A2292 Geotechnical Report

Ponsharden Cemeteries Falmouth Road, Falmouth, Cornwall

For

PDP Green Consulting Ltd, Calenick House, Truro Technology Park, Newham, Truro, Cornwall, TR1 2XN

March 2021 Report Number: A2292-1

AGS Ground Solutions Ltd 4 Bond Street, Redruth, Cornwall, TR15 2QB

DOCUMENT CONTROL

Client	PDP Green Consulting Ltd					
Project Title	Ponsharden Cemeteries					
Document Title	Geotechnical Report					
Document No.	A2292-1					

Date	Revision	Changes	Author	Review	Signature
11/03/2021	1	Factual	CS	PF	
25/03/2021	2	Interpretive	PF	CS	Alut

CONTENTS

		Page			
1.	INTRODUCTION	3			
2.	SITE LOCATION AND LAYOUT	4			
3.	ENVIRONMENTAL SETTING	5			
	3.1 GEOLOGY	5			
4.	INTRUSIVE INVESTIGATION	6			
	4.1 FIELDWORK4.2 GROUNDWATER	6 6			
5.	LABORATORY TESTING	7			
	5.1 GEOTECHNICAL TESTING	7			
6.	EVALUATION OF GROUND CONDITIONS AND ENGINEERING PROPERTIES	8			
	6.1 SOIL PROFILE6.2 ENGINEERING PROPERTIES	8 9			
7.	ENGINEERING DESIGN				
	7.1 SOIL PROPERTIES FOR SOIL NAILS / ROCK BOLTS	13			
R	CONCLUSIONS AND RECOMMENDATIONS	14			

FIGURES:

- 1. Site Location Plan
- 2. Exploratory Hole Location Plan

APPENDICES:

- 1. Site Photographs
- 2. Window Sample Hole Logs
- 3. Geotechnical Laboratory Test Results

1. INTRODUCTION

AGS Ground Solutions (AGS) were commissioned by PDP Green Consulting Ltd (The Client), to undertake a geotechnical site investigation at Ponsharden Cemeteries, Falmouth.

It is understood that the development will comprise the construction of soil nails / rock bolts to help stabilise a retaining wall forming the northern boundary of the site.

The aim of the investigation was to:

- Determine the ground profile.
- Provide information for the design of foundations for the new structures on the site.

Our general Terms and Conditions are applicable to this report.

2. SITE LOCATION AND LAYOUT

The site is located in Falmouth, Cornwall and is centred approximately on Ordnance Survey Grid Reference SW 794 388. See Figure 1 for Site Location Plan.

A walkover survey was undertaken on the 2nd March 2021, details of which are presented below.

Access to the site was via a gate from an unnamed road to the west of Falmouth road. The site was secured with locked gates.

The site is a sensitive monument site containing multiple cemeteries, that previously was open to the public for viewing. At the time of the walkover survey the site comprised of an irregular shape containing the multiple cemeteries with many headstones and grave mounds. Access gates to the north-eastern and north-western boundaries are observed, with tracks to walk around the site. A retaining wall on the northern boundary is seen showing weathered rock, and tree stumps. A small rectangle concrete building is seen to the south-western edge of site.

The site was in poor condition with decaying headstones, overgrown grassed areas and a previous trial pit with pea gravel located in the centre of the northern boundary.

Geomorphologically the site was fairly level however there were steep manmade slopes to the north and west and it was clear that the site had been artificially cut into the rock, with the south east part of the site apparently having been raised. The natural ground level sloped steeply to the west.

The following features surrounded the site:

- **To the north**; the site was bound by a steep rockface sloping down to Falmouth road. Commercial building, boats and the sea are found beyond.
- **To the east**; the site was bound Ponsharden Industrial Estate, with North Parade and industrial buildings beyond.
- **To the south**; the site was bound by an unnamed road that lead to Sainsbury supermarket, with residential properties and fields found beyond.
- **To the west**; the site was bound by a steep downward slope, trees and fields, with an industrial estate and fields beyond.

A photographic record of the site walkover survey and siteworks are presented in Appendix 1.

3. ENVIRONMENTAL SETTING

3.1 GEOLOGY

Reference to the British Geological Survey 1:50,000 scale geological map of the area shows the site to be underlain by The Mylor Slate Formation (MRSL)

No superficial deposits were recorded on the site.

