br>5             | NONE<br>NONE            | < 5.0                   | -             | -             | -             | -             |
| MTBE (Methyl Tertiary Butyl Ether)~  Petroleum Hydrocarbons | ру/ку                   | J                  | NONE                    | < 5.0                   | -             | -             | -             | -             |
| TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL                     | mg/kg                   | 0.1                | NONE                    | < 0.10                  | -             | -             | -             | -             |
| TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL                     | mg/kg                   | 0.1                | NONE                    | < 0.10                  | -             | -             | -             | -             |
| TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL                    | mg/kg                   | 0.1                | NONE                    | < 0.10                  | -             | -             | -             | -             |
| TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL                | mg/kg                   | 1                  | MCERTS                  | < 1.0                   | -             | -             | -             | -             |
| TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL                | mg/kg                   | 2                  | MCERTS                  | < 2.0                   | -             | -             | -             | -             |
| TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL                | mg/kg                   | 8                  | MCERTS                  | < 8.0                   | -             | -             | -             | -             |
| TPH-CWG - Aliphatic >EC21 - EC35 EH CU 1D AL                | mg/kg                   | 8                  | MCERTS                  | < 8.0                   | -             | -             | -             | -             |
| TPH-CWG - Aliphatic (EC5 - EC35) <sub>EH_CU+HS_1D_AL</sub>  | mg/kg                   | 10                 | NONE                    | < 10                    | -             | -             | -             | -             |
|                                                             |                         |                    |                         |                         |               |               |               |               |
| TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR                      | mg/kg                   | 0.1                | NONE                    | < 0.10                  | -             | -             | -             | -             |
| TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR                      | mg/kg                   | 0.1                | NONE                    | < 0.10                  | -             | -             | -             | -             |
| TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR                     | mg/kg                   | 0.1                | NONE                    | < 0.10                  | -             | -             | -             | -             |
| TPH-CWG - Aromatic >EC10 - EC12 <sub>EH_CU_1D_AR</sub>      | mg/kg                   | 1                  | MCERTS                  | < 1.0                   | -             | -             | -             | -             |
| TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR                 | mg/kg                   | 2                  | MCERTS                  | < 2.0                   | -             | -             | -             | -             |
| TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR                 | mg/kg                   | 10                 | MCERTS                  | < 10                    | -             | -             | -             | -             |
| TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR                 | mg/kg                   | 10                 | MCERTS                  | 16                      | _             | _             | -             | -             |
| TPH-CWG - Aromatic (EC5 - EC35) <sub>EH_CU_HS_1D_AR</sub>   |                         | 10                 |                         |                         |               |               |               |               |

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{ Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$ 





Analytical Report Number : 23-43534 Project / Site name: Park Gerry

\* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

| Lab Sample<br>Number | Sample<br>Reference | Sample<br>Number | Depth (m) | Sample Description *                   |
|----------------------|---------------------|------------------|-----------|----------------------------------------|
| 2738960              | WS01                | None Supplied    | 0.1       | Brown loam with vegetation.            |
| 2738961              | WS01                | None Supplied    | 0.5       | Brown loam with vegetation.            |
| 2738962              | WS02                | None Supplied    | 0.1       | Brown loam with gravel and vegetation. |
| 2738963              | WS02                | None Supplied    | 0.5       | Brown sand with gravel.                |
| 2738964              | WS02                | None Supplied    | 1.5       | Brown sand with gravel.                |
| 2738965              | WS03                | None Supplied    | 0.2       | Brown loam with vegetation.            |
| 2738966              | WS03                | None Supplied    | 0.6       | Brown sand.                            |
| 2738967              | WS03                | None Supplied    | 4.5       | Brown loam with gravel and vegetation. |
| 2738968              | WS04                | None Supplied    | 0.3       | Brown loam with gravel and vegetation. |
| 2738969              | WS04                | None Supplied    | 2.5       | Brown loam with gravel and vegetation. |
| 2738970              | WS05                | None Supplied    | 0.1       | Brown loam with gravel and vegetation. |
| 2738971              | WS05                | None Supplied    | 0.4       | Brown sand with gravel and vegetation. |
| 2738972              | WS05                | None Supplied    | 4.7       | Brown sand with gravel and vegetation. |
| 2738973              | WS06                | None Supplied    | 0.6       | Brown sand with gravel.                |
| 2738974              | WS06                | None Supplied    | 1.2       | Brown loam with gravel.                |





Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

| Analytical Test Name                                                                                                                                              | Analytical Method Description                                                                                                                                                   | Analytical Method Reference                                                                                           | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Metals in soil by ICP-OES                                                                                                                                         | Determination of metals in soil by aqua-regia digestion followed by ICP-OES.                                                                                                    | In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.                                  | L038-PL          | D                     | MCERTS                  |
| Sulphate, water soluble, in soil (16hr extraction)                                                                                                                | Determination of water soluble sulphate by ICP-OES.<br>Results reported directly (leachate equivalent) and<br>corrected for extraction ratio (soil equivalent).                 | esults reported directly (leachate equivalent) and                                                                    |                  | D                     | MCERTS                  |
| Boron, water soluble, in soil                                                                                                                                     | Determination of water soluble boron in soil by hot water extract followed by ICP-OES.                                                                                          | soil by hot water In-house method based on Second Site Properties version 3                                           |                  | D                     | MCERTS                  |
| Free cyanide in soil                                                                                                                                              | Determination of free cyanide by distillation followed by colorimetry.                                                                                                          | In-house method based on Examination of Water<br>and Wastewater 20th Edition: Clesceri, Greenberg<br>& Eaton (Skalar) | L080-PL          | W                     | MCERTS                  |
| Moisture Content                                                                                                                                                  | Moisture content, determined gravimetrically. (30 oC)                                                                                                                           | In house method.                                                                                                      | L019-UK/PL       | W                     | NONE                    |
| Monohydric phenols in soil                                                                                                                                        | Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.                                                          | In-house method based on Examination of Water<br>and Wastewater 20th Edition: Clesceri, Greenberg<br>& Eaton (skalar) | L080-PL          | W                     | MCERTS                  |
| Speciated EPA-16 PAHs in soil                                                                                                                                     | Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.                          | In-house method based on USEPA 8270                                                                                   | L064-PL          | D                     | MCERTS                  |
| pH in soil (automated)                                                                                                                                            | Determination of pH in soil by addition of water followed by automated electrometric measurement.                                                                               | In house method.                                                                                                      | L099-PL          | D                     | MCERTS                  |
| Sulphide in soil                                                                                                                                                  | Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.          | an                                                                                                                    |                  | D                     | MCERTS                  |
| Thiocyanate in soil                                                                                                                                               | Determination of thiocyanate in soil by extraction in water followed by acidification followed by addition of ferric nitrate followed by discrete analyser (spectrophotometer). | ion of ferric                                                                                                         |                  | D                     | NONE                    |
| Total sulphate (as SO4 in soil)                                                                                                                                   | Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.                                                                                         | In house method.                                                                                                      | L038-PL          | D                     | MCERTS                  |
| Stones content of soil                                                                                                                                            | Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.                                                     |                                                                                                                       |                  | D                     | NONE                    |
| Total cyanide in soil                                                                                                                                             | Determination of total cyanide by distillation followed by colorimetry.                                                                                                         | In-house method based on Examination of Water<br>and Wastewater 20th Edition: Clesceri, Greenberg<br>& Eaton (Skalar) | L080-PL          | W                     | MCERTS                  |
| BTEX and MTBE in soil (Monoaromatics)                                                                                                                             | Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited                                                                                       | In-house method based on USEPA8260                                                                                    | L073B-PL         | W                     | MCERTS                  |
| TPHCWG (Soil)                                                                                                                                                     | Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.                                                                                                       | In-house method with silica gel split/clean up.                                                                       | L088/76-PL       | W                     | MCERTS                  |
| Organic matter (Automated) in soil  Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate. |                                                                                                                                                                                 | In house method.                                                                                                      | L009-PL          | D                     | MCERTS                  |
|                                                                                                                                                                   | 1                                                                                                                                                                               |                                                                                                                       |                  |                       | l                       |





Analytical Report Number : 23-43534 Project / Site name: Park Gerry

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

| Analytical Test Name             | Analytical Method Description                                                                                                                             | Analytical Method Reference | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|-----------------------|-------------------------|
| Hexavalent chromium in soil      | Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.                         |                             | L080-PL          | W                     | MCERTS                  |
| Sulphate, water soluble, in soil | Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent). | In house method.            | L038-PL          | D                     | MCERTS                  |

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

#### **Information in Support of Analytical Results**

#### **List of HWOL Acronyms and Operators**

| Acronym | Descriptions                                                           |
|---------|------------------------------------------------------------------------|
| HS      | Headspace Analysis                                                     |
| MS      | Mass spectrometry                                                      |
| FID     | Flame Ionisation Detector                                              |
| GC      | Gas Chromatography                                                     |
| EH      | Extractable Hydrocarbons (i.e. everything extracted by the solvent(s)) |
| CU      | Clean-up - e.g. by Florisil®, silica gel                               |
| 1D      | GC - Single coil/column gas chromatography                             |
| 2D      | GC-GC - Double coil/column gas chromatography                          |
| Total   | Aliphatics & Aromatics                                                 |
| AL      | Aliphatics                                                             |
| AR      | Aromatics                                                              |
| #1      | EH_2D_Total but with humics mathematically subtracted                  |
| #2      | EH_2D_Total but with fatty acids mathematically subtracted             |
| _       | Operator - understore to separate acronyms (exception for +)           |
| +       | Operator to indicate cumulative e.g. EH+HS Total or EH CU+HS Total     |

<sup>~ -</sup> Quality control surrogate recovery outside of limits, other checks applied prior to reporting the data have been accepted. The result should be considered as being deviating and may be compromised.

<sup>^ -</sup> Data reported unaccredited due to quality control parameter failure associated with this result; The result should be considered as being deviating and may be compromised.

#### **Sample Deviation Report**



Analytical Report Number: 23-43534 Project / Site name: Park Gerry

 $This \ deviation \ report \ indicates \ the \ sample \ and \ test \ deviations \ that \ apply \ to \ the \ samples \ submitted \ for \ analysis. Please$ note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

| Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature |               |                |                      |                     |                       |          |                   |  |
|--------------------------------------------------------------------------------------------------|---------------|----------------|----------------------|---------------------|-----------------------|----------|-------------------|--|
| Sample ID                                                                                        | Other ID      | Sample<br>Type | Lab Sample<br>Number | Sample<br>Deviation | Test Name             | Test Ref | Test<br>Deviation |  |
| WS01                                                                                             | None Supplied | S              | 2738960              | С                   | Free cyanide in soil  | L080-PL  | С                 |  |
| WS01                                                                                             | None Supplied | S              | 2738960              | С                   | Sulphide in soil      | L010-PL  | с                 |  |
| WS01                                                                                             | None Supplied | S              | 2738960              | С                   | Total cyanide in soil | L080-PL  | С                 |  |
| WS01                                                                                             | None Supplied | S              | 2738961              | С                   | Free cyanide in soil  | L080-PL  | С                 |  |
| WS01                                                                                             | None Supplied | S              | 2738961              | С                   | Sulphide in soil      | L010-PL  | С                 |  |
| WS01                                                                                             | None Supplied | S              | 2738961              | С                   | Total cyanide in soil | L080-PL  | С                 |  |
| WS02                                                                                             | None Supplied | S              | 2738962              | С                   | Free cyanide in soil  | L080-PL  | С                 |  |
| WS02                                                                                             | None Supplied | S              | 2738962              | С                   | Sulphide in soil      | L010-PL  | С                 |  |
| WS02                                                                                             | None Supplied | S              | 2738962              | С                   | Total cyanide in soil | L080-PL  | С                 |  |
| WS02                                                                                             | None Supplied | S              | 2738963              | С                   | Free cyanide in soil  | L080-PL  | С                 |  |
| WS02                                                                                             | None Supplied | S              | 2738963              | С                   | Sulphide in soil      | L010-PL  | С                 |  |
| WS02                                                                                             | None Supplied | S              | 2738963              | С                   | Total cyanide in soil | L080-PL  | С                 |  |
| WS02                                                                                             | None Supplied | S              | 2738964              | С                   | Free cyanide in soil  | L080-PL  | С                 |  |
| WS02                                                                                             | None Supplied | S              | 2738964              | С                   | Sulphide in soil      | L010-PL  | С                 |  |
| WS02                                                                                             | None Supplied | S              | 2738964              | С                   | Total cyanide in soil | L080-PL  | С                 |  |
| WS03                                                                                             | None Supplied | S              | 2738965              | С                   | Free cyanide in soil  | L080-PL  | С                 |  |
| WS03                                                                                             | None Supplied | S              | 2738965              | С                   | Sulphide in soil      | L010-PL  | С                 |  |
| WS03                                                                                             | None Supplied | S              | 2738965              | С                   | Total cyanide in soil | L080-PL  | С                 |  |
| WS03                                                                                             | None Supplied | S              | 2738966              | С                   | Free cyanide in soil  | L080-PL  | С                 |  |
| WS03                                                                                             | None Supplied | S              | 2738966              | С                   | Sulphide in soil      | L010-PL  | С                 |  |
| WS03                                                                                             | None Supplied | S              | 2738966              | С                   | Total cyanide in soil | L080-PL  | С                 |  |
| WS03                                                                                             | None Supplied | S              | 2738967              | С                   | Free cyanide in soil  | L080-PL  | С                 |  |
| WS03                                                                                             | None Supplied | S              | 2738967              | С                   | Sulphide in soil      | L010-PL  | С                 |  |
| WS03                                                                                             | None Supplied | S              | 2738967              | С                   | Total cyanide in soil | L080-PL  | С                 |  |
| WS04                                                                                             | None Supplied | S              | 2738968              | С                   | Free cyanide in soil  | L080-PL  | С                 |  |
| WS04                                                                                             | None Supplied | S              | 2738968              | С                   | Sulphide in soil      | L010-PL  | С                 |  |
| WS04                                                                                             | None Supplied | S              | 2738968              | С                   | Total cyanide in soil | L080-PL  | С                 |  |
| WS04                                                                                             | None Supplied | S              | 2738969              | С                   | Free cyanide in soil  | L080-PL  | С                 |  |
| WS04                                                                                             | None Supplied | S              | 2738969              | С                   | Sulphide in soil      | L010-PL  | С                 |  |
| WS04                                                                                             | None Supplied | S              | 2738969              | С                   | Total cyanide in soil | L080-PL  | С                 |  |
| WS05                                                                                             | None Supplied | S              | 2738970              | С                   | Free cyanide in soil  | L080-PL  | С                 |  |
| WS05                                                                                             | None Supplied | S              | 2738970              | С                   | Sulphide in soil      | L010-PL  | С                 |  |
| WS05                                                                                             | None Supplied | S              | 2738970              | С                   | Total cyanide in soil | L080-PL  | С                 |  |
| WS05                                                                                             | None Supplied | S              | 2738971              | С                   | Free cyanide in soil  | L080-PL  | С                 |  |
| WS05                                                                                             | None Supplied | S              | 2738971              | С                   | Sulphide in soil      | L010-PL  | С                 |  |
| WS05                                                                                             | None Supplied | S              | 2738971              | С                   | Total cyanide in soil | L080-PL  | С                 |  |
| WS05                                                                                             | None Supplied | S              | 2738972              | С                   | Free cyanide in soil  | L080-PL  | С                 |  |
| WS05                                                                                             | None Supplied | S              | 2738972              | С                   | Sulphide in soil      | L010-PL  | С                 |  |
| WS05                                                                                             | None Supplied | S              | 2738972              | С                   | Total cyanide in soil | L080-PL  | С                 |  |
| WS06                                                                                             | None Supplied | S              | 2738973              | С                   | Free cyanide in soil  | L080-PL  | С                 |  |
| WS06                                                                                             | None Supplied | S              | 2738973              | С                   | Sulphide in soil      | L010-PL  | С                 |  |
| WS06                                                                                             | None Supplied | S              | 2738973              | С                   | Total cyanide in soil | L080-PL  | С                 |  |
| WS06                                                                                             | None Supplied | S              | 2738974              | С                   | Free cyanide in soil  | L080-PL  | С                 |  |
| WS06                                                                                             | None Supplied | S              | 2738974              | С                   | Sulphide in soil      | L010-PL  | С                 |  |
| WS06                                                                                             | None Supplied | S              | 2738974              | С                   | Total cyanide in soil | L080-PL  | С                 |  |





