$BODGRID^{TM}$

SDI/BG Issue 1 Jan 2023

	CONTENTS
Page	Description
	INSTALLATION GUIDANCE
2	GROUND PREPARATION, STORAGE, HANDLING & DEPLOYMENT
3	TRIMMING, DAMAGE REPAIR AND PLACEMENT OF GRANULAR FILL
	DESIGN GUIDANCE
4	INTRODUCTION
5-6	MINIMUM SUBBASE THICKNESS
7	TYPICAL SOIL TYPES, PROPERTIES AND ESTIMATING GROUND STRENGTH
8	DESIGN NOTES
	MATERIAL SPECIFICATION GUIDANCE
9	TERRAM PRODUCTS
10	TYPES OF GRANULAR FILL

The information contained herein is, to the best of our knowledge, accurate in all material respects. However, since the circumstances and conditions in which such information and the products mentioned herein can be used may vary and are beyond our control, no representation or warranty, express or implied, of any nature whatsoever is or will be made and no responsibility or liability is or will be accepted by us, any of our affiliates or our or their respective directors, officers, employees or agents in relation to the accuracy or completeness or use of the information contained herein or of any such products and any such liability is hereby expressly excluded to the maximum extent permitted by law.

^{*} Images courtesy of Freudenberg Performance Materials

SDI/BG Issue 1 Jan 2023

INSTALLATION

- 1. Excavate ground to the required formation level, clearing the area of any large angular objects such as stones and tree stumps, while ruts and sharp undulations in excess of 100mm should be levelled. Underground service pipes and cables should be installed beforehand to avoid excavation and damage to the Terram layers.
- 2. Terram is supplied rolled onto cardboard tubes and wrapped in polyethylene sheeting to protect against excessive UV (ultra violet) radiation exposure from sunlight. The rolls can be stacked up to 4 rows high on a dry, clean, stable and level surface. Mechanical lifting equipment such as a spreader bar can be used to deploy rolls of Terram. The edges of Terram Bodgrid can be sharp; protective safety gloves should be worn during any manual handling to prevent injury. Terram should be installed and covered with fill as soon as possible but less than 30 days once the outer packaging has been removed.
- 3. Unroll Terram Bodgrid geocomposite (white geotextile below, black geogrid above) onto the prepared subgrade removing any wrinkles or folds. Terram can be held in place with a small pile of fill material every 3m with a minimum of 300mm overlap at any joints. Greater overlaps are needed for softer soils (CBR < 5%) and mechanical joints such as stitching may be more economical in very soft ground. See design section & Terram jointing guide for more details.

Page 2

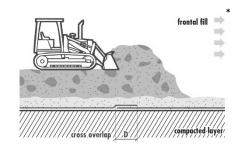
* Images courtesy of Freudenberg Performance Materials

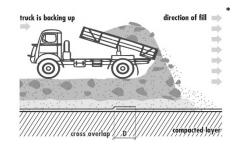
How else can we help? Get in touch with us

BODGRIDTM

Specification, Design & Installation Guide

SDI/BG Issue 1 Jan 2023

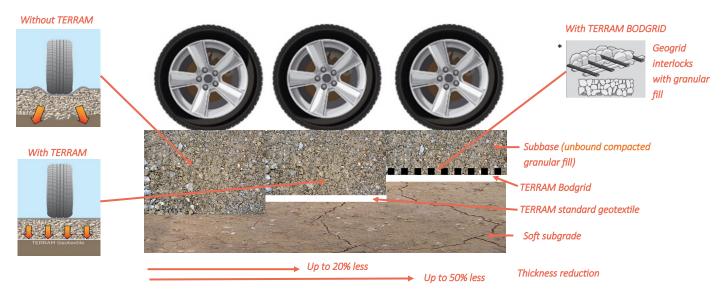

INSTALLATION continued


- 4. Terram Bodgrid can be cut using sharp shears or a rotary disc cutter/ angle grinder. Rolls can be trimmed before installation with a cut-off saw but suitable safety precautions should be taken including wearing personal protective equipment.
- 5. Prior to placement of the fill material, Terram should be inspected for any damage and can be repaired with a patch extending a minimum of 500 mm beyond the edge of the damaged area and the outside edge of the patch.
- Vehicles must not be allowed to run directly on exposed Terram. Con-6. struction vehicles should be restricted to areas which have already been covered with aggregate compacted to a minimum depth of 200mm.
- 7. The fill material should generally be a well-graded granular aggregate such as DoT type 1 matched to the geogrid aperture size to achieve optimum granular interlock. #
- 8. The granular fill material should be installed and compacted in a front spreading method; bladed forward onto the Terram layer and graded down to the required uncompacted depth. It is typical practise to install fill material in layers which are compacted to 150mm using a vibratory roller. On soft subgrades it is prudent to place at least 300mm of lightly compacted material in one lift (500mm on exceptionally soft soils) before overlaying with a thinner layer of well compacted material.