Around 50 m to the north-west of site, is shown to be underlain by Superficial deposits of Alluvium – Clay, silt sand, and gravel (ALV), which is underlain by The Mylor Slate Formation (MRSL).

Around 150 m to the north-east of site, is shown to be underlain by Superficial deposits of Tidal Flat Deposits (TFD), which is underlain by The Mylor Slate Formation (MRSL).

The British Geological survey provides the following geological descriptions. Contains British Geological Survey materials © NERC 2021:

Alluvium (ALV)

Description: Alluvium - Clay, Silt, Sand And Gravel. Superficial Deposits formed up to 2 million years ago in the Quaternary Period. Local environment previously dominated by rivers (U).

Setting: rivers (U). These sedimentary deposits are fluvial in origin. They are detrital, ranging from coarse- to fine-grained and form beds and lenses of deposits reflecting the channels, floodplains and levees of a river or estuary (if in a coastal setting).

Tidal Flat Deposits (TFD).

Description: Tidal Flat Deposits - Clay And Silt. Superficial Deposits formed up to 2 million years ago in the Quaternary Period. Local environment previously dominated by shorelines (U).

Setting: shorelines (U). These sedimentary deposits are shallow-marine in origin. They are detrital, generally coarse-grained forming beaches and bars in a coastal setting.

Mylor Slate Formation (MRSL).

Description: Mylor Slate Formation - Hornfelsed Slate And Hornfelsed Siltstone. Metamorphic Bedrock formed approximately 359 to 383 million years ago in the Devonian Period. Originally sedimentary rocks formed in open seas by pelagite deposits. Later altered by high temperatures of igneous intrusion.

Setting: Originally sedimentary rocks formed in open seas by pelagite deposits. These rocks were sedimentary in origin, possibly in a deep-marine (pelagic) environment, but have subsequently undergone metamorphism.

4. INTRUSIVE INVESTIGATION

4.1 FIELDWORK

Site works were carried out on the 2^{nd} and 3^{rd} March 2021 and comprised the following:

• Excavation of 5 no. Window Sample Holes to depths of 5.45 m.

The positions of the above works on the site are indicated on Figures 4 - 6, Exploratory Hole Location Plans.

Window Sample Holes

Six Window Sample Holes were excavated on the site on 2nd and 3rd March 2021.

Window sample holes WS1 to WS6 were excavated on the site using an handportable cut down windowless sample rig.

The window sample holes were excavated to examine the ground, and to establish the thickness of each of the soil horizons. The resulting cores were examined by an engineer.

Standard Penetration Tests (SPTs) were performed every 1.0 m intervals in all of the window sample holes.

An hand shear vane was used to gather information on mass shear strength within the window sample arisings.

Samples were recovered for laboratory analysis.

Window Sample Hole Logs are presented in Appendix 2.

4.2 GROUNDWATER

Groundwater was not encountered in any of the window sample holes.

It should be noted that the absence of groundwater is not necessarily indicative of the absence of a groundwater table in view of the short period the trial excavations remained open. Groundwater levels may vary due to seasonal fluctuations in rainfall, but in the shorter term can be affected by antecedent weather conditions or other causes.

5. LABORATORY TESTING

5.1 GEOTECHNICAL TESTING

The following range of laboratory tests was scheduled:

Moisture Content of soil	12 no.
Liquid and Plastic Limits of soil	12 no.
Particle Size Distribution (Wet Sieve)	12 no.
Sedimentation	12 no.

The results of geotechnical testing are presented in Appendix 3.

6. EVALUATION OF GROUND CONDITIONS AND ENGINEERING PROPERTIES

6.1 SOIL PROFILE

During the site investigation, three main soil / rock layers were identified on the site. An upper layer of Made Ground (MGR) was encountered which was found to overlay Weathered Mylor Slate Formation (MRSL) and The Mylor Slate Formation (MRSL).

Made Ground (MGR)

Made Ground (MGR) was the uppermost layer encountered on the site. The layer comprised a layer of concrete over sandy gravelly clay.

The Made Ground (MGR) was encountered in all excavations and was found to be between 0.30 m deep in Window Sample Hole WS1, WS2, WS3, WS5, and WS6, and 0.75 m in window sample hole WS4.