### Sebastian Lea Wurzbach

Wheal Jane Services Old Mine Offices Wheal Jane Baldhu Truro Cornwall TR3 6EE

**t:** 01872 560200 **f:** 01872 560826

e: swurzbach@wheal-jane.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

## **Analytical Report Number: 23-46196**

Project / Site name: Park Gerry Samples received on: 05/07/2023

Your job number: 21665 Samples instructed on/ 21/07/2023

Analysis started on:

Your order number: 21665 Analysis completed by: 03/08/2023

**Report Issue Number:** 1 **Report issued on:** 03/08/2023

Samples Analysed: 2 soil samples

Signed:

Dominika Warjan Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.





Analytical Report Number: 23-46196 Project / Site name: Park Gerry Your Order No: 21665

| Lab Sample Number                       | 2755105       | 2755106            |                         |               |               |
|-----------------------------------------|---------------|--------------------|-------------------------|---------------|---------------|
| Sample Reference                        | WS03          | WS04               |                         |               |               |
| Sample Number                           |               |                    |                         | None Supplied | None Supplied |
| Depth (m)                               |               |                    |                         | 0.20          | 0.30          |
| Date Sampled                            |               |                    |                         | 29/06/2023    | 29/06/2023    |
| Time Taken                              | None Supplied | None Supplied      |                         |               |               |
| Analytical Parameter<br>(Soil Analysis) | Units         | Limit of detection | Accreditation<br>Status |               |               |
| Stone Content                           | %             | 0.1                | NONE                    | 22            | 15            |
| Moisture Content                        | %             | 0.01               | NONE                    | 8.1           | 8.1           |
| Total mass of sample received           | kg            | 0.001              | NONE                    | 0.8           | 0.9           |

### Heavy Metals / Metalloids

| Arsenic (aqua regia extractable) | mg/kg | 1 | MCERTS | 280 | 370 |
|----------------------------------|-------|---|--------|-----|-----|

## PBET Results (Bioaccessibile Fraction)

| Arsenic (Stomach)     | % | 0.5 | NONE | < 0.5 | < 0.5 |
|-----------------------|---|-----|------|-------|-------|
| Arsenic (Intestine 1) | % | 0.5 | NONE | 0.7   | 0.6   |
| Arsenic (Intestine 2) | % | 0.5 | NONE | 0.8   | 0.7   |

| Bioaccessible Fraction % | Maximum % BAF | 0.8 % (I2) | 0.7 % (I2) |
|--------------------------|---------------|------------|------------|

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected





Analytical Report Number: 23-46196 Project / Site name: Park Gerry

\* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

| Lab Sample<br>Number | Sample<br>Reference | Sample<br>Number | Depth (m) | Sample Description *                   |
|----------------------|---------------------|------------------|-----------|----------------------------------------|
| 2755105              | WS03                | None Supplied    | 0.2       | Brown loam with vegetation.            |
| 2755106              | WS04                | None Supplied    | 0.3       | Brown loam with gravel and vegetation. |





Analytical Report Number: 23-46196 Project / Site name: Park Gerry

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

| Analytical Test Name      | Analytical Method Description                                                                                               | Analytical Method Reference                                                          | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Metals in soil by ICP-OES | Determination of metals in soil by aqua-regia digestion followed by ICP-OES.                                                | In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. | L038-PL          | D                     | MCERTS                  |
| Moisture Content          | Moisture content, determined gravimetrically. (30 oC)                                                                       | In house method.                                                                     | L019-UK/PL       | W                     | NONE                    |
| Stones content of soil    | Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight. | In-house method based on British Standard<br>Methods and MCERTS requirements.        | L019-UK/PL       | D                     | NONE                    |
| PBET                      | In House Method                                                                                                             | In house method based on Ruby et.al.                                                 |                  | D                     | NONE                    |

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.





#### Sebastian Lea Wurzbach

Wheal Jane Services Old Mine Offices Wheal Jane Baldhu Truro Cornwall TR3 6EE

**t:** 01872 560200 **f:** 01872 560826

e: swurzbach@wheal-jane.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

**t:** 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

# Analytical Report Number: 23-52794

Project / Site name: Park Gerry Samples received on: 05/07/2023

Your job number: 21665 Samples instructed on/ 24/08/2023

Analysis started on:

Your order number: 21665 Analysis completed by: 25/08/2023

**Report Issue Number:** 1 **Report issued on:** 25/08/2023

Samples Analysed: 2 soil samples

Izabela Wolcik

Signed:

Izabela Wójcik Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.





Analytical Report Number: 23-52794 Project / Site name: Park Gerry Your Order No: 21665

| Lab Sample Number                       | 2790880                            | 2790881                          |                         |       |       |
|-----------------------------------------|------------------------------------|----------------------------------|-------------------------|-------|-------|
| Sample Reference                        |                                    |                                  |                         | WS02  | WS02  |
| Sample Number                           | Original prepared<br>sample retest | Repeat prepared<br>sample retest |                         |       |       |
| Depth (m)                               |                                    |                                  |                         | 0.50  | 0.50  |
| Date Sampled                            |                                    | 29/06/2023                       | 29/06/2023              |       |       |
| Time Taken                              | None Supplied                      | None Supplied                    |                         |       |       |
| Analytical Parameter<br>(Soil Analysis) | Units                              | Limit of detection               | Accreditation<br>Status |       |       |
| Stone Content                           | %                                  | 0.1                              | NONE                    | < 0.1 | < 0.1 |
| Moisture Content                        | %                                  | 0.01                             | NONE                    | 11    | 11    |
| Total mass of sample received           | kg                                 | 0.001                            | NONE                    | 0.8   | 0.8   |

## Heavy Metals / Metalloids

| Arsenic (aqua regia extractable) | mg/kg | 1 | MCERTS | 11000 | 9500 |
|----------------------------------|-------|---|--------|-------|------|

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{ Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$ 





Analytical Report Number : 23-52794 Project / Site name: Park Gerry

\* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

| Lab Sample<br>Number | Sample<br>Reference | Sample<br>Number | Depth (m) | Sample Description *    |
|----------------------|---------------------|------------------|-----------|-------------------------|
| 2790880              | WS02                | prepared sampl   | 0.5       | Brown sand with gravel. |
| 2790881              | WS02                | prepared sample  | 0.5       | Brown sand with gravel. |





Analytical Report Number : 23-52794 Project / Site name: Park Gerry

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

| Analytical Test Name      | Analytical Method Description                                                                                               | Analytical Method Reference                                                          | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Metals in soil by ICP-OES | Determination of metals in soil by aqua-regia digestion followed by ICP-OES.                                                | In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. | L038-PL          | D                     | MCERTS                  |
| Moisture Content          | Moisture content, determined gravimetrically. (30 oC)                                                                       | In house method.                                                                     | L019-UK/PL       | W                     | NONE                    |
| Stones content of soil    | Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight. | In-house method based on British Standard<br>Methods and MCERTS requirements.        | L019-UK/PL       | D                     | NONE                    |

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.





Wheal Jane Services Old Mine Offices Wheal Jane Baldhu Truro Cornwall TR3 6EE

t: 01872 560200

e: mvickers@wheal-jane.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS** 

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

## **Analytical Report Number: 24-001378**

**Project / Site name:** Park Gerry, Camborne Samples received on: 02/02/2024

Your job number: 21999 02/02/2024 Samples instructed on/

Analysis started on:

Your order number: 21999 Analysis completed by: 09/02/2024

**Report Issue Number:** Report issued on: 14/02/2024 1

Samples Analysed: 15 soil samples

Signed:

Joanna Szwagrzak Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Bruagnak

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting soils

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.





