

REPORT NO: D9128

GEOENVIRONMENTAL APPRAISAL FOR LAND AT SHOTTON COMMUNITY CENTRE PREPARED FOR: SHOTTON PARISH COUNCIL

• FOUNDATION HOUSE • ST. JOHN'S ROAD • MEADOWFIELD • DURHAM • DH7 8TZ

• TEL: 0191 378 3151 • FAX: 0191 378 3157

Contract No.	D9128
Job Name	Shotton Community Centre

REPORT REVISIONS

Revision No.	Issue Date	Details
D9128/01	06/12/2018	

VERIFICATION

Revision No.	Issue Date		Written By	Checked By	Verified By
D9128/01	06/12/2018	Initials	RS	AIL	AIL
		Signature	her Schold	Azerthanny	Aberthanny

SHOTTON COMMUNITY CENTRE – EXECUTIVE SUMMARY

SUMMARY OF GEOENVIRONMENTAL ISSUES

Issue	Remarks
Grid Reference	439522, 540536
Proposed Development	New community centre.
Former Uses	Football ground, community centre and public open space.
Present Uses	Community centre, MUGA sports area and public open space.
Made Ground	Made ground, including reworked topsoil, encountered in all three boreholes drilled to between 0.7 and 1.6m bgl.
Natural Ground	Initially a soft slightly gravelly slightly clay (possibly a relict topsoil) to 2.0m bgl underlain by an initially soft, becoming firm and stiff, slightly sandy slightly gravelly clay.
Contamination	No significant chemical contamination identified during this investigation. However, ashy made ground has been identified and found to be potentially combustible.
Hazardous Gas	Not considered to be a significant risk from ground gas to the proposed development.
Mining & Quarrying	The site is not considered to be at risk of potential instability from shallow mineworkings underlying the site. No evidence has been found to suggest that the site has been affected by quarrying.
Foundation Solution	Trenchfill foundations.
Groundwater & Excavations	No major groundwater flows encountered. No buried obstructions were encountered during the works, however, the site has been developed previously and buried obstructions may be present elsewhere on the site.
Remediation and Preparatory Works	Where buried services representing a potential heat source may come into contact with potentially combustible materials, they should be placed in oversized trenches backfilled with clean, inert material. Within proposed areas of soft landscaping a cover layer of 1.0m comprising topsoil and subsoil should be placed to break any pathways between potential surface heat sources and the potentially combustible ashy made ground. Remedial measures are not normally required beneath areas of hardstanding or new buildings.
Recommendations for Further SI Works	None identified.

The executive summary is intended as a synopsis only. Further detail and limitations of the assessment is provided within the main body of the Report

CONTENTS

8	8.1 8.2 8.3 8.4 8.5 8.6	GROUNDWATER HYDROCARBON CONTAMINATION. CONCRETE IN AGGRESSIVE GROUND MICAL TESTING RESULTS. SELECTION OF CHEMICAL TESTING. GENERIC ASSESSMENT CRITERIA FOR INORGANIC CONTAMINATION. MADE GROUND (INORGANIC CONTAMINANTS). CALORIFIC VALUE TESTING. ASBESTOS TESTING. ORGANIC CONTAMINATION ESSMENT OF CONTAMINATION RISKS. SUMMARY OF CONTAMINATION SOURCES. HAZARD ASSESSMENT.	. 6 . 6 . 6 . 7 . 7 . 8 . 8 . 8 . 8 . 8 . 9
-	7.8 7.9 CHE 8.1 8.2 8.3 8.4 8.5 8.6 ASS 9.1	HYDROCARBON CONTAMINATION CONCRETE IN AGGRESSIVE GROUND MICAL TESTING RESULTS. SELECTION OF CHEMICAL TESTING GENERIC ASSESSMENT CRITERIA FOR INORGANIC CONTAMINATION MADE GROUND (INORGANIC CONTAMINANTS) CALORIFIC VALUE TESTING ASBESTOS TESTING ORGANIC CONTAMINATION ESSMENT OF CONTAMINATION RISKS SUMMARY OF CONTAMINATION SOURCES.	. 6 . 6 . 6 . 7 . 7 . 8 . 8 . 8 . 8 . 8 . 9
-	7.8 7.9 CHE 8.1 8.2 8.3 8.4 8.5 8.6	HYDROCARBON CONTAMINATION CONCRETE IN AGGRESSIVE GROUND MICAL TESTING RESULTS SELECTION OF CHEMICAL TESTING GENERIC ASSESSMENT CRITERIA FOR INORGANIC CONTAMINATION MADE GROUND (INORGANIC CONTAMINANTS) CALORIFIC VALUE TESTING ASBESTOS TESTING ORGANIC CONTAMINATION	. 6 . 6 . 6 . 6 . 7 . 7 . 8 . 8 . 8
8	7.8 7.9 CHE 8.1 8.2 8.3 8.4 8.5	HYDROCARBON CONTAMINATION CONCRETE IN AGGRESSIVE GROUND MICAL TESTING RESULTS SELECTION OF CHEMICAL TESTING GENERIC ASSESSMENT CRITERIA FOR INORGANIC CONTAMINATION MADE GROUND (INORGANIC CONTAMINANTS) CALORIFIC VALUE TESTING ASBESTOS TESTING	. 6 . 6 . 6 . 6 . 7 . 7 . 8 . 8
8	7.8 7.9 CHE 8.1 8.2 8.3 8.4	HYDROCARBON CONTAMINATION CONCRETE IN AGGRESSIVE GROUND MICAL TESTING RESULTS SELECTION OF CHEMICAL TESTING GENERIC ASSESSMENT CRITERIA FOR INORGANIC CONTAMINATION MADE GROUND (INORGANIC CONTAMINANTS) CALORIFIC VALUE TESTING	.6 .6 .6 .6 .7 .7 .8
8	7.8 7.9 CHE 8.1 8.2 8.3	HYDROCARBON CONTAMINATION CONCRETE IN AGGRESSIVE GROUND MICAL TESTING RESULTS SELECTION OF CHEMICAL TESTING GENERIC ASSESSMENT CRITERIA FOR INORGANIC CONTAMINATION MADE GROUND (INORGANIC CONTAMINANTS)	.6 .6 .6 .6 .7 .7
8	7.8 7.9 CHE 8.1 8.2	HYDROCARBON CONTAMINATION CONCRETE IN AGGRESSIVE GROUND MICAL TESTING RESULTS SELECTION OF CHEMICAL TESTING GENERIC ASSESSMENT CRITERIA FOR INORGANIC CONTAMINATION	.6 .6 .6 .6 .7
8	7.8 7.9 CHE 8.1	HYDROCARBON CONTAMINATION CONCRETE IN AGGRESSIVE GROUND MICAL TESTING RESULTS SELECTION OF CHEMICAL TESTING	.6 .6 .6 .6
8	7.8 7.9 CHE	HYDROCARBON CONTAMINATION CONCRETE IN AGGRESSIVE GROUND MICAL TESTING RESULTS	.6 .6 .6 .6
8	7.8 7.9	HYDROCARBON CONTAMINATION CONCRETE IN AGGRESSIVE GROUND	.6 .6 .6
	7.8	HYDROCARBON CONTAMINATION	. 6 . 6
			. 6
	7.7	GROUNDWATER	
	-		. 6
	7.6	ROCK HEAD	
	7.5	NATURAL SOILS	
	7.3 7.4	BURIED OBSTRUCTIONS	
	7.2 7.3	MADE GROUND	
	7.1 7.2	REWORKED TOPSOIL	
7		OUND CONDITIONS & MATERIAL PROPERTIES GENERAL	
_			
	6.4	GEOTECHNICAL TESTING	
	6.2 6.3	CHEMICAL TESTING	
	6.1 6.2	SUMMARY OF INVESTIGATION	
6	6.1	CONCEPTUAL SITE MODEL	
-		WORKS AND LABORATORY TESTING	
5	PRF	VIOUS INVESTIGATION	.4
	4.7	RADON GAS	. 4
	4.6	LANDFILLS & OTHER POTENTIAL GAS SOURCES	
	4.5	HYDROGEOLOGY	
	4.4	HYDROLOGY	
	4.3	MINING & QUARRYING	
	4.2	GEOLOGY	
4	4 .1	INFORMATION SOURCES	
4		IRONMENTAL SETTING	
3	SITE	HISTORY	.2
	2.3	EVIDENCE OF PRESENT AND FORMER LAND USE	. 2
	2.2	TOPOGRAPHY AND SITE FEATURES	. 1
	2.1	GENERAL	. 1
	SITE	RECONNAISSANCE	.1
2	1.1	SCOPE OF INVESTIGATION	. 1
2		RODUCTION	

10.1	INTRODUCTION	9
10.2	MINING	9
10.3	FOUNDATIONS	10
10.4	FLOOR SLABS	10
10.5	BURIED OBSTRUCTIONS	10
10.6	EXCAVATIONS	10

LIST OF APPENDICES

APPENDIX A -	Drawings
Drawing Number	Drawing Title
D9128/01	Site Location Plan
D9128/02	Exploratory Hole Location Plan
APPENDIX B -	Photographic Survey
APPENDIX C -	Desk Study Information (dated 2015)
APPENDIX D -	Exploratory Hole Records
APPENDIX E -	Chemical Testing Results
APPENDIX F -	Geotechnical Testing Results
APPENDIX G -	Dunelm Conditions of Offer, Notes on Limitations & Basis for Contract

1 INTRODUCTION

1.1 SCOPE OF INVESTIGATION

Dunelm Geotechnical and Environmental Limited (Dunelm) were instructed by d3 Associates Ltd, on behalf of Shotton Parish Council, to undertake a Geoenvironmental Appraisal of land at Shotton Community Centre in Shotton Colliery, County Durham.