Weathered Mylor Slate Formation (MRSL)

The Weathered Mylor Slate Formation (MRSL) was situated immediately beneath the Made Ground (MGR).

The layer comprised a stiff brown grey gravelly clay, transitioning to a moderately weak to moderately strong grey brown metamudstone. Very thin laminae (1 – 4 mm) and rare quartz gravelly observed. Arising as clayey gravel at depth.

The Weathered Mylor Slate Formation was encountered in all locations and varied in thickness from 1.70 m in window sample hole WS2 to 3.70 m in window sample hole WS1.

Mylor Slate Formation (MRSL)

The Mylor Slate Formation (MRSL) was the layer on which all of the window sample holes refused. Although not observed, observations during drilling suggest that the material is intact rock.

A summary of the strata, as discussed above, is presented in the table below.

Stratum	Depth to top of Layer (m)	Thickness (m) – Where proven	Depth to base of Layer (m) – Where encountered
Made Ground (MGR)	0.00	0.30 - 0.75	0.30 - 0.75
Weathered Mylor Slate Formation (MRSL)	0.30 - 0.75	1.70 - 3.70	2.00 - 4.00
Mylor Slate Formation (MRSL)	Not Encountered	Not proven	Not Encountered

6.2 ENGINEERING PROPERTIES

The engineering properties of the principal strata are presented in the table below.

Made Ground (MGR)

The maximum thickness of the Made Ground was 0.75 m, and the layer was only typically 0.30 m thick. The layer will therefore provide insufficient resistance for soil nails and no soil properties have been presented.

Weathered Mylor Slate Formation (MRSL)

The Weathered Mylor Slate Formation was observed to comprise a residual soil, comprising clayey gravel or gravelly clay.

The results of particle size distribution testing are presented in the table below

Grain Size	Min %	Max %
Very Coarse	0	0
Gravel	34	68
Sand	15	33
Silt	10	33
Clay	1	7

The results of laboratory testing show that the layer was typically a silty sandy gravel.

The results of liquid & plastic limits tests are shown below.

Depth (m)	Borehole	Soil type	Plasticity	Plasticity Index (%)	Modified Plasticity Index (%)	Shrinkage Potential
1.4 - 1.6	WS2	Silt	High	30	6.9	No hazard
1.1 1.0	WS6	Silt	Medium	32	4.8	No hazard
	WS1	Silt	Medium	28	5.3	No hazard
1.5 - 1.7	WS3	Silt	Medium	31	5.3	No hazard
1.5 - 1./	WS4	Silt	High	31	8.4	No hazard
	WS5	Silt	Medium	31	5.6	No hazard
2.4 - 2.6	WS4	Silt	Medium	29	5.8	No hazard
2.5 - 2.7	WS1	Silt	Medium	28	4.8	No hazard
2.7 - 3.0	WS6	Silt	Medium	28	4.8	No hazard
	WS1	Clay	Medium	25	5.8	No hazard
2.8 - 3.0	WS3	Silt	Medium	29	5.5	No hazard
	WS5	Silt	Medium	30	5.4	No hazard
3.8 - 4.0	WS1	Silt	Medium	29	6.1	No hazard

Overall, the soil is of medium plasticity.

Given that cohesion was observed by the engineer on site, the soils have been treated as cohesive, however, the volume of clay and silt within the soil means that the cohesion is likely to be low.

Overall, the soil has a very low shrinkage potential.

A number of Standard Penetration Tests (SPTs) were carried out within the Weathered Mylor Slate Formation (MRSL). The results show that 'N' values of between 2 and 37 can be expected within this unit.

SPT 'N' values can be related to mass shear strength by means of a conversion factor. For a soil with a plasticity of 10 %, the factor (f_1) would be 5.0.