| Lab Sample Number                                                                                   |                                  | 108861               | 108862                  | 108863        | 108864        | 108865        |               |               |
|-----------------------------------------------------------------------------------------------------|----------------------------------|----------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Sample Reference                                                                                    |                                  |                      |                         | HP01          | HP01          | HP01          | HP02          | HP02          |
| Sample Number                                                                                       |                                  |                      |                         | None Supplied |
| Depth (m)                                                                                           |                                  |                      |                         | 0.20          | 0.50          | 1.00          | 0.10          | 0.40          |
| Date Sampled                                                                                        |                                  |                      |                         | 30/01/2024    | 30/01/2024    | 30/01/2024    | 30/01/2024    | 30/01/2024    |
| Time Taken                                                                                          | Fime Taken                       |                      |                         |               |               |               | None Supplied | None Supplied |
|                                                                                                     |                                  | E.                   |                         | None Supplied | None Supplied | None Supplied |               |               |
|                                                                                                     |                                  | Limit of detection   | Accreditation<br>Status |               |               |               |               |               |
| Analytical Parameter                                                                                | Units                            | of c                 | Sta                     |               |               |               |               |               |
| (Soil Analysis)                                                                                     | ţţ                               | lete                 | itat                    |               |               |               |               |               |
|                                                                                                     |                                  | <del>Cl</del> io     | 9                       |               |               |               |               |               |
|                                                                                                     |                                  | 3                    |                         |               |               |               |               |               |
| S                                                                                                   | %                                | 0.1                  | NONE                    | 0.4           | 0.1           |               |               |               |
| Stone Content                                                                                       | %                                | 0.1                  | NONE                    | < 0.1         | < 0.1         | < 0.1         | < 0.1         | < 0.1         |
| Moisture Content                                                                                    | kg                               | 0.01                 | NONE                    | 14            | 18            | 20            | 17            | 18            |
| Total mass of sample received                                                                       | ĸg                               | 0.1                  | NONE                    | 0.8           | 0.8           | 0.9           | 0.9           | 0.8           |
| Company I Turanyanian                                                                               |                                  |                      |                         |               |               |               |               |               |
| General Inorganics                                                                                  | pH Units                         | N/A                  | MCERTS                  |               |               | 1             | 1             |               |
| pH (L099)                                                                                           |                                  |                      |                         | -             | 7.9           | -             | -             | -             |
| Total Cyanide                                                                                       | mg/kg<br>mg/kg                   | 1                    | MCERTS<br>MCERTS        | -             | -             | -             | -             | -             |
| Free Cyanide                                                                                        |                                  | 5                    | NONE                    | -             | -             | -             | -             | -             |
| Thiocyanate as SCN                                                                                  | mg/kg                            |                      |                         | -             | -             | -             | -             | -             |
| Total Sulphate as SO4                                                                               | mg/kg                            | 50                   | MCERTS<br>MCERTS        | -             | -             | -             | -             | -             |
| Water Soluble Sulphate as SO4 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate | mg/kg                            | 2.5                  | MCERTS                  | -             | -             | -             | -             | -             |
| Equivalent)                                                                                         | mg/l                             | 1.25                 | MCERTS                  | -             | -             | -             | -             | -             |
| Sulphide                                                                                            | mg/kg                            | 1                    | MCERTS                  | -             | _             | _             | _             | _             |
| Organic Matter (automated)                                                                          | %                                | 0.1                  | MCERTS                  | _             | 1.6           | _             | _             | _             |
| - game (accometes)                                                                                  |                                  |                      |                         |               | 1.0           | <u> </u>      | <u> </u>      |               |
| Total Phenols                                                                                       |                                  |                      |                         |               |               |               |               |               |
| Total Phenols (monohydric)                                                                          | mg/kg                            | 1                    | MCERTS                  | _             | _             | _             | _             | _             |
|                                                                                                     |                                  | l                    |                         |               |               |               |               |               |
| Speciated PAHs                                                                                      |                                  |                      |                         |               |               |               |               |               |
| Naphthalene                                                                                         | mg/kg                            | 0.05                 | MCERTS                  | _             | -             | _             | -             | _             |
| Acenaphthylene                                                                                      | mg/kg                            | 0.05                 | MCERTS                  | _             | -             | -             | -             | _             |
| Acenaphthene                                                                                        | mg/kg                            | 0.05                 | MCERTS                  | _             | -             | _             | _             | _             |
| Fluorene                                                                                            | mg/kg                            | 0.05                 | MCERTS                  | -             | -             | -             | -             | -             |
| Phenanthrene                                                                                        | mg/kg                            | 0.05                 | MCERTS                  | -             | -             | -             | -             | -             |
| Anthracene                                                                                          | mg/kg                            | 0.05                 | MCERTS                  | _             | -             | -             | -             | _             |
| Fluoranthene                                                                                        | mg/kg                            | 0.05                 | MCERTS                  | -             | -             | -             | -             | -             |
| Pyrene                                                                                              | mg/kg                            | 0.05                 | MCERTS                  | -             | -             | -             | -             | -             |
| Benzo(a)anthracene                                                                                  | mg/kg                            | 0.05                 | MCERTS                  | _             | -             | -             | -             | _             |
| Chrysene                                                                                            | mg/kg                            | 0.05                 | MCERTS                  | -             | -             | -             | -             | -             |
|                                                                                                     | mg/kg                            | 0.05                 | ISO 17025               | _             | -             | -             | -             | _             |
| Benzo(b)fluoranthene                                                                                |                                  |                      | ISO 17025               | _             | -             | -             | -             | _             |
| Benzo(b)fluoranthene<br>Benzo(k)fluoranthene                                                        | mg/kg                            | 0.05                 | 130 17023               |               |               |               |               |               |
| Benzo(k)fluoranthene                                                                                |                                  | 0.05                 | MCERTS                  | _             | -             | -             | -             | -             |
| Benzo(k)fluoranthene<br>Benzo(a)pyrene                                                              | mg/kg<br>mg/kg                   |                      |                         | -             | -             |               | -             | -             |
| Benzo(k)fluoranthene<br>Benzo(a)pyrene<br>Indeno(1,2,3-cd)pyrene                                    | mg/kg<br>mg/kg<br>mg/kg          | 0.05                 | MCERTS                  |               |               |               |               |               |
| Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene                   | mg/kg<br>mg/kg                   | 0.05<br>0.05         | MCERTS<br>MCERTS        | -             | -             | -             | -             | -             |
| Benzo(k)fluoranthene<br>Benzo(a)pyrene<br>Indeno(1,2,3-cd)pyrene                                    | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | 0.05<br>0.05<br>0.05 | MCERTS MCERTS MCERTS    | -             | -             | -             | -             | -             |
| Benzo(k)fluoranthene<br>Benzo(a)pyrene<br>Indeno(1,2,3-cd)pyrene<br>Dibenzo(a,h)anthracene          | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg | 0.05<br>0.05<br>0.05 | MCERTS MCERTS MCERTS    | -             | -             | -             | -             | -             |





| Lab Sample Number                                           |               |                    |                         | 108861        | 108862        | 108863        | 108864        | 108865        |
|-------------------------------------------------------------|---------------|--------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Sample Reference                                            |               |                    |                         | HP01          | HP01          | HP01          | HP02          | HP02          |
| Sample Number                                               |               |                    |                         | None Supplied |
| Depth (m)                                                   |               |                    |                         | 0.20          | 0.50          | 1.00          | 0.10          | 0.40          |
| Date Sampled                                                |               |                    |                         | 30/01/2024    | 30/01/2024    | 30/01/2024    | 30/01/2024    | 30/01/2024    |
| Time Taken                                                  | None Supplied | None Supplied      | None Supplied           | None Supplied | None Supplied |               |               |               |
| Time Tuken                                                  |               |                    | I                       | None Supplied | None Supplied | None Supplied | None Supplied | попе заррнеа  |
| Analytical Parameter<br>(Soil Analysis)                     | Units         | Limit of detection | Accreditation<br>Status |               |               |               |               |               |
| Heavy Metals / Metalloids                                   |               |                    |                         |               |               |               |               |               |
| Arsenic (aqua regia extractable)                            | mg/kg         | 1                  | MCERTS                  | 1400          | 5300          | 2300          | 1500          | 1900          |
| Boron (water soluble)                                       | mg/kg         | 0.2                | MCERTS                  | 0.9           | 0.2           | < 0.2         | 0.6           | 0.9           |
| Cadmium (aqua regia extractable)                            | mg/kg         | 0.2                | MCERTS                  | < 0.2         | < 0.2         | < 0.2         | < 0.2         | < 0.2         |
| Chromium (hexavalent)                                       | mg/kg         | 1.8                | MCERTS                  | -             | -             | -             | -             | -             |
| Chromium (aqua regia extractable)                           | mg/kg         | 1                  | MCERTS                  | 70            | 78            | 97            | 86            | 93            |
| Copper (aqua regia extractable)                             | mg/kg         | 1                  | MCERTS                  | 1100          | 2000          | 5000          | 2100          | 3500          |
| Lead (aqua regia extractable)                               | mg/kg         | 1                  | MCERTS                  | 190           | 700           | 260           | 250           | 230           |
| Mercury (aqua regia extractable)                            | mg/kg         | 0.3                | MCERTS                  | < 0.3         | < 0.3         | < 0.3         | < 0.3         | < 0.3         |
| Nickel (aqua regia extractable)                             | mg/kg         | 1                  | MCERTS                  | 41            | 23            | 43            | 54            | 64            |
| Selenium (aqua regia extractable)                           | mg/kg         | 1                  | MCERTS                  | 2.1           | < 1.0         | < 1.0         | 1.3           | < 1.0         |
| Zinc (aqua regia extractable)                               | mg/kg         | 1                  | MCERTS                  | 490           | 250           | 450           | 800           | 840           |
| Petroleum Hydrocarbons TPHCWG - Aliphatic >C5 - C6 HS_1D_AL | mg/kg         | 0.02               | NONE                    | -             | -             | -             | -             | -             |
| TPHCWG - Aliphatic >C6 - C8 HS_1D_AL                        | mg/kg         | 0.02               | NONE                    | -             | -             | -             | -             | -             |
| TPHCWG - Aliphatic >C8 - C10 HS_1D_AL                       | mg/kg         | 0.05               | NONE                    | -             | -             | -             | -             | -             |
| TPHCWG - Aliphatic >C10 - C12 EH_CU_1D_AL_#1_#2             | mg/kg         | 1                  | MCERTS                  | -             | -             | -             | -             | -             |
| TPHCWG - Aliphatic >C12 - C16 EH_CU_1D_AL_#1_#2             | mg/kg         | 2                  | MCERTS                  | -             | -             | -             | -             | -             |
| TPHCWG - Aliphatic >C16 - C21 EH_CU_1D_AL_#1_#2             | mg/kg         | 8                  | MCERTS                  | -             | -             | -             | -             | -             |
| TPHCWG - Aliphatic >C21 - C35 EH_CU_1D_AL_#1_#2             | mg/kg         | 8                  | MCERTS                  | -             | -             | -             | -             | -             |
| TPHCWG - Aliphatic >C5 - C35 EH_CU+HS_1D_AL_#1_#2           | mg/kg         | 10                 | NONE                    | -             | -             | -             | -             | -             |
|                                                             |               |                    |                         |               |               |               |               |               |
| TPHCWG - Aromatic >EC5 - EC7 HS_1D_AR                       | mg/kg         | 0.01               | NONE                    | -             | -             | -             | -             | -             |
| TPHCWG - Aromatic >EC7 - EC8 HS_1D_AR                       | mg/kg         | 0.01               | NONE                    | -             | -             | -             | -             | -             |
| TPHCWG - Aromatic >EC8 - EC10 HS_1D_AR                      | mg/kg         | 0.05               | NONE                    | -             | -             | -             | -             | -             |
| TPHCWG - Aromatic >EC10 - EC12 EH_CU_1D_AR_#1_#2            | mg/kg         | 1                  | MCERTS                  | -             | -             | -             | -             | -             |
| TPHCWG - Aromatic >EC12 - EC16 EH_CU_1D_AR_#1_#2            | mg/kg         | 2                  | MCERTS                  | -             | -             | -             | -             | -             |
| TPHCWG - Aromatic >EC16 - EC21 EH_CU_1D_AR_#1_#2            | mg/kg         | 10                 | MCERTS                  | -             | -             | -             | -             | -             |
| TPHCWG - Aromatic >EC21 - EC35 EH_CU_1D_AR_#1_#2            | mg/kg         | 10                 | MCERTS                  | -             | -             | -             | -             | -             |
| TPHCWG - Aromatic >EC5 - EC35 EH_CU+HS_1D_AR_#1_#2          | mg/kg         | 10                 | NONE                    | -             | -             | -             | -             | -             |
| VOCs                                                        |               |                    |                         |               |               |               |               |               |
| MTBE (Methyl Tertiary Butyl Ether)                          | μg/kg         | 5                  | NONE                    | -             | -             | -             | -             | -             |
| Benzene                                                     | μg/kg         | 5                  | MCERTS                  | -             | -             | -             | -             | -             |
| Toluene                                                     | μg/kg         | 5                  | MCERTS                  | -             | -             |               | -             | -             |
| Ethylbenzene                                                | μg/kg         | 5                  | MCERTS                  | -             | -             | -             | -             | -             |
| p & m-Xylene                                                | μg/kg         | 5                  | MCERTS                  | -             | -             | -             | -             | -             |
| o-Xylene                                                    | μg/kg         | 5                  | MCERTS                  | -             | -             | -             | -             | -             |