It is proposed to develop the site with a new community centre.

Dunelm have previously produced a Geoenvironmental Appraisal for neighbouring land at Shotton Community Centre (ref. D6742, dated 15th April 2015). Desk study information contained within this report has been reviewed as part of these works and is included in Appendix C to this report.

The objectives of this exploratory phase of investigation were as follows:

- To determine the land use history of the site from an inspection of available Ordnance Survey (OS) plans for neighbouring land included in a previous Geoenvironmental Appraisal report.
- To determine the environmental setting of the site from available sources.
- To determine whether past mining may have had an influence on the site.
- To assess risks from ground contamination.
- To provide recommendations for foundations.

This report may be regarded as providing a Preliminary Risk Assessment and Generic Quantitative Risk Assessment in accordance with the Environment Agency's guidance document Model Procedures for the Management of Land Contamination (Contaminated Land Report 11, 2004).

Conditions of offer and notes on limitations relevant to all Dunelm geoenvironmental investigations are described in Appendix G and should be read in conjunction with this report.

2 SITE RECONNAISSANCE

2.1 GENERAL

The site is located at Ordnance Survey Grid Reference 439522, 540536. The site is located to the north of Bridge Road in Shotton Colliery, County Durham, approximately 12km to the east of Durham city centre. The site location is shown on Drawing No. D9128/01 in Appendix A to this report.

A site inspection was undertaken on 19th November 2018 and site photographs are presented in Appendix B. Existing site features are shown on Drawing No. D9128/02 presented in Appendix A to this report.

2.2 TOPOGRAPHY AND SITE FEATURES

The site is currently an open area of land adjacent to the existing Shotton Colliery Community Centre and a MUGA sports area.

The site cover comprises tarmac hardstanding in and around the MUGA sports area, and grassed public open space areas surrounding this.

The site has no clear physical boundaries, however, the existing community centre lies to the east of the area investigated. Residential properties are present to the south of the proposed site. Public open space is present to the west, c.0.5m lower than the area investigated, and the MUGA sports area is present to the north.

Several mature trees and hedgerows are present immediately to the south of the site.

2.3 EVIDENCE OF PRESENT AND FORMER LAND USE

The site is presently part of a MUGA sports area, and grassed public open space area.

There was no evidence of fly-tipping at the time of the Dunelm investigation.

3 SITE HISTORY

In order to determine the history of the site, extracts from historical Ordnance Survey (OS) plans from the previous Geoenvironmental Appraisal undertaken by Dunelm in 2015 have been examined; copies of these plans are presented in Appendix C to this report.

A summary of the history of the on-site and off-site features is presented below for the Community Centre site. It is not the intention of this report to describe in detail all the changes that have occurred on or adjacent to the site, only those pertinent to the site.

SUMMARY OF HISTORICAL INFORMATION

OS Map Edition	On-site Features	Off-site Features
1857	The site comprises agricultural fields.	Railway line extends north-south 50m to the west, with a branch line 100m to the south. A pond is mapped 200m to the east. Old clay pit present 480m to the east. Shotton Brick and Tile works present 550m to the east. Shotton Colliery Pit present 700m to the north.
1897	No significant change.	Shotton Wagonway extends east-west 95m to the south.
1919	A football ground is present in the northern area of the site, with a small group of buildings present in the southern area.	Residential housing developed 40m to the north. Shotton Colliery Brick works present 235m to the southeast.
1939	Football ground and buildings are no longer shown on the site.	Further residential development to the east and southeast of the site. Bridge Road developed to the south. Further residential development beyond the railway line to the west. Brick works and colliery to the south extended with abundant spoil heaps. Pond no longer mapped to the east.
1958	No significant change.	A row of terraced houses developed immediately to the south.
1966 - 1967	No significant change.	Colliery to the north appears to have been reclaimed. Areas of colliery and brick works to the south appear to have been reclaimed.
1974	Building present in the east in the location of the current Community Centre.	A depot is present to the northeast. Colliery and brick works no longer mapped to the south east. Railway to the south no longer mapped.
1981	Building in the east labelled as a Community Centre. Layout as per current layout. Rectangular feature present in the west (possibly a sports area).	Further general residential development in the areas surrounding the site. Railway to the west mapped as dismantled.
1985	Building in the east still labelled as a Community Centre.	Railway to the west no longer mapped.
1987	No significant change.	No significant change.
1993	No significant change.	No significant change.
2002	No significant change.	No significant change.
2010	No significant change.	No significant change.
2014	No significant change.	No significant change.

In summary, the site has remained unoccupied until c.1919 when a football ground and a group of small buildings were developed. These remained until c.1974 when the existing community centre was developed. The surrounding area has been predominantly residential, although a colliery and brickworks were present 235m to the south.

4 ENVIRONMENTAL SETTING

4.1 **INFORMATION SOURCES**

The environmental setting of the site was determined through reference to the following:

- British Geological Survey (BGS) 1: 50,000 scale sheet No. 27 Durham.
- British Geological Survey (BGS) 1: 10,560 scale sheet NZ34SE.
- Coal Mining Report from David Bellis Associates (based on data obtained from the Coal Authority).
- Previous Groundsure Report (including historical map extracts) dated 2015.
- BRE Publication BR211 Radon: Guidance on Protective Measures for New Dwellings.

4.2 GEOLOGY

The site is shown to be underlain by drift deposits comprising glacial clay.

The solid geology underlying the site comprises Permo-Triassic Middle Magnesian Limestone strata, overlying Carboniferous Middle Coal Measures strata.

The geological plans show the Bottom Ryhope Little coal seam to outcrop in the northern area of the site, however, this is recorded as thin and will be overlain by Magnesian Limestone strata, and therefore, potential unrecorded workings in this seam are not considered to pose a significant risk to the proposed development.

No faults are shown in the vicinity of the site.

There are no existing BGS borehole records located in the vicinity of the site.

No significant ground hazards have been identified by the British Geological Survey as reported in the Groundsure Report.

4.3 MINING & QUARRYING

A mining report commissioned for the investigation of neighbouring land by Dunelm in 2015 indicates that the site may be underlain by workings in six coal seams, the shallowest being the Main coal seam at a depth of approximately 222m below ground level.

The mining report indicates that the site may be affected by unrecorded workings, however, potential workings are likely to be at significant depth beneath the Magnesian Limestone, and if present, are not considered to pose a significant risk to the proposed development.

There are no recorded mine entries within 20m of the site.

No evidence has been found to suggest that the site itself has been affected by quarrying, although historical plans show that brick and tile works and a colliery have previously existed in the vicinity of the site.

4.4 HYDROLOGY

The nearest surface water feature is 56m west of the site; this is assumed to be an un-named drain associated with the historical railway line.

The Groundsure Report indicates that there are no licensed surface water abstractions within 2km of the site.

There are no recorded discharge consents within 500m of the site.

There are no recorded pollution incidents within 400m of the site.

The site is not recorded as being situated within a zone of flooding.

4.5 HYDROGEOLOGY

Using the Environment Agency's Policy and Practice for the Protection of Groundwater the solid geology beneath the site is classified as a Principal Aquifer. Principal aquifers are highly permeable formations that are able to support large abstractions for public supply and other purposes.

The site lies within Zone 3 (Total Catchment) of a groundwater Source Protection Zone.

There are no recorded groundwater abstractions within 2km of the site.