Depth (m)	Test Location	`N'		Mass Shear Strength Note (c) kN/m²		Modulus of Compressibility (M _v) m ² /MN	
1.0	WS1	12	5.0	60	Firm	0.17	
1.0	WS2	22	5.0	110	Stiff	0.09	

	WS3	17	5.0	85	Stiff	0.12
	WS4	5	5.0	25	Soft	0.40
	WS5	12	5.0	60	Firm	0.17
	WS6	2	5.0	10	Very Soft	1.00
	WS1	22	5.0	110	Stiff	0.09
	WS3	21	5.0	105	Stiff	0.09
2.0	WS4	21	5.0	105	Stiff	0.09
	WS5	28	5.0	140	Stiff	0.07
	WS6	27	5.0	135	Stiff	0.07
3.0	WS1	37	5.0	185	Hard	0.05

For engineering design purposes, the following values may be used:

At 1.0 m:

Bulk Unit Mass - 1.8 Mg/m³ (assumed)

Mass Shear Strength - 45 kN/m² (firm)

Coefficient of Compressibility (m_v) - 0.25 m^2/MN (medium)

At 2.0 m:

Bulk Unit Mass - 2.0 Mg/m³ (assumed)

Mass Shear Strength - 110 kN/m² (firm)

Coefficient of Compressibility (m_v) - 0.09 m^2/MN (medium)

Mylor Slate Formation (MRSL)

The Mylor Slate Formation (MRSL) was the layer on which all of the window sample holes refused.

Indications are that the layer is an intact rock mass.

A conservative estimate of uniaxial compressive strength would indicate that the rock mass would be in the region of $0.80~\text{MN/m}^2$.

A conservative estimate of density would be around 2.4 Mg/m³.

7. ENGINEERING DESIGN

7.1 SOIL PROPERTIES FOR SOIL NAILS / ROCK BOLTS

For the purposes of establishing a soil nail / rock bolt design the following soil properties should be used

Depth (m)	Bulk Unit Mass (Mg/m³)	Angle of shearing resistance (°)	Mass Shear Strength (kN/m²)	Uniaxial Compressive Strength (MN/m²)	Note
0.0 - 1.0	-	-	-	-	Not suitable for anchorages
1.0 - 2.0	1.8	-	45	-	Suitable for soil nails
2.0 - 3.0	2.0	-	110	-	Suitable for soil nails
> 3.0	2.4	-	-	0.8	Suitable for rock bolts

It should be noted that isolated soft spots may exist due to the location of graves on the site.

It should be noted that isolated soft spots may exist within the Mylor Slate Formation due to the action of tree roots.

Where soft spots do occur, soil nails or rock bolts should be extended and or redesigned to take account of the soft spots.

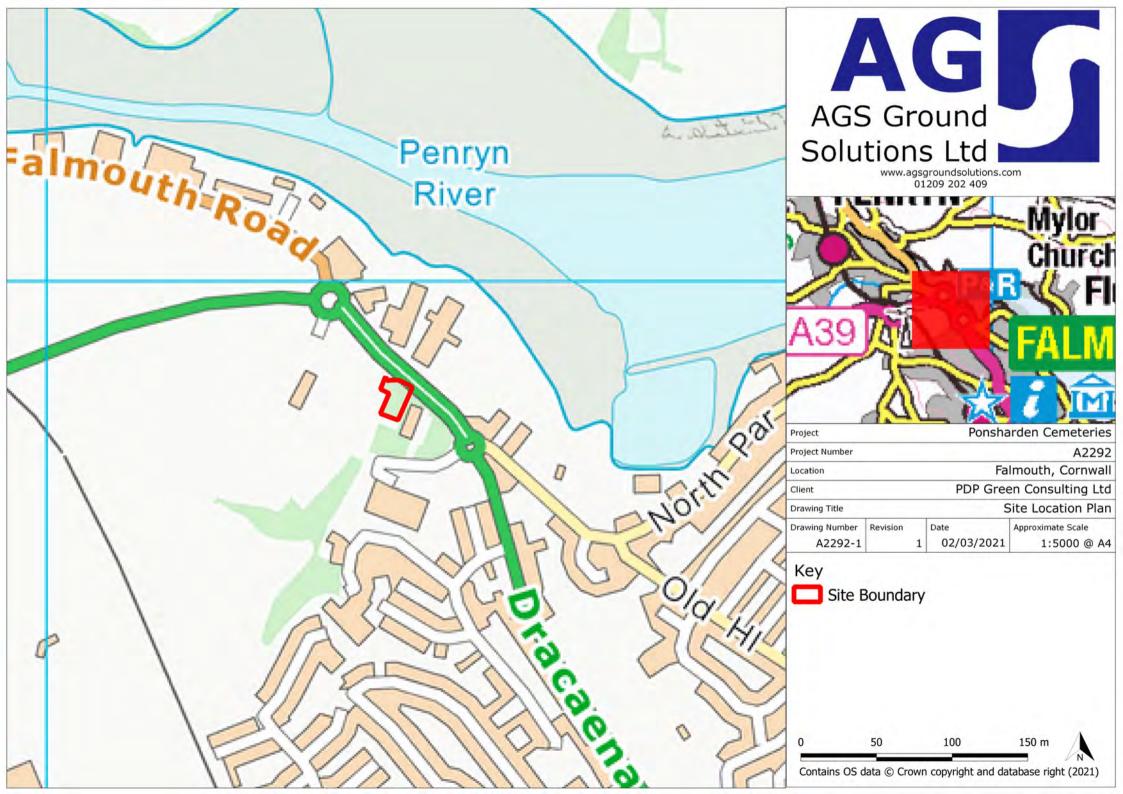
The depth to rock may increase close to the southern boundary of the site, as the natural ground profile slopes to the south.