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected





| Lab Sample Number                                                                       |                |                    |                         | 108866        | 108867        | 108868        | 108869        | 108870        |
|-----------------------------------------------------------------------------------------|----------------|--------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Sample Reference                                                                        |                |                    |                         | HP03          | HP03          | HP03          | HP04          | HP04          |
| Sample Number                                                                           |                |                    |                         | None Supplied |
| Depth (m)                                                                               |                |                    |                         | 0.15          | 0.60          | 1.20          | 0.20          | 0.50          |
| Date Sampled                                                                            |                |                    |                         | 30/01/2024    | 30/01/2024    | 30/01/2024    | 30/01/2024    | 30/01/2024    |
| Time Taken                                                                              |                |                    |                         | None Supplied |
|                                                                                         |                | <u> </u>           |                         |               |               |               |               |               |
|                                                                                         |                | Limit of detection | Accreditation<br>Status |               |               |               |               |               |
| Analytical Parameter                                                                    | Units          | of d               | red<br>Stat             |               |               |               |               |               |
| (Soil Analysis)                                                                         | ij             | ete                | tus                     |               |               |               |               |               |
|                                                                                         |                | ₽:                 | 9                       |               |               |               |               |               |
|                                                                                         |                | 3                  |                         |               |               |               |               |               |
| Sterra Cantont                                                                          | %              | 0.1                | NONE                    | - 0.1         | .01           | -01           | - 0.1         | < 0.1         |
| Stone Content  Moisture Content                                                         | %              | 0.01               | NONE                    | < 0.1<br>17   | < 0.1<br>19   | < 0.1<br>21   | < 0.1         |               |
| Total mass of sample received                                                           | kg             | 0.01               | NONE                    |               |               |               | 15            | 14            |
| Total mass of sample received                                                           | .vg            | 0.1                | HOME                    | 0.9           | 0.9           | 0.7           | 0.8           | 0.9           |
| Conoral Ingrapries                                                                      |                |                    |                         |               |               |               |               |               |
| General Inorganics                                                                      | pH Units       | N/A                | MCERTS                  |               |               | 7.6           |               |               |
| pH (L099)                                                                               |                |                    |                         | -             | -             | 7.6           | -             | -             |
| Total Cyanide                                                                           | mg/kg<br>mg/kg | 1                  | MCERTS<br>MCERTS        | -             | -             | < 1.0         | -             | -             |
| Free Cyanide                                                                            |                | 5                  | NONE                    | -             | -             | < 1.0         | -             | -             |
| Thiocyanate as SCN                                                                      | mg/kg<br>mg/kg | 50                 | MCERTS                  | -             |               | < 5.0         | -             | -             |
| Total Sulphate as SO4 Water Soluble Sulphate as SO4 16hr extraction (2:1)               | mg/kg          | 2.5                | MCERTS                  |               | -             | 340           |               |               |
| Water Soluble SO4 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate | mg/kg          | 2.5                | MCERTS                  | -             | -             | 11            | -             | -             |
| Equivalent)                                                                             | mg/l           | 1.25               | MCERTS                  | -             | -             | 5.44          | -             | -             |
| Sulphide                                                                                | mg/kg          | 1                  | MCERTS                  | _             | _             | < 1.0         | _             | _             |
| Organic Matter (automated)                                                              | %              | 0.1                | MCERTS                  | _             | _             | 0.7           | _             | _             |
| <u> </u>                                                                                |                |                    |                         |               |               |               |               |               |
| Total Phenols                                                                           |                |                    |                         |               |               |               |               |               |
| Total Phenols (monohydric)                                                              | mg/kg          | 1                  | MCERTS                  | -             | -             | < 1.0         | -             | -             |
|                                                                                         |                |                    |                         |               |               |               |               |               |
| Speciated PAHs                                                                          |                |                    |                         |               |               |               |               |               |
| Naphthalene                                                                             | mg/kg          | 0.05               | MCERTS                  | -             | -             | < 0.05        | -             | -             |
| Acenaphthylene                                                                          | mg/kg          | 0.05               | MCERTS                  | -             | -             | < 0.05        | -             | -             |
| Acenaphthene                                                                            | mg/kg          | 0.05               | MCERTS                  | -             | -             | < 0.05        | -             | -             |
| Fluorene                                                                                | mg/kg          | 0.05               | MCERTS                  | -             | -             | < 0.05        | -             | -             |
| Phenanthrene                                                                            | mg/kg          | 0.05               | MCERTS                  | -             | -             | < 0.05        | -             | -             |
| Anthracene                                                                              | mg/kg          | 0.05               | MCERTS                  | -             | -             | < 0.05        | -             | -             |
| Fluoranthene                                                                            | mg/kg          | 0.05               | MCERTS                  | -             | -             | < 0.05        | -             | -             |
| Pyrene                                                                                  | mg/kg          | 0.05               | MCERTS                  | -             | -             | < 0.05        | -             | -             |
| Benzo(a)anthracene                                                                      | mg/kg          | 0.05               | MCERTS                  | -             | -             | < 0.05        | -             | -             |
| Chrysene                                                                                | mg/kg          | 0.05               | MCERTS                  | -             | -             | < 0.05        | -             | -             |
| Benzo(b)fluoranthene                                                                    | mg/kg          | 0.05               | ISO 17025               | -             | -             | < 0.05        | -             | -             |
| Benzo(k)fluoranthene                                                                    | mg/kg          | 0.05               | ISO 17025               | -             | -             | < 0.05        | -             | -             |
| Benzo(a)pyrene                                                                          | mg/kg          | 0.05               | MCERTS                  | -             | -             | < 0.05        | -             | -             |
| Indeno(1,2,3-cd)pyrene                                                                  | mg/kg          | 0.05               | MCERTS                  | -             | -             | < 0.05        | -             | -             |
| Dibenzo(a,h)anthracene                                                                  | mg/kg          | 0.05               | MCERTS                  | _             | _             | < 0.05        | _             | _             |
|                                                                                         | mg/kg          | 0.05               | MCERTS                  | _             | _             | < 0.05        | _             | _             |
| Benzo(ghi)perylene                                                                      |                |                    |                         |               |               |               |               |               |
| Benzo(ghi)perylene                                                                      | 5. 5           |                    |                         |               |               |               |               |               |
| Benzo(ghi)perylene  Total PAH                                                           | 5. 5           |                    |                         |               |               |               |               |               |





| Lab Sample Number                                            |       |                    |                         | 108866        | 108867        | 108868        | 108869        | 108870        |
|--------------------------------------------------------------|-------|--------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Sample Reference                                             |       |                    |                         | HP03          | HP03          | HP03          | HP04          | HP04          |
| Sample Number                                                |       |                    |                         | None Supplied |
| Depth (m)                                                    |       |                    |                         | 0.15          | 0.60          | 1.20          | 0.20          | 0.50          |
| Date Sampled                                                 |       |                    |                         | 30/01/2024    | 30/01/2024    | 30/01/2024    | 30/01/2024    | 30/01/2024    |
| Time Taken                                                   |       |                    |                         | None Supplied |
| Time raken                                                   |       | _                  | 1                       | None Supplied |
| Analytical Parameter<br>(Soil Analysis)                      | Units | Limit of detection | Accreditation<br>Status |               |               |               |               |               |
| Heavy Metals / Metalloids                                    |       |                    |                         |               |               |               |               |               |
| Arsenic (aqua regia extractable)                             | mg/kg | 1                  | MCERTS                  | 360           | 51            | 45            | 54            | 78            |
| Boron (water soluble)                                        | mg/kg | 0.2                | MCERTS                  | 0.7           | 0.3           | 0.5           | < 0.2         | < 0.2         |
| Cadmium (aqua regia extractable)                             | mg/kg | 0.2                | MCERTS                  | < 0.2         | < 0.2         | < 0.2         | < 0.2         | < 0.2         |
| Chromium (hexavalent)                                        | mg/kg | 1.8                | MCERTS                  | -             | -             | < 1.8         | -             | -             |
| Chromium (aqua regia extractable)                            | mg/kg | 1                  | MCERTS                  | 110           | 170           | 180           | 59            | 71            |
| Copper (aqua regia extractable)                              | mg/kg | 1                  | MCERTS                  | 480           | 83            | 89            | 47            | 64            |
| Lead (aqua regia extractable)                                | mg/kg | 1                  | MCERTS                  | 98            | 30            | 61            | 26            | 31            |
| Mercury (aqua regia extractable)                             | mg/kg | 0.3                | MCERTS                  | < 0.3         | < 0.3         | < 0.3         | < 0.3         | < 0.3         |
| Nickel (aqua regia extractable)                              | mg/kg | 1                  | MCERTS                  | 56            | 80            | 90            | 44            | 45            |
| Selenium (aqua regia extractable)                            | mg/kg | 1                  | MCERTS                  | < 1.0         | < 1.0         | < 1.0         | < 1.0         | < 1.0         |
| Zinc (aqua regia extractable)                                | mg/kg | 1                  | MCERTS                  | 470           | 330           | 300           | 160           | 200           |
| Petroleum Hydrocarbons  TPHCWG - Aliphatic >C5 - C6 HS_1D_AL | mg/kg | 0.02               | NONE                    | -             | -             | < 0.020       | -             | -             |
| TPHCWG - Aliphatic >C6 - C8 HS_1D_AL                         | mg/kg | 0.02               | NONE                    | -             | -             | < 0.020       | -             | -             |
| TPHCWG - Aliphatic >C8 - C10 HS_1D_AL                        | mg/kg | 0.05               | NONE                    | -             | -             | < 0.050       | -             | -             |
| TPHCWG - Aliphatic >C10 - C12 EH_CU_1D_AL_#1_#2              | mg/kg | 1                  | MCERTS                  | -             | -             | < 1.0         | -             | -             |
| TPHCWG - Aliphatic >C12 - C16 EH_CU_1D_AL_#1_#2              | mg/kg | 2                  | MCERTS                  | -             | -             | < 2.0         | -             | -             |
| TPHCWG - Aliphatic >C16 - C21 EH_CU_1D_AL_#1_#2              | mg/kg | 8                  | MCERTS                  | -             | -             | < 8.0         | -             | -             |
| TPHCWG - Aliphatic >C21 - C35 EH_CU_1D_AL_#1_#2              | mg/kg | 8                  | MCERTS                  | -             | -             | < 8.0         | -             | -             |
| TPHCWG - Aliphatic >C5 - C35 EH_CU+HS_1D_AL_#1_#2            | mg/kg | 10                 | NONE                    | -             | -             | < 10          | -             | -             |
|                                                              |       |                    |                         |               |               |               |               |               |
| TPHCWG - Aromatic >EC5 - EC7 HS_1D_AR                        | mg/kg | 0.01               | NONE                    | -             | -             | < 0.010##     | -             | -             |
| TPHCWG - Aromatic >EC7 - EC8 HS_1D_AR                        | mg/kg | 0.01               | NONE                    | -             | -             | < 0.010       | -             | -             |
| TPHCWG - Aromatic >EC8 - EC10 HS_1D_AR                       | mg/kg | 0.05               | NONE                    | -             | -             | < 0.050       | -             | -             |
| TPHCWG - Aromatic >EC10 - EC12 EH_CU_1D_AR_#1_#2             | mg/kg | 1                  | MCERTS                  | -             | -             | < 1.0         | -             | -             |
| TPHCWG - Aromatic >EC12 - EC16 EH_CU_1D_AR_#1_#2             | mg/kg | 2                  | MCERTS                  | -             | -             | < 2.0         | -             | -             |
| TPHCWG - Aromatic >EC16 - EC21 EH_CU_1D_AR_#1_#2             | mg/kg | 10                 | MCERTS                  | -             | -             | < 10          | -             | -             |
| TPHCWG - Aromatic >EC21 - EC35 EH_CU_1D_AR_#1_#2             | mg/kg | 10                 | MCERTS                  | -             | -             | < 10          | -             | -             |
| TPHCWG - Aromatic >EC5 - EC35 EH_CU+HS_1D_AR_#1_#2           | mg/kg | 10                 | NONE                    | -             | -             | < 10          | -             | -             |
| VOCs                                                         |       |                    |                         |               |               |               |               |               |
| MTBE (Methyl Tertiary Butyl Ether)                           | μg/kg | 5                  | NONE                    | -             | -             | < 5.0         | -             | -             |
| Benzene                                                      | μg/kg | 5                  | MCERTS                  | -             | -             | < 5.0         | -             | -             |
| Toluene                                                      | μg/kg | 5                  | MCERTS                  | -             | -             | < 5.0         | -             | -             |
| Ethylbenzene                                                 | μg/kg | 5                  | MCERTS                  | -             | -             | < 5.0         | -             | -             |
| p & m-Xylene                                                 | μg/kg | 5                  | MCERTS                  | -             | -             | < 5.0         | -             | -             |
| o-Xylene                                                     | μg/kg | 5                  | MCERTS                  | -             | -             | < 5.0         | -             | -             |