4.6 LANDFILLS & OTHER POTENTIAL GAS SOURCES

The Groundsure Report indicates that there are no recorded landfill sites located within 450m of the site.

Historical plans indicate that a pond located 200m to the east of the site was backfilled prior to 1939. Furthermore, a brickworks and colliery with associated areas of spoil was historically present within 250m of the site. Although these features represent potential sources of ground gas, the likelihood of the proposed development being affected by ground gas is considered to be low.

4.7 RADON GAS

In accordance with the procedure described in BRE Publication BR211 *Radon: Guidance on Protective Measures for New Dwellings*, no radon protection measures are required for new buildings on the site.

5 PREVIOUS INVESTIGATION

Dunelm have previously undertaken a geoenvironmental appraisal elsewhere on the Community Centre site in 2015, which comprised the drilling of 3No. mini percussion boreholes (MBH1 to MBH3) and the excavation of two trial pits (TPs 1 and 2).

The exploratory holes formed revealed variably cohesive and granular deposits with fragments of brick, glass and sandstone to depths of between 0.3 and 1.0m bgl, underlain by a firm, becoming stiff, sandy gravelly clay to depths of at least 5.45m bgl. Laboratory testing proved the clay to be of low and high plasticity, and of medium volume change potential.

Rock head was not encountered during the investigation in 2015.

Chemical testing undertaken on selected samples of made ground proved isolated significantly elevated concentrations of polycyclic aromatic hydrocarbons (PAHs; specifically benzo(a)pyrene) and asbestos to be present when compared against Generic Assessment Criteria (GAC) values for a Commercial end use.

6 SITE WORKS AND LABORATORY TESTING

6.1 CONCEPTUAL SITE MODEL

A preliminary conceptual site model, including an assessment of potential pollutant linkages, has been determined based on the desk study information presented above.

The site has been occupied previously, although no specific potential contaminants have been identified associated with the former uses.

However, the site is located in an area that has been heavily industrialised in the past. Consequently, nearsurface deposits may have been affected by slight contamination in the form of particulates emitted from chimneys or localised ash deposits from domestic coal fires.

The main receptors include future site users and the underlying Principal Aquifer.

6.2 SUMMARY OF INVESTIGATION

The exploratory holes listed below were advanced on 19th November 2018 at locations specified by d3 Associates Ltd. Records for each of the exploratory holes noted are included in Appendix D and the locations are shown on Drawing No. D9128/02 presented in Appendix A to this report.

• Mini percussion boreholes: MBH1 to MBH3.

6.3 CHEMICAL TESTING

Appropriate samples were delivered to a suitably accredited laboratory with a schedule of testing drawn up by Dunelm. The laboratory test results are presented in Appendix E to this report and discussed in section 8.

6.4 **GEOTECHNICAL TESTING**

Samples of natural soil were delivered to a geotechnical laboratory with a schedule of testing drawn up by Dunelm. The geotechnical laboratory test results are presented in Appendix F to this report. Material properties assessed using the results are considered further in the following section.

7 GROUND CONDITIONS & MATERIAL PROPERTIES

7.1 GENERAL

Strata encountered were generally similar in the three boreholes drilled. Ground conditions are described in the following sections.

7.2 REWORKED TOPSOIL

Topsoil was encountered in MBH2 only, drilled in an area of soft landscaping, to a depth of 0.2m bgl, and was recorded as a dark brown slightly ashy slightly gravelly sandy topsoil, containing sandstone, coal and rare glass.

7.3 MADE GROUND

Made ground was encountered in all three boreholes drilled to depths of between 0.7 and 1.6m bgl.

In MBH1 and 3 drilled adjacent to the existing MUGA sports area, the made ground was recorded to be macadam hardstanding on a granular sub-base to 0.45m and 0.7m bgl respectively. This was underlain in MBH1 by a dark brown ashy slightly gravelly sand with sandstone, coal, frequent clinker, rare brick, ceramic, glass and rubber to 1.3m bgl.

The reworked topsoil identified in MBH2 was underlain by a dark brown ashy slightly gravelly sand with sandstone, coal, frequent clinker, rare brick, ceramic and glass to 1.6m bgl.

7.4 BURIED OBSTRUCTIONS

No buried obstructions were encountered during drilling of the three boreholes, however, the site has been developed previously and buried obstructions may be present elsewhere on the site.

7.5 NATURAL SOILS

The natural soils at the site consisted of an initially soft slightly sandy slightly gravelly clay to 2.0m bgl, considered to possibly be a relict topsoil, underlain by a firm, becoming stiff with increasing depth, slightly sandy slightly gravelly clay to depths of at least 5.45m bgl.

Two SPT N values of 1 were recorded in the upper slightly sandy slightly gravelly clay, indicating them to be very soft in nature.

SPT N values of between 3 and 19 were recorded in the lower clay in the three boreholes drilled by Dunelm, indicating the soils to be initially very soft (possibly water softened), becoming firm and stiff in nature.

Geotechnical testing undertaken on six samples of the natural clay reported moisture contents of between 14% and 45%, and plasticity indices of between 15 and 33, indicating the natural clay to be variably low and intermediate, occasionally high, plasticity, and of typically low, occasionally moderate, volume change potential.

An assessment of the liquidity index for the six samples indicate the cohesive soils to be firm and stiff, locally soft, in nature.

7.6 ROCK HEAD

Rock head was not encountered in the three boreholes drilled during this investigation.

7.7 **GROUNDWATER**

Groundwater seepages were encountered in MBH1 and MBH2 at 1.2m bgl during this investigation.

7.8 HYDROCARBON CONTAMINATION

No visual or olfactory evidence of hydrocarbon contamination was noted during the investigation.

7.9 CONCRETE IN AGGRESSIVE GROUND

To enable buried concrete to be designed to resist sulfate attack, samples of made ground and natural strata from depths corresponding to the anticipated foundation depth have been tested for water-soluble sulfate and pH.

The maximum water-soluble sulfate concentration is 670mg/l and the lowest recorded pH value is 6.7.

Based on the above results, Design Sulfate Class DS-2 and ACEC Classification AC-2 would be appropriate for buried concrete at the site.

8 CHEMICAL TESTING RESULTS

8.1 SELECTION OF CHEMICAL TESTING

This section represents the 'Hazard Identification' process required in accordance with CLR11.

The site's former usage is not considered likely to have given rise to significant ground contamination.

Made ground has been recorded in the three boreholes drilled to depths of between 0.7 and 1.6 m bgl.

Appropriate chemical testing has been undertaken taking into account potential contaminants identified and evidence of contamination recorded during the ground investigation.

Laboratory test certificates are presented in Appendix E to this report. The test results are presented in the following sections.

8.2 GENERIC ASSESSMENT CRITERIA FOR INORGANIC CONTAMINATION

Generic Assessment Criteria (GAC) appropriate to current UK practice for the assessment of inorganic contamination are shown in the table below. These criteria are dependent on the nature of the proposed development. In addition, some contaminants depend on other soil parameters as shown.

All values in mg/kg	Residential (based on 6% SOM)	Residential without homegrown produce (based on 6% SOM)	Commercial (based on 6% SOM)	Allotments (based on 6% SOM)	Public Open space (resi) (based on 6% SOM)
Arsenic	37	40	640	43	79
Cadmium	11	85	190	1.9	120
Chromium (Total)	910	910	8,600	18,000	1,500
Chromium (VI)	6	6	33	1.8	7.7
Copper	2,400	7,100	68,000	520	12,000
Lead	200*	310*	2,330*	80*	No SSV
Mercury	40	56	1,100	19	120
Nickel	130	180	980	53	230
Selenium	250	430	12,000	88	1,100
Zinc	3,700	40,000	730,000	620	81,000

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH

Soil Screening Values from The LQM/CIEH S4ULs for human Health Risk Assessment (2015). *taken from DEFRA C4SL database.

8.3 MADE GROUND (INORGANIC CONTAMINANTS)

A summary of the results of inorganic testing on three made ground samples is shown in the table below.

Contaminant	Units	No. of made ground samples tested	No. of samples exceeding GAC	Generic Assessment Criteria	Max concentration
pH	-	3	0	<5 and >9	7.0 to 9.0
Arsenic	mg/kg	3	0	640	55
Cadmium	mg/kg	3	0	190	1.1
Chromium (Total)	mg/kg	3	0	8,600	19
Chromium VI	mg/kg	3	0	33	<0.5
Lead*	mg/kg	3	0	2,330	220
Mercury	mg/kg	3	0	1,100	0.24
Nickel	mg/kg	3	0	980	52
Selenium	mg/kg	3	0	12,000	1.8
Copper	mg/kg	3	0	68,000	140
Zinc	mg/kg	3	0	730,000	260
Asbestos	-	3	0	Present	NAD

INORGANIC TEST RESULTS – MADE GROUND

Soil Screening Values from The LQM/CIEH S4ULs for Human Health Risk Assessment (2015) for a commercial end use. *Taken from DEFRA C4SL database.