8. **CONCLUSIONS AND RECOMMENDATIONS**

Based on the intrusive investigation and subsequent laboratory testing, the following conclusions and recommendations have been drawn up in respect to Ponsharden Cemetery, Falmouth.

- The ground investigation identified an upper layer of Made Ground (MGR) to be underlain by Weathered Mylor Slate Formation, with Mylor Slate Formation at depth.
- Groundwater was not encountered within any of the boreholes.
- The ground between 1.0 m and 3.0 m would appear to be suitable for soil nails.
- The ground beyond 3.0 m would appear to be suitable for rock bolts.
- Design parameters for soil nails and rock bolts are presented in chapter 7.

FIGURES:


- Site Location Plan 1.
- 2. Exploratory Hole Location Plan

APPENDICES:

- Site Photographs 1.
- 2.
- Window Sample Holes Logs Geotechnical Laboratory Test Results 3.

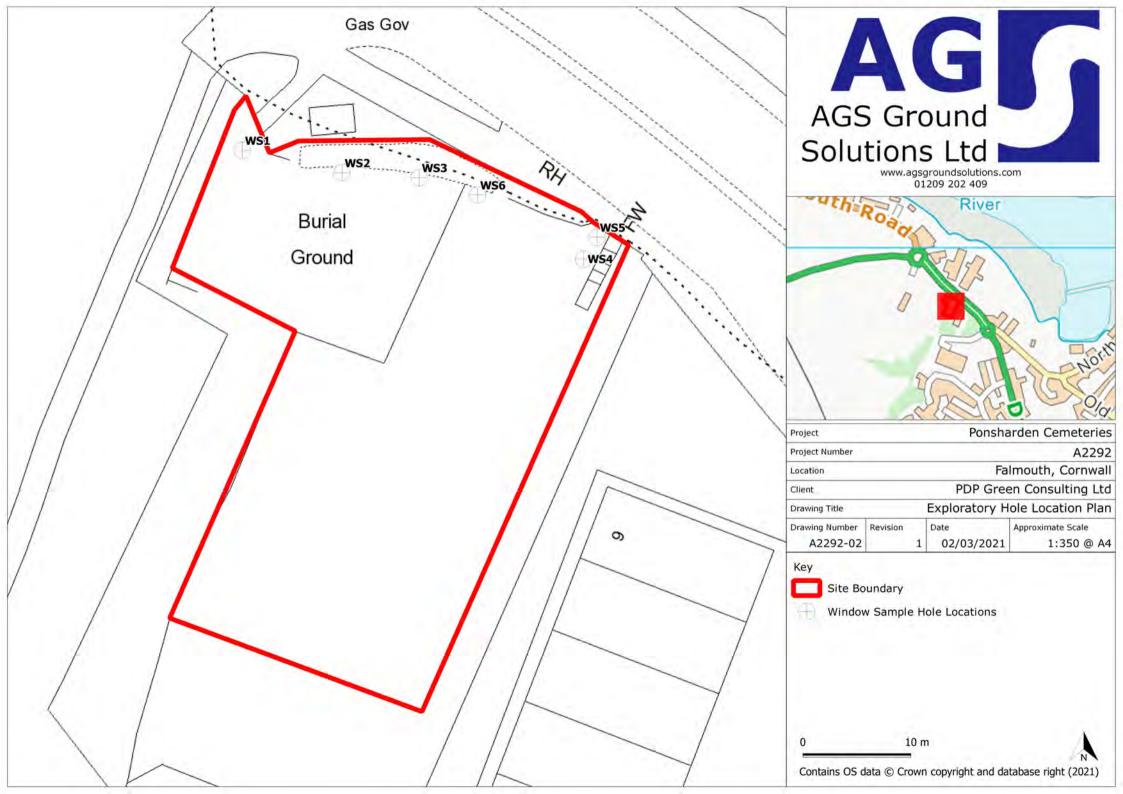


Figure 1 Site Location Plan

Figure 2 Exploratory Hole Location Plan

Appendix 1 Site Photographs

Photograph 1 – Window Sample Hole WS6

Photograph 2 – Window Sample Hole WS5

Photograph 3 – Window Sample Hole WS4

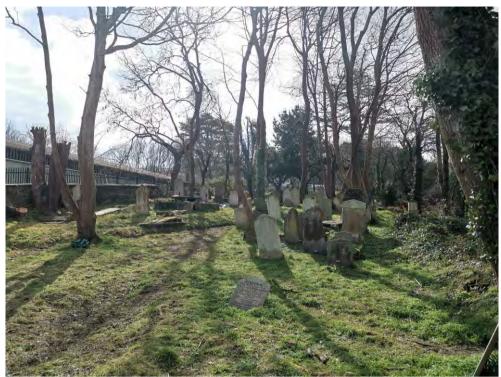
Photograph 4 – Window Sample Hole WS3

Photograph 5 – Window Sample Hole WS2

Photograph 6 – Window Sample Hole WS1

Photograph 7 – General view of southern entrance of access to site, facing north.

Photograph 8 – General view of the southern boundary of site, facing north.



Photograph 9 – General view of the north-western boundary of site, facing north.

Photograph 10 – General view of access to the north-western boundary of site, facing north.

Photograph 11 – General view of the eastern boundary of site, facing south.

Photograph 12 – General view of the western boundary of site, facing west. The geomorphology slopes moderately down to the west.

Photograph 13 – General view of the access of the north-western boundary of site, facing south.

Photograph 14 – General view of the northern boundary of site, facing south. Note the retaining wall showing weathered rock and tree stumps.

Appendix 2 Window Sample Hole Logs

Solutions Ltd		agsgrour	ndsolutions.com	n		Sheet: 1 of 1					
Equipment & Met					Project Name: Ponsharden Cemetery		Job No:				
Modular window sampleSupport Used:None Backfill: Bentonite and arisings			Ised:None		Project Location: Falmouth			A2292			