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected





| None Supplied   None Supplie  | Lab Sample Number          |       |                    |                         | 108871        | 108872        | 108873        | 108874        | 108875        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------|--------------------|-------------------------|---------------|---------------|---------------|---------------|---------------|
| Depth (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample Reference           |       |                    |                         | HP05          | HP05          | HP06          | HP06          | HP06          |
| Stone Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample Number              |       |                    |                         | None Supplied |
| None Supplied   None Supplie  | Depth (m)                  |       |                    |                         | 0.10          | 0.40          | 0.25          | 0.60          | 0.90          |
| Analytical Parameter (Soil Analysis)  Stone Content  % 0.1 NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date Sampled               |       |                    |                         | 30/01/2024    | 30/01/2024    | 30/01/2024    | 30/01/2024    | 30/01/2024    |
| Stone Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Time Taken                 |       |                    |                         | None Supplied |
| Moisture Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                          | Units | Limit of detection | Accreditation<br>Status |               |               |               |               |               |
| Moisture Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stone Content              | %     | 0.1                | NONE                    | < 0.1         | < 0.1         | < 0.1         | < 0.1         | < 0.1         |
| Column   C  |                            |       |                    |                         |               |               |               |               |               |
| Companies   Comp  |                            |       |                    |                         |               |               |               |               |               |
| PH Units   N/A   MCERTS   7.1   -   7.5   -   7.5   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |       | -                  |                         | 0.7           | 0.0           | 0.7           | 0.0           | 0.0           |
| Total Cyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |       |                    |                         |               |               |               |               |               |
| Tree Cyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pH (L099)                  |       |                    |                         | 7.1           | -             | -             | 7.5           | -             |
| Thiocyanate as SCN mg/lkg 5 NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |       |                    |                         | -             | -             | -             | < 1.0         | -             |
| Total Sulphate as SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Free Cyanide               |       |                    |                         | -             | -             | -             | < 1.0         | -             |
| Maker Soluble Sulphate as SO4 16hr extraction (2:1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Thiocyanate as SCN         |       |                    |                         | -             | -             | -             | < 5.0         | -             |
| Mater Soluble SO4 16hr extraction (2:1 Leachate Equivalent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                          |       |                    |                         | -             | -             | -             | 240           | -             |
| Total Phenois   Total Phenoi  |                            | mg/kg | 2.5                | MCERTS                  | -             | -             | -             | 14            | -             |
| Total Phenols   Total Phenols   Total Phenols (monohydric)   mg/kg   1   MCERTS   5,2   -   -   1,2   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |       |                    |                         | -             | -             | -             | 7.03          | -             |
| Total Phenois   Total Phenois (monohydric)   mg/kg   1   MCERTS   -   -   -   < 1.0   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sulphide                   |       |                    |                         | -             | -             | -             | < 1.0         | -             |
| MCERTS   -   -   < 1.0   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Organic Matter (automated) | %     | 0.1                | MCERTS                  | 5.2           | -             | -             | 1.2           | -             |
| MCERTS   -   -   < 1.0   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total Phenois              |       |                    |                         |               |               |               |               |               |
| Speciated PAHs   Speciated PAHs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | mg/kg | 1                  | MCERTS                  | _             | _             | _             | < 1.0         | _             |
| Acenaphthylene mg/kg 0.05 MCERTS < 0.05 - < 0.05 - <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                          | mg/kg | 0.05               | MCERTS                  | _             |               | _             | < 0.05        | _             |
| Acenaphthene mg/kg 0.05 MCERTS < 0.05 - < 0.05 - <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                          | _     | 0.05               | MCERTS                  | _             | -             | _             |               | _             |
| Fluorene   mg/kg   0.05   MCERTS   -   -   -   < 0.05   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |       | 0.05               |                         | _             | -             | _             |               | _             |
| Phenanthrene         mg/kg         0.05         MCERTS         -         -         -         < 0.05         -           Anthracene         mg/kg         0.05         MCERTS         -         -         -         < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                          |       |                    |                         | _             | -             |               |               |               |
| Anthracene mg/kg 0.05 MCERTS < 0.05 - < 0.05 - <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |       | 0.05               | MCERTS                  | -             | -             | -             |               | -             |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |       | 0.05               | MCERTS                  | _             |               |               |               | -             |
| Pyrene         mg/kg         0.05         MCERTS         -         -         -           -         -          0.05         -         -         -          0.05         -         -         -          0.05         -         -         -          0.05         -         -         -          0.05         -         -         -          0.05         -         -         -         0.05         -         -         -         0.05         -         -         -         0.05         -         -         -         0.05         -         -         -         0.05         -         -         -         0.05         -         -         -         0.05         -         -         -         0.05         -         -         -         0.05         -         -         -         0.05         -         -         -         0.05         -         -         -         0.05         -         -         -         0.05         -         -         -         0.05         -         -         -         -         0.05         -         -         -         0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |       | 0.05               | MCERTS                  | -             | -             | -             |               | -             |
| Denzo(a) anthracene   mg/kg   0.05   MCERTS   -   -   -   < 0.05   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | mg/kg | 0.05               | MCERTS                  | -             | -             | -             |               | -             |
| Chrysene         mg/kg         0.05         MCERTS         -         -         -           0.05         -           Benzo(b)fluoranthene         mg/kg         0.05         ISO 17025         -         -         -          <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | mg/kg | 0.05               | MCERTS                  | -             | -             | -             | < 0.05        | -             |
| Senzo(b)fluoranthene   mg/kg   0.05   ISO 17025   -   -   -   < 0.05   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chrysene                   | mg/kg | 0.05               | MCERTS                  | -             | -             | -             | < 0.05        | -             |
| Senzo(a)pyrene   mg/kg   0.05   MCERTS   -   -   < 0.05   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Benzo(b)fluoranthene       | mg/kg | 0.05               | ISO 17025               | -             | -             | -             | < 0.05        | -             |
| Control of the cont  | Benzo(k)fluoranthene       | mg/kg | 0.05               | ISO 17025               | -             | -             | -             | < 0.05        | -             |
| Dibenzo(a,h)anthracene mg/kg 0.05 MCERTS < 0.05 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Benzo(a)pyrene             | mg/kg | 0.05               | MCERTS                  | -             | -             | -             | < 0.05        | -             |
| i discrizio di la constanti di | Indeno(1,2,3-cd)pyrene     | mg/kg | 0.05               | MCERTS                  | -             | -             | -             | < 0.05        | -             |
| Renzo(ghi)perylene mg/kg 0.05 MCERTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | mg/kg | 0.05               | MCERTS                  | -             | -             | -             | < 0.05        | -             |
| belizo(giii)peryicile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzo(ghi)perylene         | mg/kg | 0.05               | MCERTS                  | -             | -             | -             | < 0.05        | -             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total PAH                  |       |                    |                         |               |               |               |               |               |





| Lab Sample Number                                           |       |                    |                         | 108871         | 108872        | 108873         | 108874        | 108875        |
|-------------------------------------------------------------|-------|--------------------|-------------------------|----------------|---------------|----------------|---------------|---------------|
| Sample Reference                                            |       |                    |                         | HP05           | HP05          | HP06           | HP06          | HP06          |
| Sample Number                                               |       |                    |                         | None Supplied  | None Supplied | None Supplied  | None Supplied | None Supplied |
| Depth (m)                                                   |       |                    |                         | 0.10           | 0.40          | 0.25           | 0.60          | 0.90          |
| Date Sampled                                                |       |                    |                         | 30/01/2024     | 30/01/2024    | 30/01/2024     | 30/01/2024    | 30/01/2024    |
| Time Taken                                                  |       |                    |                         | None Supplied  | None Supplied | None Supplied  | None Supplied | None Supplied |
|                                                             |       | -                  |                         | Horic Supplied | топе варыеа   | Horic Supplied | Hone Supplied | попе варрнеа  |
| Analytical Parameter<br>(Soil Analysis)                     | Units | Limit of detection | Accreditation<br>Status |                |               |                |               |               |
| Heavy Metals / Metalloids                                   |       |                    |                         |                |               |                |               |               |
| Arsenic (aqua regia extractable)                            | mg/kg | 1                  | MCERTS                  | 450            | 99            | 370            | 72            | 17            |
| Boron (water soluble)                                       | mg/kg | 0.2                | MCERTS                  | 1              | 0.7           | 0.8            | 0.2           | 0.4           |
| Cadmium (aqua regia extractable)                            | mg/kg | 0.2                | MCERTS                  | < 0.2          | < 0.2         | < 0.2          | < 0.2         | 1.8           |
| Chromium (hexavalent)                                       | mg/kg | 1.8                | MCERTS                  | -              | -             | -              | < 1.8         | -             |
| Chromium (aqua regia extractable)                           | mg/kg | 1                  | MCERTS                  | 76             | 140           | 97             | 150           | 290           |
| Copper (aqua regia extractable)                             | mg/kg | 1                  | MCERTS                  | 450            | 150           | 2000           | 500           | 250           |
| Lead (aqua regia extractable)                               | mg/kg | 1                  | MCERTS                  | 91             | 39            | 67             | 33            | 7.4           |
| Mercury (aqua regia extractable)                            | mg/kg | 0.3                | MCERTS                  | < 0.3          | < 0.3         | < 0.3          | < 0.3         | < 0.3         |
| Nickel (aqua regia extractable)                             | mg/kg | 1                  | MCERTS                  | 45             | 77            | 54             | 73            | 140           |
| Selenium (aqua regia extractable)                           | mg/kg | 1                  | MCERTS                  | < 1.0          | < 1.0         | 2              | < 1.0         | < 1.0         |
| Zinc (aqua regia extractable)                               | mg/kg | 1                  | MCERTS                  | 360            | 440           | 540            | 700           | 1400          |
| Petroleum Hydrocarbons TPHCWG - Aliphatic >C5 - C6 HS_1D_AL | mg/kg | 0.02               | NONE                    | -              | -             | -              | < 0.020       | -             |
| TPHCWG - Aliphatic >C6 - C8 HS_1D_AL                        | mg/kg | 0.02               | NONE                    | -              | -             | -              | < 0.020       | -             |
| TPHCWG - Aliphatic >C8 - C10 HS_1D_AL                       | mg/kg | 0.05               | NONE                    | -              | -             | -              | < 0.050       | -             |
| TPHCWG - Aliphatic >C10 - C12 EH_CU_1D_AL_#1_#2             | mg/kg | 1                  | MCERTS                  | -              | -             | -              | < 1.0         | -             |
| TPHCWG - Aliphatic >C12 - C16 EH_CU_1D_AL_#1_#2             | mg/kg | 2                  | MCERTS                  | -              | -             | -              | < 2.0         | -             |
| TPHCWG - Aliphatic >C16 - C21 EH_CU_1D_AL_#1_#2             | mg/kg | 8                  | MCERTS                  | -              | -             | -              | < 8.0         | -             |
| TPHCWG - Aliphatic >C21 - C35 EH_CU_1D_AL_#1_#2             | mg/kg | 8                  | MCERTS                  | -              | -             | -              | < 8.0         | -             |
| TPHCWG - Aliphatic >C5 - C35 EH_CU+HS_1D_AL_#1_#2           | mg/kg | 10                 | NONE                    | -              | -             | -              | < 10          | -             |
|                                                             |       |                    |                         |                |               |                |               |               |
| TPHCWG - Aromatic >EC5 - EC7 HS_1D_AR                       | mg/kg | 0.01               | NONE                    | -              | -             | -              | < 0.010##     | -             |
| TPHCWG - Aromatic >EC7 - EC8 HS_1D_AR                       | mg/kg | 0.01               | NONE                    | -              | -             | -              | < 0.010       | -             |
| TPHCWG - Aromatic >EC8 - EC10 HS_1D_AR                      | mg/kg | 0.05               | NONE                    | -              | -             | -              | < 0.050       | -             |
| TPHCWG - Aromatic >EC10 - EC12 EH_CU_1D_AR_#1_#2            | mg/kg | 1                  | MCERTS                  | -              | -             | -              | < 1.0         | -             |
| TPHCWG - Aromatic >EC12 - EC16 EH_CU_1D_AR_#1_#2            | mg/kg | 2                  | MCERTS                  | -              | -             | -              | < 2.0         | -             |
| TPHCWG - Aromatic >EC16 - EC21 EH_CU_1D_AR_#1_#2            | mg/kg | 10                 | MCERTS                  | -              | -             | -              | < 10          | -             |
| TPHCWG - Aromatic >EC21 - EC35 EH_CU_1D_AR_#1_#2            | mg/kg | 10                 | MCERTS                  | -              | -             | -              | < 10          | -             |
| TPHCWG - Aromatic >EC5 - EC35 EH_CU+HS_1D_AR_#1_#2          | mg/kg | 10                 | NONE                    | -              | -             | -              | < 10          | -             |
| VOCs                                                        |       |                    |                         |                |               |                |               |               |
| MTBE (Methyl Tertiary Butyl Ether)                          | μg/kg | 5                  | NONE                    | -              | -             | -              | < 5.0         | -             |
| Benzene                                                     | μg/kg | 5                  | MCERTS                  | -              | -             | -              | < 5.0         | -             |
| Toluene                                                     | μg/kg | 5                  | MCERTS                  | -              | -             | -              | < 5.0         | -             |
| Ethylbenzene                                                | μg/kg | 5                  | MCERTS                  | -              | -             | -              | < 5.0         | -             |
| p & m-Xylene                                                | μg/kg | 5                  | MCERTS                  | -              | -             | -              | < 5.0         | -             |
| o-Xylene                                                    | μg/kg | 5                  | MCERTS                  | _              | -             | -              | < 5.0         | -             |

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected





\* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

| Lab Sample<br>Number | Sample<br>Reference | Sample<br>Number | Depth (m) | Sample Description *                           |
|----------------------|---------------------|------------------|-----------|------------------------------------------------|
| 108861               | HP01                | None Supplied    | 0.2       | Brown loam and sand with gravel and vegetation |
| 108862               | HP01                | None Supplied    | 0.5       | Brown loam and sand with gravel and vegetation |
| 108863               | HP01                | None Supplied    | 1         | Brown loam and clay with gravel and vegetation |
| 108864               | HP02                | None Supplied    | 0.1       | Brown loam and clay with gravel and vegetation |
| 108865               | HP02                | None Supplied    | 0.4       | Brown loam and clay with gravel and vegetation |
| 108866               | HP03                | None Supplied    | 0.15      | Brown loam and sand with gravel and vegetation |
| 108867               | HP03                | None Supplied    | 0.6       | Brown clay and loam with gravel and vegetation |
| 108868               | HP03                | None Supplied    | 1.2       | Brown clay and loam with vegetation            |
| 108869               | HP04                | None Supplied    | 0.2       | Brown clay and loam with vegetation            |
| 108870               | HP04                | None Supplied    | 0.5       | Brown clay and loam with vegetation            |
| 108871               | HP05                | None Supplied    | 0.1       | Brown loam and sand with gravel and vegetation |
| 108872               | HP05                | None Supplied    | 0.4       | Brown loam and clay with gravel and vegetation |
| 108873               | HP06                | None Supplied    | 0.25      | Brown loam and sand with gravel and vegetation |
| 108874               | HP06                | None Supplied    | 0.6       | Brown loam and clay with vegetation            |
| 108875               | HP06                | None Supplied    | 0.9       | Brown clay and loam                            |





Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

| Analytical Test Name                                                           | Analytical Method Description                                                                                                                                                  | Analytical Method Reference                                                                                  | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-------------------------|
| Organic matter (Automated) in soil                                             | Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)                            | In-house method                                                                                              | L009B            | D                     | MCERTS                  |
| Sulphide in soil                                                               | Determination of sulphide in soil by acidification and<br>heating to liberate hydrogen sulphide, trapped in an<br>alkaline solution then assayed by ion selective electrode    | In-house method                                                                                              | L010             | D                     | MCERTS                  |
| Moisture Content                                                               | Moisture content, determined gravimetrically (up to 30°C)                                                                                                                      | In-house method                                                                                              | L019B            | W                     | NONE                    |
| Stones content of soil                                                         | Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight                                                     | In-house method based on British Standard<br>Methods and MCERTS requirements.                                | L019B            | D                     | NONE                    |
| Metals in soil by ICP-OES                                                      | Determination of metals in soil by aqua-regia digestion followed by ICP-OES                                                                                                    | In-house method based on MEWAM 2006 Methods<br>for the Determination of Metals in Soil                       | L038B            | D                     | MCERTS                  |
| Boron, water soluble, in soil                                                  | Determination of water soluble boron in soil by hot water extract followed by ICP-OES                                                                                          | In-house method based on Second Site Properties version 3                                                    | L038B            | D                     | MCERTS                  |
| Total sulphate (as SO4 in soil)                                                | Determination of total sulphate in soil by extraction with 10% HCI followed by ICP-OES                                                                                         | In-house method                                                                                              | L038B            | D                     | MCERTS                  |
| Sulphate, water soluble, in soil (16hr extraction)                             | Sulphate, water soluble, in soil (16hr extraction)                                                                                                                             | In-house method                                                                                              | L038B            | D                     | MCERTS                  |
| Speciated EPA-16 PAHs and/or Semi-volatile<br>organic compounds in soil        | Determination of semi-volatile organic compounds<br>(including PAH) in soil by extraction in dichloromethane<br>and hexane followed by GC-MS                                   | In-house method based on USEPA 8270                                                                          | L064B            | D                     | MCERTS                  |
| BTEX and/or Volatile organic compounds in soil                                 | Determination of volatile organic compounds in soil by<br>headspace GC-MS                                                                                                      | In-house method based on USEPA 8260                                                                          | L073B            | W                     | MCERTS                  |
| Total petroleum hydrocarbons with carbon<br>banding by GC-FID/GC-MS HS in soil | Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS with carbon banding aliphatic and aromatic                                                            | In-house method                                                                                              | L076B/L088       | D/W                   | MCERTS                  |
| Hexavalent chromium in soil                                                    | Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry                                               | In-house method                                                                                              | L080             | W                     | MCERTS                  |
| Free cyanide in soil                                                           | Determination of free cyanide by distillation followed by colorimetry                                                                                                          | In-house method based on Examination of Water<br>and Wastewater 20th Edition: Clesceri, Greenberg<br>& Eaton | L080             | W                     | MCERTS                  |
| Monohydric phenols in soil                                                     | Determination of phenols in soil by extraction with sodium<br>hydroxide followed by distillation followed by colorimetry                                                       | In-house method based on Examination of Water<br>and Wastewater 20th Edition: Clesceri, Greenberg<br>& Eaton | L080             | W                     | MCERTS                  |
| Total cyanide in soil                                                          | Determination of total cyanide by distillation followed by colorimetry                                                                                                         | In-house method based on Examination of Water<br>and Wastewater 20th Edition: Clesceri, Greenberg<br>& Eaton | L080             | W                     | MCERTS                  |
| Thiocyanate in soil                                                            | Determination of thiocyanate in soil by extraction in water followed by acidification followed by addition of ferric nitrate followed by discrete analyser (spectrophotometer) | In-house method                                                                                              | L082B            | D                     | NONE                    |





Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

| Analytical Test Name   | Analytical Method Description                                                                    | Analytical Method Reference | Method<br>number | Wet / Dry<br>Analysis | Accreditation<br>Status |
|------------------------|--------------------------------------------------------------------------------------------------|-----------------------------|------------------|-----------------------|-------------------------|
| pH in soil (automated) | Determination of pH in soil by addition of water followed by automated electrometric measurement | In-house method             | L099             | D                     | MCERTS                  |

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

## - Quality control parameter has a high recovery (outside of limit); however the associated result is below the reporting limit, other checks applied prior to reporting the data have been accepted. The result should be considered as being deviating and may be compromised



# **APPENDIX D**

# **CLEA Analysis**

CLEA Software Version 1.071

Page 1 of 11

Report generated

09-Aug-23

Report title Park Gerry, Camborne

Environment Agency

Created by WJC

RESULTS

CLEA Software Version 1.071

Report generated 9-Aug-23

Page 2 of 11

Apply Top 2 Approach to Produce Group

| <b>AB</b> | Environment |
|-----------|-------------|
| SX.       | Agency      |

|    |                      | Assessm  | nent Criterion | (mg kg <sup>-1</sup> ) | Ratio | o of ADE to I | HCV      | .                                       | 50%  | rule? | Two applied? | Green vegetables | Root vegetables | Tuber vegetables | Herbaceous fruit | Shrub fruit | fruit      |
|----|----------------------|----------|----------------|------------------------|-------|---------------|----------|-----------------------------------------|------|-------|--------------|------------------|-----------------|------------------|------------------|-------------|------------|
|    |                      | oral     | inhalation     | combined               | oral  | inhalation    | combined | Saturation Limit (mg kg <sup>-1</sup> ) | Oral | Inhal | Top          | Gree             | Root            | Tube             | Herb             | Shru        | Tree fruit |
| 1  | Arsenic (C4SL child) | 4.60E+03 | 1.91E+04       | NR                     | 1.00  | 0.24          | NR       | NR                                      | No   | No    | Yes          | Yes              | No              | No               | No               | No          | Yes        |
| 2  |                      |          |                |                        |       |               |          |                                         |      |       |              |                  |                 |                  |                  |             |            |
| 3  |                      |          |                |                        |       |               |          |                                         | !    |       |              |                  |                 |                  |                  |             | ,          |
| 4  |                      |          |                |                        |       |               |          |                                         | į    |       |              |                  |                 |                  |                  |             |            |
| 5  |                      |          |                |                        |       |               |          |                                         | !    |       |              |                  |                 |                  |                  |             | .          |
| 6  |                      |          |                |                        |       |               |          |                                         |      |       |              |                  |                 |                  |                  |             |            |
| 7  |                      |          |                |                        |       |               |          |                                         |      |       |              |                  |                 |                  |                  |             |            |
| 8  |                      |          |                |                        |       |               |          |                                         |      |       |              |                  |                 |                  |                  |             |            |
| 9  |                      |          |                |                        |       |               |          |                                         |      |       |              |                  |                 |                  |                  |             |            |
| 10 |                      | ŀ        |                |                        |       |               |          |                                         |      |       |              |                  |                 |                  |                  |             |            |
| 11 |                      |          |                |                        |       |               |          |                                         |      |       |              |                  |                 |                  |                  |             |            |
| 12 |                      |          |                |                        |       |               |          |                                         |      |       |              |                  |                 |                  |                  |             |            |
| 13 |                      |          |                |                        |       |               |          |                                         |      |       |              |                  |                 |                  |                  |             |            |
| 14 |                      |          |                |                        |       |               |          |                                         | ļ    |       |              |                  |                 |                  |                  |             |            |
| 15 |                      | ļ        |                |                        |       |               |          |                                         | ļ    |       |              |                  |                 |                  |                  |             |            |
| 16 |                      |          |                |                        |       |               |          |                                         |      |       |              |                  |                 |                  |                  |             |            |
| 17 |                      |          |                |                        |       |               |          |                                         | ļ    |       |              |                  |                 |                  |                  |             |            |
| 18 |                      |          |                |                        |       |               |          |                                         |      |       |              |                  |                 |                  |                  |             |            |
| 19 |                      |          |                |                        |       |               |          |                                         |      |       |              |                  |                 |                  |                  |             |            |
| 20 |                      | !        |                |                        |       |               |          |                                         |      |       |              |                  |                 |                  |                  |             |            |

CLEA Software Version 1.071 Report generated 9-Aug-23 Page 3 of 11 Environment Agency Apply Top 2 Approach to Produce Group Green vegetables Tuber vegetables Herbaceous fruit Root vegetables Shrub fruit Tree fruit Assessment Criterion (mg kg<sup>-1</sup>) Ratio of ADE to HCV 50% rule? Saturation Limit (mg kg<sup>-1</sup>) inhalation inhalation combined Oral Inhal combined 21 22 23 24 25 26 27 28 29

30

| CLEA Software Version 1. | 071    |           |           |          |                     | Repo               | ort generated       |                         |                         | 9-Aug-23           |                              |                              |                        |                        |                        |                        | Page 4 of 11           | 1                      |
|--------------------------|--------|-----------|-----------|----------|---------------------|--------------------|---------------------|-------------------------|-------------------------|--------------------|------------------------------|------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Environment              |        | Soil Dis  | stributio | n        |                     |                    |                     |                         |                         |                    | Medi                         | a Concentr                   | ations                 |                        |                        |                        |                        |                        |
|                          | Sorbed | Dissolved | Vapour    | Total    | Soil                | Soil gas           | Indoor Dust         | Outdoor dust<br>at 0.8m | Outdoor dust<br>at 1.6m | Indoor<br>Vapour   | Outdoor<br>vapour at<br>0.8m | Outdoor<br>vapour at<br>1.6m | Green<br>vegetables    | Root<br>vegetables     | Tuber<br>vegetables    | Herbaceous<br>fruit    | Shrub fruit            | Tree fruit             |
|                          | %      | %         | %         | %        | mg kg <sup>-1</sup> | mg m <sup>-3</sup> | mg kg <sup>-1</sup> | mg m <sup>-3</sup>      | mg m <sup>-3</sup>      | mg m <sup>-3</sup> | mg m <sup>-3</sup>           | mg m <sup>-3</sup>           | mg kg <sup>-1</sup> FW |
| 1 Arsenic (C4SL child)   | 99.9   | 0.1       | 0.0       | 100.0    | 4.60E+03            | NR                 | NA                  | 3.91E-05                | 1.68E-05                | NA                 | 0.00E+00                     | 0.00E+00                     | NA                     | NA                     | NA                     | NA                     | NA                     | NA                     |
| 2                        |        |           |           | ļ        |                     |                    |                     |                         |                         |                    |                              |                              |                        |                        |                        |                        |                        |                        |
| 3                        |        | <u> </u>  | <u> </u>  | į        |                     |                    |                     |                         |                         |                    |                              |                              |                        |                        |                        |                        |                        |                        |
| 4                        |        | <u> </u>  | <u> </u>  | <u> </u> | <u> </u>            |                    | <u> </u>            | <u> </u>                |                         |                    | <u> </u>                     | <u> </u>                     |                        | <u> </u>               |                        |                        | <b></b> '              |                        |
| 5                        |        |           |           | 1        |                     |                    |                     |                         |                         |                    |                              |                              |                        |                        |                        |                        |                        |                        |
| 6                        |        |           |           |          |                     |                    |                     | <u> </u>                |                         |                    |                              |                              |                        |                        |                        |                        | [                      |                        |
| 7                        |        |           |           | İ        |                     | ļ                  |                     |                         |                         |                    |                              |                              |                        |                        |                        |                        |                        |                        |
| 8                        | 1      | 1         | 1         | 1        | 1                   |                    | 1                   |                         |                         |                    |                              |                              |                        | 1                      |                        |                        |                        |                        |
| 9                        | -      | 1         | 1         | i i      |                     |                    |                     |                         |                         |                    | <u> </u>                     |                              |                        |                        |                        |                        |                        |                        |
| 10                       |        | 1         |           | 1        |                     |                    |                     |                         |                         |                    |                              |                              |                        | 1                      | !                      |                        |                        |                        |
| 11                       |        | i         | İ         | İ        |                     |                    |                     |                         |                         |                    |                              |                              |                        | İ                      | İ                      |                        |                        |                        |
| 12                       |        |           |           | l        |                     |                    |                     |                         |                         |                    |                              |                              |                        |                        |                        |                        |                        |                        |
| 13                       |        | l         | 1         | 1        |                     |                    | i                   |                         |                         |                    |                              |                              |                        | 1                      | 1                      |                        |                        |                        |
| 14                       |        |           |           | ļ        |                     |                    |                     | ļ                       |                         |                    |                              |                              |                        |                        |                        |                        |                        |                        |
| 15                       |        | 1         |           | İ        |                     |                    | 1                   |                         |                         |                    |                              |                              |                        |                        |                        |                        | [                      |                        |
| 16                       |        |           |           |          |                     |                    |                     |                         |                         |                    |                              |                              |                        |                        |                        |                        |                        |                        |
| 17                       |        | 1         |           | l        |                     |                    |                     |                         |                         |                    |                              |                              |                        |                        |                        |                        |                        |                        |
| 18                       |        | İ         |           | İ        |                     | İ                  |                     |                         |                         |                    |                              | İ                            |                        |                        | <u> </u>               |                        |                        |                        |
| 19                       | l      | 1         |           | 1        | 1                   |                    | 1                   | !                       |                         |                    | !                            |                              |                        | 1                      | ]                      |                        |                        |                        |
| 20                       |        | i         | i         | i        | i                   | i                  | i                   | i                       | i                       |                    | i                            | i                            |                        | i                      |                        |                        | (                      |                        |