The results of the testing indicated no exceedances of inorganic determinands when compared to the relevant assessment criteria in the three samples of made ground analysed.

8.4 CALORIFIC VALUE TESTING

Results from Calorific Value (CV) testing on two samples of ashy made ground tested were reported to be 9.5 and 17MJ/kg. ICRCL Document 61/84 *Notes on the fire hazards of contaminated land* (July 1986) comments as follows: "materials whose CVs exceed 10 MJ/kg are almost certainly combustible, while those with values below 2 MJ/kg are unlikely to burn".

Given these values, the ashy made ground is considered to be potentially combustible.

8.5 ASBESTOS TESTING

Coi

Na

Acenaphthylene

Asbestos was not detected in the three samples of made ground tested.

8.6 ORGANIC CONTAMINATION

The selection of hydrocarbon (organic) testing was based on the conceptual model and the assessment of potential contamination sources presented in earlier sections of this report.

Analysis for organic determinands has been carried out in general accordance with the EA Report: *The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbons in Soils* (2005). Consequently, two samples of made ground were tested for the following:

• Polycyclic aromatic hydrocarbon (PAH) compounds.

920

6,000

Appropriate samples were tested for Fraction of Organic Carbon and the results were 52% and 78%.

An assessment of selected PAH compounds is shown in the following table together with Generic Assessment Criteria (GAC) from the LQM guidance.

ontaminant		Generic A	ssessment Cri	No. of	No. of	Мах		
	Resi with plant uptake	Residential without home grown produce	Allot ments	Comm / industrial	Public Open Space	samples tested	samples with value greater than GAC	concentratio (mg/kg)
aphthalene	13	13	24	1,100	4,900	2	0	0.54

100,000

15,000

2

0

160

SUMMARY OF RESULTS FOR POLYCYCLIC AROMATIC HYDROCARBONS

Acenaphthene	1,100	6,000	200	100,000	15,000	2	0	2.4
Fluorene	860	4,500	160	71,000	9,900	2	0	2.6
Phenanthrene	440	1,500	90	23,000	3,100	2	0	15
Anthracene	11,000	37,000	2,200	540,000	74,000	2	0	3.6
Fluoranthene	890	1,600	290	23,000	3,100	2	0	23
Pyrene	2,000	3,800	620	54,000	7,400	2	0	20
Benzo(a)anthracene	13	15	13	180	29	2	0	8.6
Chrysene	27	32	19	350	57	2	0	12
Benzo(b)fluoranthene	3.7	4	3.9	45	7.2	2	0	9.5
Benzo(k)fluoranthene	100	110	130	1,200	190	2	0	4.2
Benzo(a)pyrene	3	3.2	3.5	36	5.7	2	0	6.4
Indeno(1,2,3,-cd)pyrene	41	46	39	510	82	2	0	4.9
Dibenz(a,h)anthracene	0.3	0.32	0.43	3.6	0.58	2	0	2.1
Benzo(g,h,i)perylene	350	360	640	4,000	640	2	0	4.8

Soil Screening Values from the LQM/CIEH S4ULs for Human Health Risk Assessment (2015) for 6% SOM soil, for a commercial end use.

The results of the testing indicated no exceedances of PAHs when compared to the relevant assessment criteria in the two samples of made ground analysed.

ion

0.76

9 ASSESSMENT OF CONTAMINATION RISKS

9.1 SUMMARY OF CONTAMINATION SOURCES

TOPSOIL

Reworked topsoil was locally present in MBH2 only to 0.2m bgl.

MADE GROUND

The site is underlain by a layer of granular made ground to a maximum depth of 1.6m bgl.

Testing has indicated that this made ground does not contain elevated concentrations of inorganic contaminants. However, the made ground is considered to be potentially combustible due to the presence of ash within the soil matrix.

HYDROCARBON CONTAMINATION

No significant hydrocarbon contamination was encountered during this investigation.

9.2 HAZARD ASSESSMENT

No sources of contamination have been encountered during this investigation and consequently no unacceptable risks have been identified.

However, the ashy made ground is considered to be potentially combustible. Where buried services representing a potential heat source may come into contact with combustible materials, they should be placed in oversized trenches backfilled with clean, inert material. Within proposed areas of soft landscaping a cover layer of 1.0m comprising topsoil and subsoil should be placed to break any pathways between potential surface heat sources and the potentially combustible made ground.

Remedial measures are not normally required beneath areas of hardstanding. Furthermore, no remedial action is normally required beneath new buildings since an insulated floor slab will limit heat transfer to the ground, although this should be verified by the appropriate regulatory authorities.

It should be noted that asbestos has been proven to be present in the made ground elsewhere on the Community Centre, and if any materials suspected of containing asbestos are encountered during these works, then works should cease and advice should be sought from Dunelm.

10 FOUNDATIONS AND GEOTECHNICAL ISSUES

10.1 INTRODUCTION

The proposed development is understood to consist of a new community centre.

Ground conditions encountered during this investigation comprised granular made ground to a maximum depth of 1.6m bbl., underlain by an initially soft slightly sandy slightly gravelly clay to 2.0m bgl (possibly a relict topsoil), underlain by a firm, becoming stiff, slightly sandy slightly gravelly clay to depths of at least 5.45m bgl.

Rock head was not encountered during this investigation by Dunelm.

10.2 MINING

No evidence has been found to indicate that the site is underlain by coal workings at shallow depth.

No evidence has been found to indicate that the site has been affected by quarrying.

10.3 FOUNDATIONS

Due to the heterogeneous nature of the made ground, unacceptable total and differential settlements may occur if foundations are placed on made ground or softened clays. Therefore, foundations should be taken through made ground and softened clays onto underlying natural ground of adequate bearing capacity.

It is considered that trench fill foundations should be suitable for the proposed structures.

Sub-surface concrete should be Design Sulphate Class DS-2, with the site allocated an ACEC Classification of AC-2.

Based on the visual description of the clay soils encountered, and the results of in situ and laboratory geotechnical testing, a safe bearing capacity of 90kN/m² has been determined for trench fill foundations 0.6m wide taken through made ground, softened clays and relict topsoil to found on the firm and stiff natural clay at depths of around 2.0m bgl. At this width of foundation and bearing pressure settlements should be less than 25mm.

Based on plasticity index results, cohesive soils at the site should be regarded as being of moderate volume change potential. Foundations should therefore be placed at a minimum depth of 0.9m below original or finished ground level, whichever is the lower.

Foundations near existing or proposed trees should be deepened and provided with appropriate heave precautions in accordance with current guidance.

Relict foundations are anticipated in the vicinity of former buildings shown on historical plans. Foundations in areas of former structures may need to be deepened to found within suitable strata.

Overdeepened foundations should be stepped in accordance with current guidance.

Foundations should be taken below a line drawn up at 45° from the base of existing or proposed services or foundations.

It should be recognised that clay rich soils can deteriorate fairly rapidly on exposure, particularly in periods of wet weather and frost. It would be prudent to protect all exposed soils in foundation excavations with a concrete blinding layer, particularly if they are likely to remain open for extended period of time.

Prior to placing foundation concrete, obvious soft or loose spots should be removed and replaced with suitably recompacted hardcore or lean mix concrete. In addition, all excavations should be inspected to ensure that they fully penetrate areas of disturbed ground.

Further advice should be sought from Dunelm if unexpected ground conditions are encountered during redevelopment.