Baokiii. Borkoriko	and an	onigo			Client: PDP Green Consulting Ltd						
Co-ordinates: E:					Ground Level (m):	Date Started:02/03/2021					
N:						Date Completed:02/03/2021					
Samples	and In	situ Test	ing				Reduced Level		Depth (Thick)		
Depth	No.	Туре	Result	Field Records	DESCRIPTION		(m)	Legend	(m)		
(m)	140.	1,750	rtocuit								
_					MADE GROUND: Brown gravelly topsoil with	tree roots		$\times\!\!\times\!\!\times\!\!\times$			
_					(Made Ground)				(0.30)		
_							-0.30		0.30		
_					Stiff brown/grey gravelly CLAY. Gravel is in all sub-angular slate	oundance sub-rounded to			-		
<u> </u>					(Mylor Slate Formation)				┝		
_ 0.50- 0.70	WS1	D							<u>-</u>		
_									<u>†</u>		
_ 0.80- 1.00	WS1	D							_ _ (1.20)		
_			0.40								
_			C 12	3,3/3,3,3,3					_		
_				0,0,0,0,0					-		
_ 1.20- 1.40	WS1	D			from 1.20 Quartz cobble				-		
_									}		
4.50.4.70	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_			Moderately weak to moderately strong brown/	grev METAMUDSTONE	-1.50		1.50		
_ 1.50- 1.70	WS1	D			Moderately weak to moderately strong brown/g Very weak thin laminae 1 to 4 mm. Arising as	a silty gravel			}		
_					(Mylor Slate Formation)				}		
_ 1.80- 2.00	WS1	D							[
_			0.00					*******			
_			C 22	6,7/5,6,5,6					1		
_				3,770,0,0,0					}-		
2.20- 2.40	WS1	D							}		
_									}		
2.50, 2.70	WC1	_							-		
_ 2.50- 2.70	WS1	D							}		
_]		
2.80- 3.00	WS1	D			from 2.70 Quartz gravel			*******	[
_			C 37						(2.94)		
_			C 31	7,8/7,9,9,12]		
_ 3.10- 3.30	WS1	D							}		
_									}-		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_							}		
3.40- 3.60	WS1	D							-		
_									[
_								******			
_ 3.80- 4.00	WS1	D							}		
_			C 53						-		
_			.	9,9/10,15,15,10/60				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	}		
_				mm					}		
_									<u> </u>		
_							-4.44		4.44		
							End	of W/S 4.4	14 m		
								ness of bas			
								not broveri	,		
Remarks:							Logged	By: Ch-	cked By:		
Core recovery:									ольи ву.		
0 - 1m 65%							CS Scale:		oved By:		
1 - 2m 90% 2 - 3m 100%							1:25	, 456			
3 - 4m 100%							FIG No.				
Notes: For aval-	ation of	evmhala	and abbrovice	ione eac Kou Chast							
Notes: For explan	auon of	syrnbols	anu addreviati	ions, see Key Sheet.							