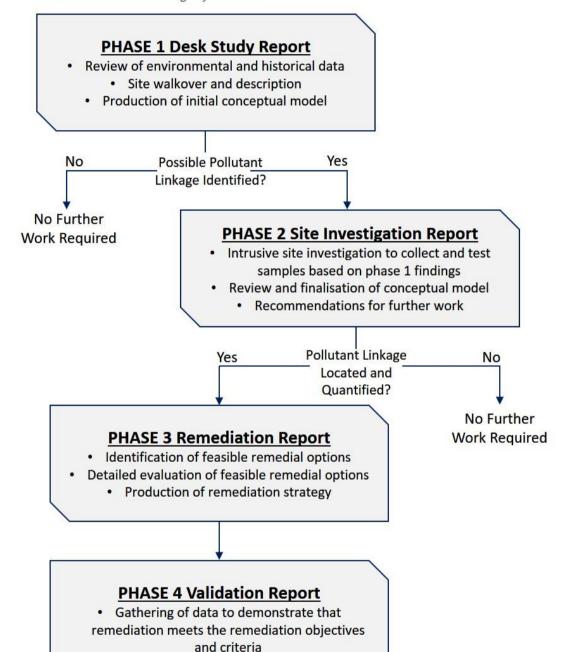
| CLEA Software Version | n 1.071 | Report generated 9-Aug-23 |           |       |                     |                    |                     |                         |                         |                    |                              |                              | Page 5 of 1 | 1                  |                        |                        |                        |                        |
|-----------------------|---------|---------------------------|-----------|-------|---------------------|--------------------|---------------------|-------------------------|-------------------------|--------------------|------------------------------|------------------------------|-------------|--------------------|------------------------|------------------------|------------------------|------------------------|
| Environment<br>Agency |         | Soil I                    | Distribut | ion   |                     |                    |                     |                         |                         |                    | Media                        | Concentra                    | tions       |                    |                        |                        |                        |                        |
|                       | Sorbed  | Dissolved                 | Vapour    | Total | Soil                | Soil gas           | Indoor Dust         | Outdoor dust<br>at 0.8m | Outdoor dust<br>at 1.6m | Indoor<br>Vapour   | Outdoor<br>vapour at<br>0.8m | Outdoor<br>vapour at<br>1.6m | Green       | Root<br>vegetables | Tuber                  | Herbaceous<br>fruit    | Shrub fruit            | Tree fruit             |
|                       | %       | %                         | %         | %     | mg kg <sup>-1</sup> | mg m <sup>-3</sup> | mg kg <sup>-1</sup> | mg m <sup>-3</sup>      | mg m <sup>-3</sup>      | mg m <sup>-3</sup> | mg m <sup>-3</sup>           | mg m <sup>-3</sup>           |             | 1                  | mg kg <sup>-1</sup> FW | mg kg <sup>-1</sup> FW | mg kg <sup>-1</sup> FW | mg kg <sup>-1</sup> FW |
| 21                    |         |                           |           |       | 1                   |                    |                     |                         |                         |                    |                              |                              |             |                    |                        |                        |                        |                        |
| 22                    | İ       |                           |           |       |                     |                    |                     |                         |                         |                    |                              |                              |             |                    |                        |                        |                        |                        |
| 23                    |         | ļ                         |           |       | 1                   |                    |                     |                         |                         |                    |                              |                              |             |                    |                        |                        |                        |                        |
| 24                    |         | į                         | i         |       | İ                   |                    |                     |                         |                         |                    | İ                            |                              |             |                    | <u> </u>               |                        |                        | İ                      |
| 25                    |         |                           |           |       |                     |                    |                     | •                       |                         |                    |                              |                              |             |                    |                        |                        | 1                      |                        |
| 26                    |         | İ                         |           |       |                     |                    |                     |                         |                         |                    |                              |                              |             |                    |                        |                        |                        |                        |
| 27                    | ļ       | İ                         |           |       | İ                   | İ                  |                     |                         | į                       |                    |                              |                              | İ           |                    |                        |                        | ĺ                      |                        |
| 28                    | ļ       | İ                         |           |       |                     |                    |                     |                         |                         |                    |                              |                              |             |                    |                        |                        |                        |                        |
| 29                    |         | İ                         |           | 1     | 1                   |                    |                     |                         | !                       |                    |                              |                              |             |                    |                        |                        |                        | 1                      |
| 20                    |         |                           | _ i       | · !   | !                   | !                  | !                   |                         |                         |                    | !                            | !                            | !           | !                  | !                      |                        | ĺ                      | !                      |

| CLEA Software Version 1.071 |                       |                                                    |                                   |                    | Repo                    | ort generated       | 9-Aug-23                   |                             |                                                          |                                   |                    | Page 6                           | of 11                             |                   |                            |  |
|-----------------------------|-----------------------|----------------------------------------------------|-----------------------------------|--------------------|-------------------------|---------------------|----------------------------|-----------------------------|----------------------------------------------------------|-----------------------------------|--------------------|----------------------------------|-----------------------------------|-------------------|----------------------------|--|
| Environment<br>Agency       |                       | Avera                                              | ige Daily Ex                      | oposure (m         | g kg <sup>-1</sup> bw c | lay <sup>-1</sup> ) |                            | Distribution by Pathway (%) |                                                          |                                   |                    |                                  |                                   |                   |                            |  |
|                             | Direct soil ingestion | Consumption of homegrown produce and attached soil | Dermal contact with soil and dust | Inhalation of dust | Inhalation of vapour    | Background (oral)   | Background<br>(inhalation) | Direct soil ingestion       | Consumption of<br>homegrown produce<br>and attached soil | Dermal contact with soil and dust | Inhalation of dust | Inhalation of vapour<br>(indoor) | Inhalation of vapour<br>(outdoor) | Background (oral) | Background<br>(inhalation) |  |
| 1 Arsenic (C4SL child)      | 6.37E-05              | 0.00E+00                                           | 2.36E-04                          | 2.09E-06           | 0.00E+00                | 0.00E+00            | 0.00E+00                   | 21.24                       | 0.00                                                     | 78.76                             | 0.00               | 0.00                             | 0.00                              | 0.00              | 0.00                       |  |
| 2                           |                       |                                                    |                                   |                    |                         |                     |                            | ļ                           | <u> </u>                                                 |                                   |                    | ļ                                |                                   |                   |                            |  |
| 3                           |                       |                                                    |                                   |                    |                         |                     |                            |                             |                                                          |                                   | <u> </u>           | ļ                                |                                   |                   | <u> </u>                   |  |
| 4                           |                       |                                                    |                                   |                    |                         |                     |                            | ļ                           |                                                          |                                   | <u> </u>           | ļ                                | <u> </u>                          | <u> </u>          |                            |  |
| 5                           |                       |                                                    |                                   |                    |                         |                     |                            |                             |                                                          |                                   | İ                  | ļ                                |                                   |                   |                            |  |
| 6                           |                       |                                                    |                                   |                    |                         |                     |                            |                             |                                                          |                                   |                    | -                                |                                   |                   |                            |  |
| 7                           |                       |                                                    |                                   |                    |                         |                     |                            |                             |                                                          |                                   |                    | ļ                                |                                   |                   |                            |  |
| 8                           | <u> </u>              | <u> </u>                                           |                                   |                    |                         |                     |                            | ļ                           | ļ                                                        |                                   | <u> </u>           | ļ                                |                                   |                   |                            |  |
| 9                           |                       |                                                    |                                   |                    |                         |                     |                            | l                           |                                                          |                                   | i                  | ļ .                              |                                   |                   |                            |  |
| 10                          |                       |                                                    |                                   |                    |                         |                     |                            | !                           | !                                                        |                                   |                    | !                                |                                   |                   |                            |  |
| 11                          |                       |                                                    |                                   |                    |                         |                     |                            | !                           |                                                          |                                   | İ                  | İ                                | !                                 |                   | i                          |  |
| 12                          |                       |                                                    |                                   |                    |                         |                     |                            | 1                           |                                                          |                                   | 1                  | ļ                                |                                   |                   |                            |  |
| 13                          |                       |                                                    |                                   |                    |                         |                     |                            |                             | ļ                                                        |                                   |                    | İ                                | ĺ                                 | ĺ                 |                            |  |
| 14                          |                       |                                                    |                                   |                    |                         |                     |                            |                             |                                                          |                                   |                    | ļ                                |                                   |                   |                            |  |
| 15                          |                       |                                                    |                                   |                    |                         |                     |                            | İ                           |                                                          |                                   | 1                  | į                                |                                   |                   |                            |  |
| 16                          |                       |                                                    |                                   |                    |                         |                     |                            |                             |                                                          |                                   |                    |                                  |                                   |                   |                            |  |
| 17                          |                       |                                                    |                                   |                    |                         |                     |                            |                             |                                                          |                                   |                    |                                  |                                   |                   |                            |  |
| 18                          |                       |                                                    |                                   |                    |                         |                     |                            | <u> </u>                    | <u>.</u>                                                 | į                                 |                    | ļ                                |                                   |                   |                            |  |
| 19                          |                       |                                                    |                                   |                    |                         |                     |                            |                             |                                                          |                                   |                    | -                                |                                   |                   |                            |  |
| 20                          |                       |                                                    |                                   |                    |                         |                     |                            |                             |                                                          |                                   |                    | ļ                                |                                   |                   |                            |  |

| CLEA Software Version 1.07 |                       | Report generated 9-Aug-23                                          |                                      |                    |                      |                   |                            |                             | Page 7 of 11                     |                                   |                    |                                  |                                   |                   |                            |
|----------------------------|-----------------------|--------------------------------------------------------------------|--------------------------------------|--------------------|----------------------|-------------------|----------------------------|-----------------------------|----------------------------------|-----------------------------------|--------------------|----------------------------------|-----------------------------------|-------------------|----------------------------|
| Environment<br>Agency      | Avera                 | Average Daily Exposure (mg kg <sup>-1</sup> bw day <sup>-1</sup> ) |                                      |                    |                      |                   |                            | Distribution by Pathway (%) |                                  |                                   |                    |                                  |                                   |                   |                            |
|                            | Direct soil ingestion | Consumption of homegrown produce and attached soil                 | Dermal contact with<br>soil and dust | Inhalation of dust | Inhalation of vapour | Background (oral) | Background<br>(inhalation) | Direct soil ingestion       | Consumption of homegrown produce | Dermal contact with soil and dust | Inhalation of dust | Inhalation of vapour<br>(indoor) | Inhalation of vapour<br>(outdoor) | Background (oral) | Background<br>(inhalation) |
| 21                         |                       |                                                                    |                                      |                    |                      |                   |                            |                             | İ                                |                                   | İ                  | İ                                | İ                                 | İ                 |                            |
| 22<br>23<br>24             |                       |                                                                    |                                      |                    |                      |                   |                            | 1                           |                                  |                                   | İ                  | 1                                | İ                                 | İ                 |                            |
| 23                         |                       |                                                                    |                                      |                    |                      |                   |                            |                             |                                  |                                   |                    |                                  |                                   |                   |                            |
| 24                         |                       |                                                                    |                                      |                    |                      |                   |                            |                             |                                  |                                   |                    |                                  | İ                                 | l                 |                            |
| 25                         |                       | <u> </u>                                                           |                                      | !                  |                      |                   |                            |                             |                                  |                                   | !                  | 1                                | ļ                                 |                   |                            |
| 26                         |                       |                                                                    |                                      |                    |                      |                   |                            | 1                           |                                  |                                   |                    | İ                                |                                   |                   |                            |
| 27                         |                       |                                                                    |                                      |                    |                      |                   |                            |                             |                                  |                                   |                    |                                  |                                   |                   |                            |
| 28                         |                       |                                                                    |                                      |                    |                      |                   |                            |                             |                                  |                                   |                    | 1                                |                                   | 1                 |                            |
| 29                         |                       | !                                                                  |                                      | !                  |                      |                   |                            | 1                           | 1                                |                                   | !                  | 1                                | !                                 | 1                 | 1                          |
| 30                         |                       |                                                                    |                                      |                    |                      |                   |                            |                             |                                  |                                   |                    | i i                              |                                   |                   |                            |

| CLEA Software Version 1.071 |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | Repo                                 | rt generated                               | 9-Aug-23                                                 | 3                                          |                                                        |                               |                                     |                                               |                                             |                                                                        | Page 8                                                 | of 11                                                   |
|-----------------------------|----|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------------|----------------------------------------------------------|--------------------------------------------|--------------------------------------------------------|-------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|
| Environment<br>Agency       |    | Oral Health Criteria Value<br>(µg kg¹ BW day¹) | outole in the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the | (lig kg <sup>-1</sup> BW day <sup>-1</sup> ) | Oral Mean Daily Intake<br>(µg day⁻¹) | Inhalation Mean Daily Intake<br>(µg day⁻¹) | Air-water partition coefficient $(K_{aw})$ $(cm^3 cm^3)$ | Coefficient of Diffusion in Air $(m^2s^4)$ | Coefficient of Diffusion in Water $(m^2s^{\text{-1}})$ | log K <sub>oc</sub> (cm³ g⁻¹) | log K <sub>ow</sub> (dimensionless) | Dermal Absorption Fraction<br>(dimensionless) | Soil-to-dust transport factor<br>(g.g.¹ DW) | Sub-surface soil to indoor air<br>correction factor<br>(dimensionless) | Relative bioavailability via soil ingestion (unitless) | Relative bioavailability via dust inhalation (unitless) |
| 1 Arsenic (C4SL child)      | ID | 0.3                                            | ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0087                                       | NR                                   | NR                                         | NR                                                       | NR                                         | NR                                                     | NR                            | NR                                  | 0.03                                          | 0.5                                         | 1                                                                      | 0.008                                                  | 1                                                       |
| 3                           |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        |                               |                                     |                                               |                                             | ļ                                                                      |                                                        | <u> </u>                                                |
|                             |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        |                               |                                     |                                               |                                             |                                                                        |                                                        |                                                         |
| 4                           |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        | <u> </u>                      |                                     |                                               |                                             | <u> </u>                                                               | ļ                                                      |                                                         |
| 5                           |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        |                               |                                     |                                               |                                             | •                                                                      |                                                        |                                                         |
| 6                           |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        | •                             |                                     |                                               |                                             | •                                                                      |                                                        |                                                         |
| 7                           |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        |                               |                                     |                                               |                                             |                                                                        |                                                        |                                                         |
| 8                           |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        |                               |                                     |                                               |                                             |                                                                        |                                                        |                                                         |
| 9                           |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        |                               |                                     |                                               |                                             |                                                                        |                                                        | i i                                                     |
| 10                          |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        |                               |                                     |                                               |                                             |                                                                        |                                                        |                                                         |
| 11                          |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        | İ                             |                                     | i                                             |                                             |                                                                        |                                                        | i                                                       |
| 12                          |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        |                               |                                     |                                               |                                             | !                                                                      |                                                        |                                                         |
| 13                          |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        |                               |                                     |                                               |                                             | ĺ                                                                      |                                                        |                                                         |
| 14                          |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        |                               |                                     |                                               |                                             |                                                                        |                                                        |                                                         |
| 15                          |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        |                               |                                     |                                               |                                             |                                                                        |                                                        |                                                         |
| 16                          |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        | ĺ                             |                                     |                                               |                                             |                                                                        |                                                        |                                                         |
| 17                          |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        |                               |                                     |                                               |                                             |                                                                        |                                                        |                                                         |
| 18                          |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        | į                             |                                     |                                               |                                             | i                                                                      |                                                        |                                                         |
| 19                          |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        |                               |                                     |                                               |                                             | !                                                                      |                                                        |                                                         |
| 20                          |    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                      |                                            |                                                          |                                            |                                                        |                               |                                     |                                               |                                             |                                                                        |                                                        |                                                         |