10.4 FLOOR SLABS

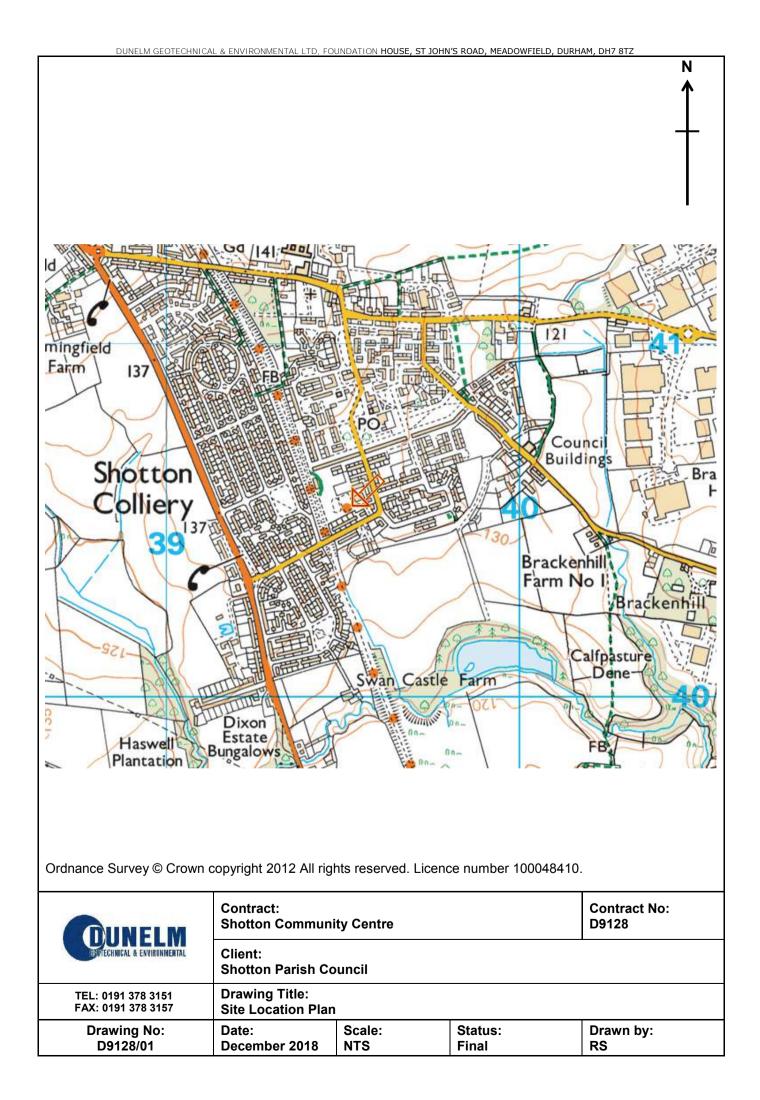
In accordance with current guidance, suspended floor slabs should be adopted where made ground exceeds 0.6m in thickness. Furthermore, due to the presence of a deep suspected relict topsoil layer, ground bearing slabs are likely to be unsuitable for new structures and suspended ground floors are therefore recommended.

10.5 BURIED OBSTRUCTIONS

No buried obstructions were encountered during drilling of the three boreholes, however, the site has been developed previously and buried obstructions may be present elsewhere on the site.

10.6 EXCAVATIONS

Observations made during the fieldwork indicate that minor groundwater seepages would be anticipated in shallow excavations. However, the rapid rate of advancement of the exploratory holes may mask minor seepages and it should be borne in mind that water levels fluctuate with a number of influences including season, rainfall, dewatering and pumping activities. Therefore, water levels significantly higher than those found during this investigation may be encountered.


Excavation sides should be designed, constructed and supported in accordance with the recommendations given in CIRIA Report No. 97.

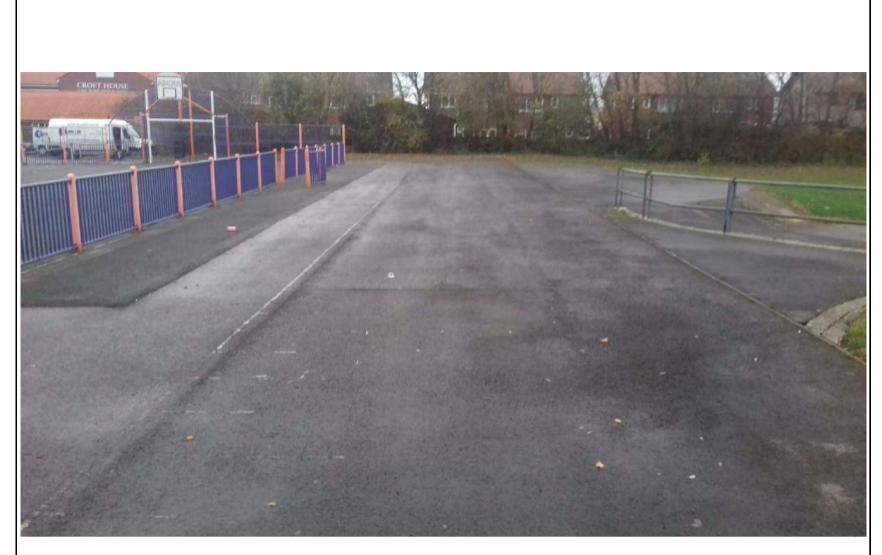
It is recommended that an adequate drainage system for surface water be installed by a competent contractor in order to prevent surface water ponding or collecting during and post construction, which may in turn lead to deterioration of the founding stratum.

Based on the nature of the ground conditions encountered, excavations should be within the capacity of normal earthworks plant although breaking out of relict foundations and other obstructions should be anticipated.

Appendix A Drawings

Appendix B

Photographic Survey



Photograph 1: View looking towards MBH01 and MBH02.

Photograph 2: View looking towards MBH01 and MBH02.

	Contract:		Contract No:		
	Shotton Community Centre	D9128			
DUNELM REDTECHNICAL & ENVIRONMENTAL	Client:				
	Shotton Parish Council				
TEL: 0191 378 3151	Site Photographs	Date: Dec 2018	Sheet 1 of 3		
FAX: 0191 378 3157					

Photograph 3: View looking towards MBH03.

Photograph 4: View looking towards MBH03.

	Contract:		Contract No:		
	Shotton Community Centre	D9128			
CEDTECHNICAL & ENVIRONMENTAL					
	Shotton Parish Council				
TEL: 0191 378 3151	Site Photographs	Date: Dec 2018	Sheet 2 of 3		
FAX: 0191 378 3157					

Photograph 5: Existing MUGA sports area.

Photograph 6: Existing MUC	GA sports area.					
	Contract:		Contract No:			
	Shotton Community Centre	D9128				
CEOTECHNICAL & ENVIRONMENTAL	Client:	Client:				
	Shotton Parish Council					
TEL: 0191 378 3151 FAX: 0191 378 3157	Site Photographs	Date: Dec 2018	Sheet 3 of 3			

Appendix D

Exploratory Hole Records

INFORMATION GENERALLY RELATING TO ALL EXPLORATORY HOLE RECORDS

GENERAL

Borehole/Trial Pit No

The exploratory hole identity number used throughout the report.

Site

The ground investigation project name.

Client

Client's name responsible for funding the ground investigation project.

Ground Level and Location

The precise ground level in meters above Ordnance Datum at the exploratory hole location from which the reduced level for each stratigraphic boundary is calculated. The exploratory hole position is given as either national grid-coordinates or local grid as specified.

ABBREVIATIONS

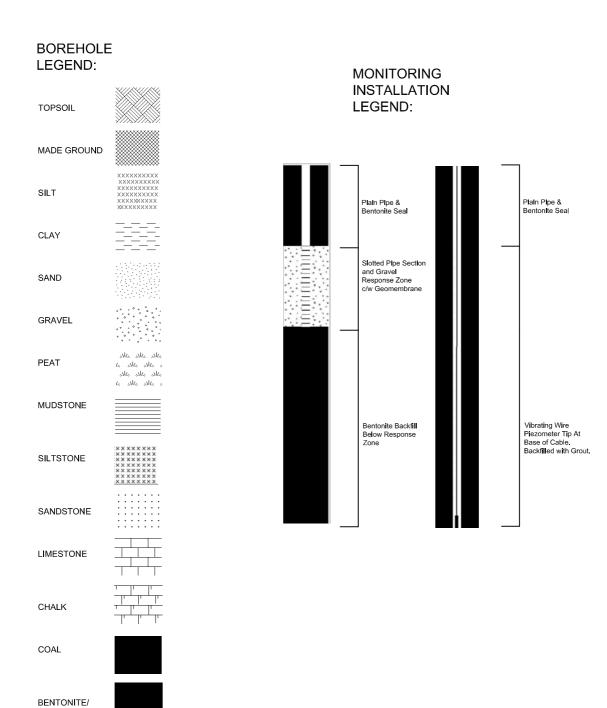
Samples

- **B** Bulk disturbed sample generally representative of the soil type for cohesive and fine granular soils.
- **D** Small disturbed tub sample normally taken at intermediate depth between other sampling or testing operations. The sample is stored in an airtight container.
- **BRE** Sample taken for electrochemical testing
- **ES** Sample of potentially contaminated materials.
- C Core sample.
- **SB** Bulk disturbed sample subsampled from a liner sample
- **SD** Small disturbed tub sample subsampled from a liner sample.
- U 100mm diameter undisturbed thick walled sample (OS-TK/W)
- **UT** 100mm diameter undisturbed thin walled sample (OS-T/W)
- **UF** An attempted but failed 100mm undisturbed sample.
- W Water sample.