For further guidance regarding subbase materials see design notes and material specification sections.

* Images courtesy of Freudenberg Performance Materials

How else can we help? Get in touch with us



SDI/BG Issue 1 Jan 2023

DESIGN—INTRODUCTION

Terram geotextiles have been used within worldwide civil engineering projects for over 50 years to separate subgrade and subbase layers substantially increasing the life time of the pavement by maintaining the integrity of the unbound granular fill layer. Terram Bodgrid is a 3 in 1 stiff biaxial geogrid and nonwoven geotextile geocomposite providing separation, filtration and reinforcement functions reducing subbase thickness and extending the design life of the pavement foundation. The stiff biaxial geogrid effectively interlocks with the compacted granular fill increasing bearing capacity and shear resistance. The thickness and type of granular material used to form the subbase will depend on a number of factors including the following:-

- 1. Strength of the underlying ground (subgrade) generally measured in CBR* %
- 2. Type of underlying ground (subgrade) E.g. clay/silt/sand/gravel/rock
- Frequency and intensity of the construction traffic converted to ESA (Equivalent Standard Axles) 3.
- 4. Water permeability of the underlying ground (subgrade) k measured in m/s
- 5. Presence of ground water and depth of water table below formation level
- 6. Finished surface; paved/unpaved and/or permeable/impermeable

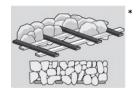

A comprehensive ground investigation survey with suitable testing is highly recommended to ensure the subbase is suitably strong and sufficiently durable for the anticipated use. This design guide can be used for estimating ground conditions and assist with producing preliminary pavement foundation designs but it is not a substitute for site specific ground investigation works and a detailed pavement design by a suitably qualified civil engineer.

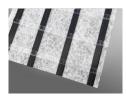
* Images courtesy of Freudenberg Performance Materials

Page 4

How else can we help? Get in touch with us

^{*}California Bearing Ratio test





SDI/BG Issue 1 Jan 2023

DESIGN continued

TABLE 1 MINIMUM SUBBASE THICKNESS (Tx) WITH BODGRID <60kN (6Tn) axle

TERRAM Bodgrid

SUBGRADE CBR* %	Thickness (mm) #	Bodgrid	Overlap (mm)
1	300	GC30	600
2	175	GC30	500
3	150	GC30	450
4	150	GC30	400
5+	150	GC30	300

TABLE 2 MINIMUM SUBBASE THICKNESS (Tx) WITHOUT BODGRID <60kN (6Tn) axle

geotextile

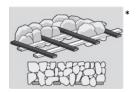
SUBGRADE CBR* %	Thickness (mm) #	Standard geotextile	Overlap (mm)
1	400	T2000	1000
2	200	T1500	800
3	175	T1000	600
4	175	T1000	450
5+	150	T1000	300

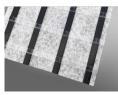
If construction traffic axle load exceeds 60kN (6 Tonnes) and/or the pavement is used as a site access haul road the minimum subbase thickness over TERRAM should be 200mm.

Page 5

How else can we help? Get in touch with us

^{*} California Bearing Ratio test





SDI/BG Issue 1 Jan 2023

DESIGN continued

TABLE 3 MINIMUM SUBBASE THICKNESS (Tx) WITH BODGRID <100kN (10Tn)

TERRAM Bodgrid

SUBGRADE CBR* %	Thickness (mm)	Bodgrid	Overlap (mm)
1	400	GC30	600
2	250	GC30	500
3	250	GC30	450
4	200	GC30	400
5+	200	GC30	300

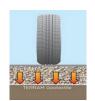


TABLE 4 MINIMUM SUBBASE THICKNESS (Tx) WITHOUT BODGRID <100kN axle (10Tn)

SUBGRADE CBR* %	Thickness (mm) #	Standard geotextile	Overlap (mm)
1	600	T2000	1000
2	350	T1500	800
3	300	T1000	600
4	200	T1000	450
5+	200	T1000	300