| CLEA Software Version 1.0 |                                                | Report generated 9-Aug-23                            |                                                   |                                            |                                                        |                                               |                                                |                               |                                     |                                               |                                             |                                                                        | of 11                                                  |                                                            |
|---------------------------|------------------------------------------------|------------------------------------------------------|---------------------------------------------------|--------------------------------------------|--------------------------------------------------------|-----------------------------------------------|------------------------------------------------|-------------------------------|-------------------------------------|-----------------------------------------------|---------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|
| Environment<br>Agency     | Oral Health Criteria Value<br>(µg kg¹ BW day¹) | inhalation Heaith Criteria Value<br>(µg kg¹ BW day¹) | Oral Mean Daily Intake<br>(µg day¹ <sup>)</sup> ) | Inhalation Mean Daily Intake<br>(µg day-¹) | Air-water partition coefficient $(K_{aw}) (cm^3 cm^3)$ | Coefficient of Diffusion in Air $(m^2 \ s^1)$ | Coefficient of Diffusion in Water $(m^2  s^1)$ | log K <sub>oc</sub> (cm³ g⁻¹) | log K <sub>ow</sub> (dimensionless) | Dermal Absorption Fraction<br>(dimensionless) | Soil-to-dust transport factor<br>(g.g.¹ DW) | Sub-surface soil to indoor air<br>correction factor<br>(dimensionless) | Relative bioavailability via soil ingestion (unitless) | Relative bioavallability via dust<br>inhalation (unitless) |
| 21                        |                                                |                                                      |                                                   |                                            |                                                        |                                               |                                                |                               |                                     |                                               |                                             |                                                                        |                                                        |                                                            |
| 22                        |                                                |                                                      |                                                   |                                            |                                                        |                                               |                                                |                               |                                     |                                               |                                             |                                                                        |                                                        |                                                            |
| 23                        |                                                |                                                      |                                                   |                                            |                                                        |                                               | ļ                                              |                               |                                     |                                               |                                             |                                                                        | <u> </u>                                               |                                                            |
| 24                        |                                                |                                                      | 1                                                 |                                            |                                                        |                                               | ļ                                              | !                             |                                     |                                               |                                             |                                                                        | ļ                                                      |                                                            |
| 25                        |                                                |                                                      |                                                   |                                            |                                                        |                                               |                                                |                               |                                     |                                               |                                             |                                                                        | !                                                      |                                                            |
| 26                        |                                                |                                                      |                                                   |                                            |                                                        |                                               |                                                |                               |                                     |                                               |                                             |                                                                        |                                                        |                                                            |
| 27                        |                                                |                                                      |                                                   | ļ                                          |                                                        |                                               |                                                |                               |                                     |                                               |                                             |                                                                        |                                                        |                                                            |
| 28                        |                                                |                                                      |                                                   |                                            |                                                        |                                               |                                                |                               |                                     |                                               |                                             |                                                                        |                                                        |                                                            |
| 29                        |                                                |                                                      | 1                                                 | !                                          |                                                        |                                               | İ                                              | 1                             |                                     |                                               |                                             |                                                                        | İ                                                      |                                                            |
| 30                        |                                                |                                                      |                                                   |                                            |                                                        |                                               |                                                | l                             |                                     |                                               |                                             |                                                                        |                                                        |                                                            |


| CLEA Software Version 1.071 |                                              |                      |                          | Report generated                                                                                        | 9-Aug-23                                                                                               |                                                                                                                                   |                                                                                                                                   |                                                                                                    | Page 10 of 11                                                                                                                        |  |
|-----------------------------|----------------------------------------------|----------------------|--------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Environment<br>Agency       | Soil-to-water partition coefficient (cm³ g¹) | Vapour pressure (Pa) | Water solubility (mg L¹) | Soli-to-plant concentration factor for green vegetables (mg g² plant DW or FW basis over mg g² DW soil) | Soli-to-plant concentration factor for root vegetables (mg g² plant DW or FW basis over mg g² DW soil) | Soll-to-plant concentration factor for tuber vegetables (mg g <sup>-1</sup> plant DW or FW basis over mg g <sup>-1</sup> DW soll) | Soli-to-plant concentration factor for herbaceous fruit (mg g <sup>-1</sup> plant DW or FW basis over mg g <sup>-1</sup> DW soll) | Soli-to-plant concentration factor for shrub fruit (mg g¹ plant DW or FW basis over mg g¹ DW soll) | Soil-to-plant concentration<br>factor for tree fruit<br>(mg g <sup>-1</sup> plant DW or FW basis<br>over mg g <sup>-1</sup> DW soil) |  |
| 1 Arsenic (C4SL child)      | 5.00E+02                                     | NR                   | 1.25E+06                 | 0.00043 fw                                                                                              | 0.0004 fw                                                                                              | 0.00023 fw                                                                                                                        | 0.00033 fw                                                                                                                        | 0.0002 fw                                                                                          | 0.0011 fw                                                                                                                            |  |
| 2                           |                                              |                      |                          |                                                                                                         |                                                                                                        |                                                                                                                                   |                                                                                                                                   |                                                                                                    | ļ                                                                                                                                    |  |
| 3                           | į                                            |                      |                          |                                                                                                         |                                                                                                        |                                                                                                                                   |                                                                                                                                   |                                                                                                    |                                                                                                                                      |  |
| 4                           | <u> </u>                                     |                      |                          |                                                                                                         |                                                                                                        |                                                                                                                                   |                                                                                                                                   |                                                                                                    |                                                                                                                                      |  |
| 5                           |                                              |                      |                          |                                                                                                         |                                                                                                        |                                                                                                                                   |                                                                                                                                   |                                                                                                    |                                                                                                                                      |  |
| 6                           |                                              |                      |                          |                                                                                                         |                                                                                                        |                                                                                                                                   |                                                                                                                                   |                                                                                                    |                                                                                                                                      |  |
| 7                           |                                              |                      |                          |                                                                                                         |                                                                                                        |                                                                                                                                   |                                                                                                                                   |                                                                                                    |                                                                                                                                      |  |
| 8                           |                                              |                      |                          |                                                                                                         |                                                                                                        |                                                                                                                                   |                                                                                                                                   |                                                                                                    |                                                                                                                                      |  |
| 9                           |                                              |                      |                          |                                                                                                         |                                                                                                        |                                                                                                                                   |                                                                                                                                   |                                                                                                    |                                                                                                                                      |  |
| 10                          | 1                                            |                      |                          |                                                                                                         |                                                                                                        |                                                                                                                                   |                                                                                                                                   |                                                                                                    |                                                                                                                                      |  |
| 11                          |                                              |                      |                          |                                                                                                         |                                                                                                        | İ                                                                                                                                 |                                                                                                                                   |                                                                                                    |                                                                                                                                      |  |
| 12                          |                                              |                      |                          |                                                                                                         |                                                                                                        |                                                                                                                                   |                                                                                                                                   |                                                                                                    |                                                                                                                                      |  |
| 13                          |                                              |                      |                          |                                                                                                         |                                                                                                        | -                                                                                                                                 |                                                                                                                                   |                                                                                                    |                                                                                                                                      |  |
| 14                          |                                              |                      |                          |                                                                                                         |                                                                                                        |                                                                                                                                   |                                                                                                                                   |                                                                                                    |                                                                                                                                      |  |
| 15                          |                                              |                      |                          |                                                                                                         |                                                                                                        |                                                                                                                                   |                                                                                                                                   |                                                                                                    |                                                                                                                                      |  |
| 16                          |                                              |                      |                          |                                                                                                         |                                                                                                        |                                                                                                                                   |                                                                                                                                   |                                                                                                    |                                                                                                                                      |  |
| 17                          | <u> </u>                                     |                      |                          |                                                                                                         |                                                                                                        | ļ                                                                                                                                 |                                                                                                                                   | ļ                                                                                                  |                                                                                                                                      |  |
| 18                          |                                              |                      |                          |                                                                                                         |                                                                                                        |                                                                                                                                   |                                                                                                                                   |                                                                                                    |                                                                                                                                      |  |
| 19                          | <u> </u>                                     |                      |                          |                                                                                                         |                                                                                                        |                                                                                                                                   |                                                                                                                                   |                                                                                                    |                                                                                                                                      |  |
| 20                          | !                                            |                      | !                        | <u> </u>                                                                                                | !                                                                                                      | <u> </u>                                                                                                                          | ļ                                                                                                                                 | <u> </u>                                                                                           |                                                                                                                                      |  |

| CLEA Software Version 1.0 | 71                                                                     |                      |                          | Report generated                                                                                                 | 9-Aug-23                                                                                                                         |                                                                                                                                            |                                                                                                                                            |                                                                                                                              | Page 11 of 11                                                                                                               |   |
|---------------------------|------------------------------------------------------------------------|----------------------|--------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---|
| Environment<br>Agency     | Soli-to-water partition coefficient (cm <sup>3</sup> g <sup>-1</sup> ) | Vapour pressure (Pa) | Water solubility (mg L¹) | Soli-to-plant concentration<br>factor for green vegetables (mg<br>g² plant DW or FW basis over<br>mg g² DW soil) | Soil-to-plant concentration factor for root vegetables (mg g <sup>-1</sup> plant DW or FW basis over mg g <sup>-1</sup> DW soil) | Soli-to-plant concentration<br>factor for tuber vegetables<br>(mg g <sup>-1</sup> plant DW or FW basis<br>over mg g <sup>-1</sup> DW soit) | Soli-to-plant concentration<br>factor for herbaceous fruit<br>(mg g <sup>-1</sup> plant DW or FW basis<br>over mg g <sup>-1</sup> DW soil) | Soli-to-plant concentration factor for shrub fruit (mg g <sup>-1</sup> plant DW or FW basis over mg g <sup>-1</sup> DW soil) | Soli-to-plant concentration factor for tree fruit (mg g <sup>-1</sup> plant DW or FW basis over mg g <sup>-1</sup> DW soil) |   |
| 21                        |                                                                        |                      |                          |                                                                                                                  |                                                                                                                                  |                                                                                                                                            |                                                                                                                                            |                                                                                                                              |                                                                                                                             |   |
| <u>22</u><br>23           | <u> </u>                                                               | -                    |                          |                                                                                                                  |                                                                                                                                  | <u> </u>                                                                                                                                   |                                                                                                                                            |                                                                                                                              |                                                                                                                             |   |
| 24                        |                                                                        |                      |                          |                                                                                                                  |                                                                                                                                  |                                                                                                                                            |                                                                                                                                            |                                                                                                                              |                                                                                                                             |   |
| 25                        |                                                                        |                      |                          |                                                                                                                  |                                                                                                                                  |                                                                                                                                            |                                                                                                                                            |                                                                                                                              |                                                                                                                             | • |
| 26                        | ļ                                                                      | ļ                    |                          |                                                                                                                  |                                                                                                                                  |                                                                                                                                            |                                                                                                                                            |                                                                                                                              |                                                                                                                             |   |
| 27                        |                                                                        | 1                    |                          |                                                                                                                  |                                                                                                                                  |                                                                                                                                            |                                                                                                                                            |                                                                                                                              |                                                                                                                             | ] |
| 28                        |                                                                        |                      |                          |                                                                                                                  |                                                                                                                                  |                                                                                                                                            |                                                                                                                                            |                                                                                                                              |                                                                                                                             |   |
| 29                        |                                                                        |                      |                          |                                                                                                                  |                                                                                                                                  |                                                                                                                                            |                                                                                                                                            |                                                                                                                              |                                                                                                                             |   |
| 30                        | 1                                                                      | i                    | i                        | į                                                                                                                | İ                                                                                                                                | İ                                                                                                                                          |                                                                                                                                            | į                                                                                                                            |                                                                                                                             | İ |



# The Phased Approach to Land Contamination

As set out in Contaminated Land Report 11 - Model Procedures for the Management of Land Contamination. Environment Agency Guidelines