In-situ Testing

- **CBR** California Bearing Ratio mould sample or test.
- **SPT** Standard Penetration Test (SPT) using the split barrel sampler (shoe). The corresponding 'N' value is given in the test result column.

Rock Quality and Core Recovery


- TCR Total core recovery The length of the recovered core expressed as a percentage of the length of core run.
- **SCR** Solid Core Recovery The sum length of all core pieces (measured along the centre of the core), expressed as a percentage of the length core run.

- Key Sheets
- **RQD** Rock Quality Designation- The sum length of all core pieces that are 100mm or longer (measured along the centre of the core), expressed as a percentage of the length of core run.
- FI Fracture Index- The number of fractures per 1000mm length of solid core.
- **NI** Non-intact- The material recovered in a non-intact state.
- **NR** No recovery from the core run.
- AZCL Assessed Zone of Core Loss.

COBBLE CONTENT

Low <10%, medium 10 – 20%, high >20%

Exploratory Hole Log Legend

NB Where strata consists of material of more than one soil or rock type the legends are appropriately combined.

GROUT

Dunelm Geotechnical & Environmental Ltd Foundation House, St John's Road, Meadowfield Durham, DH78TZ Tel: 0191 378 3151 Fax: 0191 378 3157 e-mail: admin@dunelm.co.uk web: www.dunelm.co.uk

Î	UNF	LM and Briting		BOREHOLE RECORD		Bore					
Contract No: D9128 Site: Shotton Community Centre				BOREHOLE RECORD			MBH1				
			on Community Centro	GL (m AOD) Scale 1:50							
	Site. Shouth Community Centre			Easting: -	No -	rthing:					
Client: Shotton Parish Council				Driller: RW Logged By: FR	Sheet 1 of	1					
lethod:		ercussive Boring Us		Checked By: RS	Dates:	19/11/2018					
	SAMPLE		ng) water	STRATA RECORD	Depth	Level		Well			
Туре	Depth From-To (m)	Insitu Testing	(Casing) Groundwater	Description	(m)	(m AOD)	Legend	Backf			
D ES	0.10 0.10			MADE GROUND: Black macadam. MADE GROUND: Light brown gravelly sand. Sand is fine to	(0.20) 0.20						
D ES D	0.30 0.30 0.50			coarse. Gravel is angular to subrounded, fine to coarse of	0.25)						
ES	0.50			\ sandstone and limestone. (Sub-base). MADE GROUND: Dark brown ashy, slightly gravelly sand.	/=						
_	4.00			Sand is fine to coarse. Gravel is subangular to subrounded,	_ (0.85)						
D ES	1.00 1.00		- 1 (1.20) D ry	fine to coarse of sandstone, coal, frequent clinker, rare brick, ceramic, glass and rubber.							
SPT (S)		N=1 (1,0/0,0,0,1)	(1.20) Diy	Soft grey slightly gravelly, slightly sandy CLAY. Sand is fine to	1.30		~~~~~				
D ES	1.50 1.50		-	coarse. Gravel is subangular to subrounded, fine to coarse of sandstone and coal. Organic odour noted - possible relict	(0.70)	2. 10 8.	••••••••••••••••••••••••••••••••••••••				
				topsoil.	E (0.70)	1. 1. 8.	•				
SPT (S)	2.00 - 2.45	N=8 (1,1/1,2,2,3)	2 (2.00) Dry	Firm brown slightly gravelly, slightly sandy CLAY. Sand is fine	2.00	- 					
				to coarse gravel is subangular to subrounded, fine to coarse of	F	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
			-	sandstone and coal.	<u> </u>	- 					
SPT (S)	3.00 - 3.45	N=10 (2,2/2,2,3,3)	- 3 (3.00) Dry		<u> </u>	1					
(-/					F	200 100 100 100 100 100 100 100 100 100					
					E	8. 					
					- (2 AE)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
					(3.45)	1. 					
SPT (S)	4.00 - 4.45	N=14 (2,1/3,2,4,5)	- 4 (4.00) Dry		 -	÷					
						8. 					
D	4.50		ŀ		E						
SPT (S)	5.00 - 5.45	N=19 (3,5/5,5,5,4)	- 5 (5.00) Dry	5.00m: Becoming stiff.	<u>–</u>	10 6. 1.					
						10 6. 1.					
				End of Borehole at 5.45 m	5.45	i i i i i i i i i i i i i i i i i i i					
					F						
					F						
			-6 :		E						
					_						
			-		 -						
			•		F						
			- 7		E						
			-		- -						
					E						
			- 8		E						
			,								
			• •		F						
			Ē								
			- 9		 -						
			•		F						
			-								
			10		+						
	Ground Wate		Chiselling / Hard Stra		1	ı – L					
()	sing Depth (m)	vel Minutes Water sealed (m) From	n (m) To (m)	Time (hr) Diameter (mm) Depth (m) Diameter (mm) Depth (m) 1. Hand dug inspection	on pit to 1.2	0m.					
1.20	1.00			67 2.00 77 3.00 87 5.00							
				67 5.00							
		- i I									

	MINF	ATTER BRITE		BOREHOLE RECORD		Boreho	ble	
	DTECHNICAL & ENVIR	ONMENTAL PSOCIATION			MBH2			
					GL (m AOD) Scale 1:50			
ontrac	:t No: D91	28	Site: Shott	on Community Centre	Easting:	North	ng:	
lient: {	Shotton Pa	rish Council		Driller: RW Logged By: FR	 Sheet 1 of 1			
ethod:	Cable Pe	rcussive Boring Us	sing Mini Rig	Checked By: RS	Dates:	19/11/2018		
	SAMPLE	DETAILS	a) ater					
Туре	Depth From-To (m)	Insitu Testing	(Casing) Groundwater	STRATA RECORD Description	Depth (m)	Level (m AOD)	gend Back	
D	0.20			MADE GROUND: Dark brown slightly ashy, slightly gravelly sandy topsoil. Sand is fine to coarse. Gravel is subangular to	(0.20) - 0.20			
ES D	0.20 0.50			\subrounded, fine to coarse of sandstone, coal and rare glass. / MADE GROUND: Dark brown ashy slightly gravelly sand.	Æ			
ES	0.50			Sand is fine to coarse. Gravel is subangular to subrounded,	-			
D	1.00		- 1	fine to coarse of sandstone, coal, frequent clinker, rare brick, ceramic and glass.	(1.40)			
ES FPT (S)	1.00	N=1 (1,0/0,0,0,1)	- 1 (1.20) D ry	_	F			
		. (.,,.,.,.,.,.,			F	🕅		
D ES D	1.50 1.50 1.70		[Soft grey slightly gravelly, slightly sandy CLAY. Sand is fine to	1.60			
ES	1.70			coarse. Gravel is subangular to subrounded, fine to coarse of sandstone, coal and rare glass. Organic odour noted -	(0.40)			
SPT (S)	2.00 - 2.45	N=3 (1,1/1,1,0,1)	- 2 (2.00) Dry	possible relict topsoil.	2.00			
			l.	Firm greyish brown slightly sandy, slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded, fine to	E			
D	2.50		-	coarse of sandstone and coal.	-			
			ŀ		Ē			
PT (S)	3.00 - 3.45	N=8 (2,1/1,2,2,3)	- 3 (3.00) Dry		-		- <u></u>	
			ł		F			
D	3.50				Ē			
					(3.45)			
PT (S)	4.00 - 4.45	N=18 (1,2/3,3,5,7)	- 4 (4.00) Dry	4.00m: Becoming stiff.	E			
			ŀ		E			
D	4.50		•		F			
			ŀ		Ē	1		
PT (S)	5.00 - 5.45	N=15 (1,3/3,4,3,5)	- 5 (5.00) Dry		E			
		· · · · · · · · · · · · · · · · · · ·			F			
			i -	End of Borehole at 5.45 m	5.45			
					F			
					F			
			-6		E			
					F			
			ŀ		E			
			ŀ		E			
			- 7		-			
			ŀ		Ē			
			-		Ē			
			ŀ		F			
ļ			- 8		E			
ļ					Ē			
			 -		F			
			ŀ		Ē			
			: - 9		Ē			
					F			
					E			
					E			
					F			
	Ground Wate	er (m)	10 Chiselling / Hard Str	ata Casing Depths Hole Diameter General Remarks	1			
h Struck Ca	ising Depth	Water sealed		Time (br) Diameter Depth (m) Diameter Depth (m) 1. Hand dug inspection	n pit to 1.2	0m.		
(m) 1.20	(m) 1.00	(m) (m)		87 2.00				
				77 <u>3.00</u> 67 <u>5.00</u>				