Solutions Ltd		agsgrou	ndsolutions.cor	m		Sheet: 1 of 1					
Equipment & Meth					Project Name: Ponsharden Cemetery		Job No:				
Modular window s Backfill: Bentonite	ampleS	Support U	Jsed:None		Project Location: Falmouth		A2292				
Dackiiii. Deritoriite	anu an	isiriys			Client: PDP Green Consulting Ltd						
					Client: PDP Green Consulting Ltd						
Co-ordinates:					Ground Level (m):	Date Started:02/03/2021					
E: N:						Date Completed:02/03/2021					
Samples	and In	situ Test	ting				Reduced		Depth		
				Field Records	DESCRIPTION		Level (m)	Legend	(Thick) (m)		
Depth (m)	No.	Туре	Result								
					MADE GROUND: Turf over dark brown topso	il					
_					(Made Ground)				(0.30)		
0.20- 0.40	WS2	D					-0.30	\bowtie	0.30		
_					Stiff brown/grey gravelly CLAY. Gravel is fine	- medium sub-rounded to		0			
<u> </u>					sub-angular slate (Mylor Slate Formation)				_		
_ 0.50- 0.70	WS2	D			, , , , , , , , , , , , , , , , , , , ,				7-		
_									(0.80)		
_		_									
_ 0.80- 1.00	WS2	D							+		
_ 1.00- 1.20	WS2	D	C 22				-1.10		1.10		
_ 1.00 1.20	1102			4,5/5,5,5,7	Moderately weak to moderately strong brown/g Arising as weathered rock	grey METAMUDSTONE.	""	*****	₹ […]		
_					Arising as weathered rock (Mylor Slate Formation)				3-		
-					(in great contracting)				}-		
1.40- 1.60	WS2	D						******	҈├		
-									(1.13)		
_									☆		
_ 1.80- 2.00	WS2	D							[]		
<u>_</u>			C 84						<u></u>		
-			0.04	15,10/50					}		
<u>_</u>				mm/16,20,14/30 mm			-2.23	······	2.23		
							End	of W/S 2	.23 m		
							(Thickr	ness of ba	sal layer		
							'	not prover	۱)		
Remarks: Core recovery:							Logged	By: Ch	ecked By:		
-							CS				
0 - 1m 75% 1 - 2m 100%							Scale: 1:25	App	proved By:		
							FIG No.				
Notes: For avalor	ation of	evmhal-	and obbrovicti	ions see Key Sheet			I IG INO.				