Page 6

How else can we help? Get in touch with us

^{*} California Bearing Ratio test

SDI/BG Issue 1 Jan 2023

DESIGN continued

TABLE 5 FIELD GUIDANCE FOR ESTIMATING SUBGRADE STRENGTH

	Indica	ator		St	rength
Consistency	Tactile (feel)	Visual (observation)	Mechanical (test) SPT	CBR %	Cu Kn/SQM
Very Soft	Hand sample squeezes through fingers	Person standing will sink >75mm	<2	<1	<25
Soft	Easily moulded by finger pressure	Person walking sinks 50-70mm	2-4	~1	~25
Medium	Moulded by moderate finger pressure	Person walking sinks 25mm	4-8	1-2	25-40
Firm	Moulded by strong finger pressure	Utility truck ruts 10-25mm	8-15	2-4	40-75
Stiff	Cannot be moulded but can be indented by thumb	Loaded construction vehicle ruts by 25mm	15-30	4-6	75-150

TABLE 6 TYPICAL SOIL TYPES AND PROPERTIES

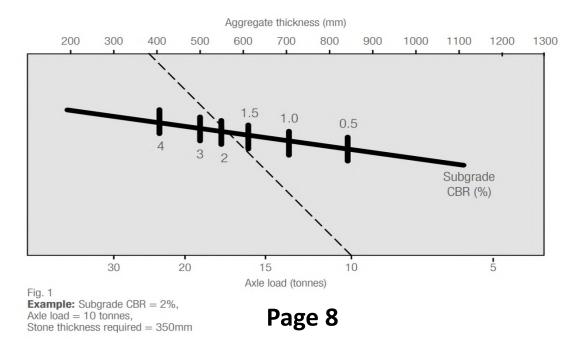
Soil Type	Plasticity Index %	CBR% Depti ter table be mation i >600mm	low for-	Typical range for coefficient of permeability K (m/s)	Infiltration
	70	2	1		
Hoover alove	60	2	1.5	10 ⁻¹⁰ to 10 ⁻⁸	No
Heavy clay	50	2.5	2	10 10 10	INO
	40	3	2		
Silty clay	30	5	3	10 ⁻⁹ to 10 ⁻⁸	No
Sandy clay	20	6	4	10 ⁻⁹ to 10 ⁻⁶	Partial
Salidy Clay	10	7	5	10 (010	raitiai
Silt	Non-plastic	2	1	10 ⁻⁸ to 10 ⁻⁶	Partial
Poorly grad- ed sand	Non-plastic	20	10	10 ⁻⁷ to 10 ⁻⁶	Partial
Well graded sand	Non-plastic	40	15	10 ⁻⁶ to 10 ⁻⁴	Total
Well graded sandy gravel	Non-plastic	60	20	10 ⁻⁵ to 10 ⁻³	Total

This field guide is provided as an aid to assessing the mechanical stabilisation requirements in commonly encountered site conditions. TERRAM accepts no responsibility for any loss or damage resulting from the use of this guide. Page 7

SANDY GRAVEL

How else can we help? Get in touch with us

BODGRID[™]



Specification, Design & Installation Guide

SDI/BG Issue 1 Jan 2023

DESIGN NOTES

- 1. Minimum subbase thickness (Tx) can be selected from tables 1-4 with ground strength and permeability estimated from tables 5 and 6 in the absence of any site specific ground investigation report.
- 2. Minimum subbase thickness (Tx) are shown for preliminary pavement foundation designs and estimating purposes only, a detailed site specific design should be undertaken for construction.
- Minimum subbase thickness (Tx) are based upon a maximum rut depth at the surface of 100mm, aggregate delivered 3. by trucks with rubber road tyres with an overall weight of 20Tn, a maximum axle load of 10Tn and up to 1,000 ESA's of construction traffic required to build the subbase/pavement foundation only.
- 4. Minimum subbase thickness (Tx) is based upon a well graded compactable angular granular aggregate such as DoT type 1 SHW (Specification for Highways Works) clause 803. To ensure efficient granular interlock with the apertures of Terram Bodgrid, the aggregate fill should have 50% less than 40mm maximum stone size and no more than 15% greater than 80mm. Other granular fill materials may be used (see table 8) but subbase thickness must be increased to allow for a reduction in shear strength.
- 5. If construction traffic axle load exceeds 100kN (10 Tonnes) an additional static bearing capacity check will be required to confirm if the subbase thickness is sufficient. The nomogram shown below can be used to check initial layer thickness of the subbase (unbound layer) for both unsurfaced and paved roads for axle loads up to 30 tonnes when using a Terram standard geotextile separation layer. For CBR values less than 3% this thickness can be reduced by up to 40% by specifying a layer of Terram Bodgrid. Contact Terram for further advice on subbase layer thickness if construction traffic exceeds 1,000 ESA and axle loads over 100kN (10 Tonnes).
- 6. The total subbase layer thickness (Tx) must be increased if the Terram Bodgrid or standard geotextile layer is omitted.
- 7. A Terram standard geotextile separation layer should be specified in accordance with BS8661:2019 with lower subgrade strength (CBR value) requiring a more robust grade.