ſ	IINE	B B B B B B B B B B B B B B B B B B B		BOREHOLE RECORD			Borehole MBH3			
RE	DTECHNICAL & ENVIR	ONMENTAL 7850CIATION				MBH	3			
Contra	ct No: D91	28	Site: Shotton Community Centre			GL (m AOD) Scale 1:50 -				
Contra	CINO . D91	20	One. Onou		Easting: -	North -	ing:			
Client: Shotton Parish Council			Driller: RW Logged By: FR	Sheet 1 of	f1					
Method		ercussive Boring Us		Checked By: RS	Dates:	19/11/2018				
	SAMPLE		ing) dwater	STRATA RECORD	Depth	Level	gend Ba	Nel		
Туре	Depth From-To (m)	Insitu Testing	(Casing) Groundwater	Description	(m)	(m AOD)	Ba	ıck		
D ES	0.10 0.10			MADE GROUND: Black macadam. MADE GROUND: Yellow sandy gravel. Sand is fine to coarse.	(0.15)					
D ES	0.30 0.30			Gravel is subangular to subrounded, fine to coarse of sandstone and limestone. (Sub-base).	(0.55)					
				Soft grey mottled brown and orange slightly sandy, slightly	0.70					
D	1.00		- 1	gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse of sandstone and coal.	-	2012 - 100 2014 - 100				
ES SPT (S)	1.00 1.20 - 1.65	N=1 (1,0/0,0,0,1)	(1.20) Dry		(1.30)					
D	1.50		-							
SPT (S)	2.00 - 2.45	N=11 (3,3/2,2,3,4)	- 2 (2.00) Dry	Firm brown mottled grey slightly sandy, slightly gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse of sandstone,	2.00					
D	2.50			coal and mudstone.	E	2012 - 100 2014 - 100				
SPT (S)	3.00 - 3.45	N=16 (3,4/4,4,3,5)	- 3 (3.00) Dry	3.00m: Becoming stiff.	E					
					-		· · · · · · · · · · · · · · · · · ·			
D	3.50		-		Ē					
					(3.45)					
SPT (S)	4.00 - 4.45	N=13 (2,2/3,3,3,4)	- 4 (4.00) Dry	4.00m: Becoming stiff.	-					
D	4.50				E					
U	4.00				E					
SPT (S)	5.00 - 5.45	N=11 (1,2/2,3,2,4)	- - 5 (5.00) Dry		-					
					-					
			-	End of Borehole at 5.45 m	- 5.45	<u> </u>				
					F					
			- 6		-					
			-		E					
			- 7							
					E					
			-		E					
					-					
			- 8		F					
					Ē					
					Ē					
			-9							
					E					
			-		E					
					F					
	Ground Wate		Chiselling / Hard Stra							
epth StruckCa (m)	asing Depth (m)	Water sealed From (m)	(m) To (m)	Diameter (mm) Depth (m) Diameter (mm) Depth (m) 1. Hand dug inspection 2. No groundwater en 87 2.00						
				87 2.00 77 3.00 67 5.00						
	lated 06/12/201	8								

Appendix E

Chemical Testing Records

Chemtest Ltd. The right chemistry to deliver results Chemtest Ltd. Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	18-36715-1		
Initial Date of Issue:	28-Nov-2018		
Client	Dunelm Geotechnical and Environmental		
Client Address:	Foundation House St Johns Road Meadowfield County Durham DH78TZ		
Contact(s):	Rob Schofield		
Project	D9128 - Shotton Community Centre		
Quotation No.:		Date Received:	22-Nov-2018
Order No.:	15792/RS/D9128	Date Instructed:	22-Nov-2018
No. of Samples:	3		
Turnaround (Wkdays):	5	Results Due:	28-Nov-2018
Date Approved:	28-Nov-2018		
Approved By:			
M.J.			
Details:	Martin Dyer, Laboratory Manager		

Chemtest The right chemistry to deliver results Project: D9128 - Shotton Community Centre

Results - Soil

Client: Dunelm Geotechnical and Environmental		Ch	emtest	Job No.:	18-36715	18-36715	18-36715
Quotation No.:		Chemtest Sample ID.:		729331	729335	729340	
				_ocation:	MBH 1	MBH 2	MBH 3
				ole Type:	SOIL	SOIL	SOIL
				epth (m):	0.50	0.50	0.30
				Sampled:	19-Nov-2018	19-Nov-2018	19-Nov-2018
				stos Lab:	COVENTRY	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD			
ACM Type	U	2192		N/A	-	-	-
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected	No Asbestos Detected	No Asbestos Detected
Moisture	Ν	2030	%	0.020	16	22	5.2
рН	U	2010		N/A	7.0	6.7	9.0
Sulphate (2:1 Water Soluble) as SO4	U	2120	mg/l	10.000	670	110	< 10
Calorific Value	Ν	2140	MJ/kg	0.10	9.5	17	
Arsenic	U	2450	mg/kg	1.0	55	50	15
Cadmium	U	2450	mg/kg	0.10	0.19	1.1	0.16
Chromium	U	2450	mg/kg	1.0	19	17	3.5
Copper	U	2450	mg/kg	0.50	140	85	4.1
Mercury	U	2450	mg/kg	0.10	0.24	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	52	51	6.2
Lead	U	2450	mg/kg	0.50	220	160	19
Selenium	U	2450	mg/kg	0.20	1.5	1.8	< 0.20
Zinc	U	2450	mg/kg	0.50	260	160	32
Chromium (Hexavalent)	Ν	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	52	78	
Naphthalene	U	2700	mg/kg	0.10	0.54	< 0.10	
Acenaphthylene	U	2700	0	0.10	0.76	< 0.10	
Acenaphthene	U	2700	mg/kg	0.10	2.4	< 0.10	
Fluorene	U	2700	mg/kg	0.10	2.6	< 0.10	
Phenanthrene	U	2700	5	0.10	15	< 0.10	
Anthracene	U	2700	0 0	0.10	3.6	< 0.10	
Fluoranthene	U	2700	0 0	0.10	23	1.2	
Pyrene	U	2700	mg/kg	0.10	20	1.2	
Benzo[a]anthracene	U	2700	mg/kg	0.10	8.6	< 0.10	
Chrysene	U	2700	mg/kg	0.10	12	< 0.10	
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	9.5	< 0.10	
Benzo[k]fluoranthene	U	2700	0 0	0.10	4.2	< 0.10	
Benzo[a]pyrene	U	2700	0 0	0.10	6.4	< 0.10	
Indeno(1,2,3-c,d)Pyrene	U	2700		0.10	4.9	< 0.10	
Dibenz(a,h)Anthracene	U	2700	5	0.10	2.1	< 0.10	
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	4.8	< 0.10	
Total Of 16 PAH's	U	2700	mg/kg	2.0	120	2.4	

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	pН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2140	Calorific Value	Calorific Value	Bomb Calorimeter
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID

The right chemistry to deliver results

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.com

Appendix F

Geotechnical Testing Results

Laboratory Report F	ront Sheet	Solmek 12-16 Yarm Road, Stockton on Tees,	
Site name	Job number	TS18 3NA	
Shotton Community Centre	D9128	01642 607083 lab@solmek.com	UKAS TESTING 7607

Client details:

Reference:	D9128
Name:	Dunelm
Address:	Foundation House, St John's Road, Meadowfield,
	County Durham, DH7 8TZ
Telephone:	0191 3783151
Email:	rschofield@dunelm.co.uk
FAO:	R Schofield
Date commenced:	21/11/2018
Date reported:	02/12/2018

Observations and interpretations are outside of the UKAS Accreditiation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Samples will be held at the laboratory for a period of 4 weeks after the report date. After the 02-01-2019 all samples will be disposed of. Should further testing be required then the office should be informed before the above date.

Signature:	Approved Signitories:
12. 201	K Watkin (Lab Manager)
	U Mazhar (Assistant Lab Manager)
	I Nicholson (Technical Manager)

Summary of Classification Tests Site name Job number Shotton Community Centre D9128							-	Solmek 12-16 Yarm Road, Stockton on Tees, TS18 3NA 01642 607083 Iab@solmek.com		UKAS TESTING 7607					
Hole	Тор	epth Base	Туре	w	Over temp °c	w_a		P _r	W _L	W _P	I _P	IL	Plasticity class	Preparation method	
MBH1	m 1.50	m	D	% 28	с 105	%	% 99	% 1	% 36-s	% 21	% 15		СІ	Tested after >425µm removed by hand	
MBH1	2.00	2.45	D	18	105		96	4	31-s	16	15		CL	Tested after >425μm removed by hand	
MBH2	2.00	2.45	D	45	105		98	2	56-s	23	33		СН	Tested after >425µm removed by hand	
MBH2	3.00	3.45	D	20	105		87	13	32-s	14	18		CL	Tested after >425µm removed by hand	
MBH3	1.00		D	24	105		99	1	44-s	22	22		CI	Tested after >425µm removed by hand	
MBH3	2.00	2.45	D	14	105		68	32	30-s	14	16		CL	Tested after >425µm removed by hand	

All tests found in Solmek UKAS Schedule of Accreditation are tested to standard unless otherwise indicated

Кеу	Description		Category	BS Test Code
w	Moisture content			BS 1377:1990 Part 2 Clause 3.2
W _a	Equivalent moistur sieve	e content passing 425µm		BS 1377:1990 Part 2 Clause 3.2
147	Liguid limit	Single point	-S	BS 1377:1990 Part 2 Clause 4.4
W _L		Four point	-f	BS 1377:1990 Part 2 Clause 4.3
WP	Plastic limit			BS 1377:1990 Part 2 Clause 5.2
P _a	Percentage passing	g 425um sieve		
$P_{\rm r}$	Percentage retaine	d 425um sieve		
I _P	Plasticity index			BS 1377:1990 Part 2 Clause 5.4
I _L	Liquidity index			BS 1377:1990 Part 2 Clause 5.4
	Suffix indicating te Accredited"	st is "Not UKAS	*	

Approved by	UM
Approval date	02/12/2018 08:38
Date report generated	02/12/2018 09:01
Report Number	SLMK_18009286

Report No.:	18-37700-1		
Initial Date of Issue:	04-Dec-2018		
Client	Solmek Ltd		
Client Address:	12 Yarm Road Stockton-on-Tees TS18 3NA		
Contact(s):	Kathryn Watkin Office		
Project	D9128 - Shotton Community Centre		
Quotation No.:		Date Received:	29-Nov-2018
Order No.:		Date Instructed:	29-Nov-2018
No. of Samples:	6		
Turnaround (Wkdays):	5	Results Due:	05-Dec-2018
Date Approved:	04-Dec-2018		
Approved By:			
My May			
Details:	Glynn Harvey, Laboratory Manager		

Results - Soil

Client: Solmek Ltd	Chemtest Job No.:		18-37700	18-37700	18-37700	18-37700	18-37700	18-37700		
Quotation No.:	Chemtest Sample ID.:		733833	733834	733835	733836	733837	733838		
	Sample Location		_ocation:	MBH1	MBH1	MBH2	MBH2	MBH3	MBH3	
	Sample Type:				SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Top Depth (m):		1.50	2.00	2.00	3.00	1.00	2.00		
	Bottom Depth (m):			2.45	2.45	3.45		2.45		
Determinand	Accred.	SOP	Units	LOD						
Moisture	N	2030	%	0.020	17	14	31	13	19	10
рН	U	2010		N/A	[A] 8.3	[A] 8.3	[A] 7.3	[A] 8.2	[A] 7.5	[A] 8.2
Sulphate (2:1 Water Soluble) as SO4	U	2120	mg/l	10.000	10	< 10	< 10	< 10	< 10	< 10

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
733833			MBH1		A	Plastic Tub 500g
733834			MBH1		A	Plastic Tub 500g
733835			MBH2		А	Plastic Tub 500g
733836			MBH2		А	Plastic Tub 500g
733837			MBH3		А	Plastic Tub 500g
733838			MBH3		A	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary		
2010	pH Value of Soils	рН	pH Meter		
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.		
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES		

The right chemistry to deliver results

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to:

customerservices@chemtest.com

Appendix G

Dunelm Conditions of Offer, Notes on Limitations & Basis for Contract

Dunelm Conditions of Offer, Notes on Limitations & Basis for Contract

These conditions accompany our tender and supercede any previous conditions issued. The firm will prepare a report solely for the use of the Client (the party invoiced) and its agent(s). No reliance should be placed on the contents of this report, in whole or in part by 3rd parties. The report, its content and format and associated data are copyright, and the property of the firm. Photocopying of part or all of the contents, transfer or reproduction of any kind is forbidden without written permission from the firm. A charge may be levied against such approval, the same to be made at the discretion of the firm.

Site investigation is a process of sampling. The scope and size of an investigation may be considered proportional to levels of confidence regarding the ground and groundwater conditions. The exploratory holes undertaken investigate only a small volume of the ground in relation to the overall size of the site, and can only provide a general indication of site conditions. The opinions provided and recommendations given in this report are based on the ground conditions as encountered within each of the exploratory holes. There may be different ground conditions elsewhere on the site which have not been identified by this investigation and which therefore have not been taken into account in this report. Reports are generally subject to the comments of the local authority and Environment Agency. The comments made on groundwater conditions are based on observations made at the time that site work was carried out. It should be noted that mobile contamination, soil gas levels and groundwater levels may vary owing to seasonal, tidal and/or weather related effects. Unrecorded ancient mining may occur anywhere where seams that have been worked and influence the rock and soil above. Dissolution cavities can occur where gypsum or chalk is present. Rotary drilling is the recommended technique to prove the integrity of the rock.

Where the scope of the investigation is limited via access to information, time constraints, equipment limitations, testing, interpretation or by the client or his agents budgetary constraints, elements not set out in the proposal and excluded from the report are deemed to be omitted from the scope of the investigation.

The firm cannot be held liable and do not warrant, or otherwise guarantee the validity of information provided by third parties and subsequently used in our reports. The firm are not responsible for the action negligent or otherwise of subcontractors or third parties.

Desk studies are generally prepared in accordance with RICS guidelines. Environmental site investigations are generally undertaken as 'exploratory investigations' in accordance with the definitions provided in paragraph 5.4 of BS 10175:2001 in order to confirm the conceptual assumptions. You are advised to familiarize yourself with the typical scope of such an investigation. No pumping of water will be undertaken unless a licence or facilities/equipment have been arranged by others.

Where the type, number or/and depth of exploratory hole is specified by others, the firm cannot and will not be responsible for any subsequent shortfall or inadequacy in data, and any consequent shortfall in interpretation of environmental and geotechnical aspects which may be required at a later date in order to facilitate the design of permanent or temporary works.

All information acquired by the firm in the course of investigation is the property of the firm, and, only also becomes the joint property of the Client only on the complete settlement of all invoices relating to the project. The firm reserves the right to use the information in commercial tendering and marketing, unless the Client expressly wishes otherwise in writing. The quoted rates do not include VAT, and payment terms are 30 days from dispatch of invoice from our offices. Quotes are subject to a site visit.

We have allowed for 1 mobilisation and normal working hours unless otherwise stated. The scope of the investigation may be reviewed following the desk study and/or fieldwork. We have not allowed for acquiring services information, and cannot be responsible for damage to underground services or pipes not shown to us or not clearly shown on plans. Costs incurred will be passed on to you, and in commissioning the firm, you understand and accept that you/your agent have a contractual relationship with the firm & you accept this. Our rates assume unobstructed, reasonably level and firm access to the exploratory positions and adequate clear working areas and headroom. We have priced on the basis that you or your client have the necessary permissions, wayleaves and approvals to access land. All boreholes and pits are backfilled with arisings except where gas monitoring pipes are installed with stopcock covers. Dunelm are not responsible for any uneven surfaces as a result of siteworks and rutting and backfilled excavations may require re-levelling and/or making good by others after fieldwork is complete. Dunelm have not allowed for subsequent reinstatement as a result of settlement. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested for a return visit to remove pipework and covers. No price has been provided or requested f

We reserve the right to pursue full payment of the invoice prior to release of any information including reports. We advise you/your client that we may elect to pursue our statutory rights under late payment legislation, and will apply 8% to the base rate for unreasonably late payments. We will also apply the right to claim any associated legal costs incurred with recovery of late payments. The firm is exempt from the CIS Scheme. The firm offer to undertake work <u>only</u> in strict accordance with conditions covered by our current insurances, which are available for inspection. The company are not responsible for acts, negligent or otherwise of subcontractors and as a matter of policy cannot indemnify any other parties. Professional indemnity Insurance is limited to ten times the invoice net total except where stated otherwise by the firm, and we give notice that consequential loss as a direct or indirect result of the firms activities or omission of the same are excluded.