How else can we help? Get in touch with us

SDI/TP/GF Issue 1 Jan 2023

MATERIAL SPECIFICATIONS

TABLE 7 Terram Bodgrid and standard geotextiles

	TERRAM BODGRIE			
Grades	GC30	GC40		
Tensile strength kN BS EN ISO 10319	30	40		
Tensile elongation % BS EN ISO 10319	7	7		
Min. radial stiffness kN/m at 0.5% strain	725 975			
Min. radial stiffness kN/ m at 2.0% strain	500 645			
Geogrid nominal aper- ture size mm	40 x 40			
Geogrid	Stiff pol	ypropylene strips		
Geogrid joints	La	aser welded		
Standard roll dimensions	4.8 m x 50 m long			
Geogrid and geotextile lamination method	The	rmally bonded		
Material	Pc	olypropylene		
Geotextile	Nonwoven, mechanically and thermally bonded			

TERRAN	1 nonwoven standard	geotextile	
Grades	T1000	T2000	T3000
BS8661 Classification	1	2	3
Tensile strength kN/m	8.0	12.5	14.5
Elongation %	50	50	50
CBR puncture re- sistance kN	1.5	2.25	2.75
Standard roll dimensions	4.5m wide x 100m long		
Material		Polyolefin	

Page 9

How else can we help? Get in touch with us

$BODGRID^{TM}$

Specification, Design & Installation Guide

SDI/TP/GF Issue 1 Jan 2023

MATERIAL SPECIFICATIONS

TABLE 8 typical granular fills (for subbase construction)

Description	Well graded granular DoT Type 1
Aggregate size range	0 to 63mm (<9% fines)
Grading to BS EN 13242	Gc 75/32 1/31.5 (SHW Clause 803)
Tunical aggregate sources	Crushed quarried rock E.g. Limestone, Granite and Sandstone.
Typical aggregate sources	Crushed concrete, slag, recycled aggregates.
Description	Well graded granular DoT Type 2
Aggregate size range	0 to 63mm (<9% fines)
Grading to BS EN 13242	Gc 75/35 1/31.5 (SHW Clause 804)
Typical aggregate sources	Crushed rock, concrete, slag, recycled aggregates, natural
71 00 0	sand and crushed gravel
Description	Permeable open graded granular DoT Type 3 (Type 1x)
Aggregate size range	0 to 80mm (<5% fines)
Grading to BS EN 13242	Gc 80/26 1/40 (SHW Clause 805)
Typical aggregate sources	Crushed rock, blast furnace slag and concrete
Description	Asphalt Arisings DoT Type 4
Description Aggregate size range	Asphalt Arisings DoT Type 4 0 to 63mm (<9% fines)
Aggregate size range	0 to 63mm (<9% fines)
Aggregate size range Grading to BS EN 13242	0 to 63mm (<9% fines) Gc 75/32 1/31.5 (SHW Clause 807) Recycled aggregates; asphalt arisings (road planings), crushed
Aggregate size range Grading to BS EN 13242	0 to 63mm (<9% fines) Gc 75/32 1/31.5 (SHW Clause 807) Recycled aggregates; asphalt arisings (road planings), crushed
Aggregate size range Grading to BS EN 13242 Typical aggregate sources	0 to 63mm (<9% fines) Gc 75/32 1/31.5 (SHW Clause 807) Recycled aggregates; asphalt arisings (road planings), crushed rock, crushed slag, crushed concrete
Aggregate size range Grading to BS EN 13242 Typical aggregate sources Description	0 to 63mm (<9% fines) Gc 75/32 1/31.5 (SHW Clause 807) Recycled aggregates; asphalt arisings (road planings), crushed rock, crushed slag, crushed concrete Clean drainage stone, course graded aggregate type 4/20

Other granular fill materials such as 50mm crusher run and 40mm scalpings may be suitable for subbase construction but an increase in thickness will be required due to their poorer grading distribution and reduced load-bearing capacity compared to a well graded material like DoT Type 1.

UNCOMPACTED

COMPACTED

Type 1

Type 2

Type 3 (1x) - permeable

Type 4 - Asphalt arisings

CGA type 4/20 (Clean stone) - permeable


UNCOMPACTED

COMPACTED

Page 10

How else can we help? Get in touch with us