Solutions Ltd		agsgrour	ndsolutions.cor	n		Sheet: 1 of 1					
Equipment & Meth					Project Name: Ponsharden Cemetery	Job No:					
Modular window s Backfill: Bentonite	ampleS	Support L	Jsed:None		Project Location: Falmouth		A2292				
Design. Demonite and arbitrige					Client: PDP Green Consulting Ltd						
					Olone. 1 Dr. Green consulting Eta						
Co-ordinates: E:					Ground Level (m):	Date Started:02/03/2021					
N:						Date Completed:02/03/2021	1				
Samples	and In	situ Test	ing		DECODIDEION		Reduced Level	1	Depth (Thick)		
Depth	No.	Туре	Result	Field Records	DESCRIPTION		(m)	Legend	(m)		
(m)					MADE COOLIND. Turk avera deals have a sure			XXXXX	1		
-					MADE GROUND: Turf over dark brown grave rootlets	iy ciayey topsoli with		$\times\!\!\times\!\!\times\!\!\times$	(0.30)		
_					(Made Ground)		-0.30		0.30		
_ 0.30- 0.50	WS3	D			Stiff brown/grey slightly gravelly CLAY. Gravel	is fine - coarse			0.50		
_					subangular - subrounded slate (Mylor Slate Formation)				L		
-					(infroi ciate i cimation)				}		
_									+		
0.70- 1.00	WS3	D							}		
_			0.47						(1.30)		
_			C 17	3,4/3,4,6,4					<u>.</u>		
_ 1.10- 1.30	WS3	D							}		
_									-		
_									Ĺ		
_ 1.50- 1.70	WS3	D					-1.60		1.60		
_					Moderately weak to moderately strong grey Millaminae observed	UDSTONE. Very rare thin			-		
_		_			(Mylor Slate Formation)			*******	+		
_ 1.80- 2.00	WS3	D							}		
_			C 21	4,4/3,5,6,7							
_ 2.10- 2.30	WS3	D		4,4/3,5,6,7					}		
-									}		
0.40.000	14/00	_							_ _(1.78)		
2.40- 2.60	WS3	D							(1.70)		
					from 2.50 Behaving as intact rock in modera	ately strong slate		******			
_									}		
_ 2.80- 3.00	WS3	D							-		
_			C 100						}		
_				10,10/18,30,20/0 mm							
_									}		
							-3.38	LYNNA NA	3.38		
								of W/S 3.3			
							(THICK	ness of bas not proven))		
Dame :l							1	Dun Ci	alcad D		
Remarks: Core recovery:							Logged		cked By:		
0 - 1m 70%							CS Scale:		roved By:		
1 - 2m 90% 2 - 3m 80%						1:25	Appi	этой Бу.			
							FIG No.				
Notes: For explanation of symbols and abbreviations, see Key Sheet.											

Solutions Ltd	agsgrour	ndsolutions.com	Sheet: 1 of 1							
Equipment & Methods.					Project Name: Ponsharden Cemetery	ery Job No:				
Modular window sampleSupport Used:None Backfill: Bentonite and arisings					Project Location: Falmouth		A2292			
Davidii. Dorionito di a difonigo					Client: PDP Green Consulting Ltd					
					Cheric. FDF Green Consularing Eta					
Co-ordinates: E:					Ground Level (m):	Date Started:02/03/2021				
N:						Date Completed:02/03/2021				
Samples	and In	situ Test	ing		PEOPLITION		Reduced Level	l	Depth (Thick)	
Depth (m)	No.	Туре	Result	Field Records	DESCRIPTION		(m)	Legend	(m)	
-					MADE GROUND: Brown gravelly topsoil with medium subrounded imported granitic (Made Ground)	tree roots. Gravel is fine -			- - - (0.75)	
0.50- 0.70	WS4	D							-	
- - _ 0.80- 1.00	WS4	D			Stiff brown/grey gravelly CLAY. Gravel is fine subrounded slate and flint (Mylor Slate Formation)	- coarse subangular -	-0.75		0.75 - -	
-			C 5	1,2/1,1,2,1					-	
_ _ 1.30- 1.50 _	WS4	D							- - - (1.55)	
_ 1.50- 1.70	WS4	D							-	
_ 1.80- 2.00 	WS4	D	C 21		from 1.70 Increased in weathered gravel				- -	
_ _ 2.10- 2.30	WS4	D	021	1,3/6,4,6,5			-2.30		- - _ 2.30	
- - _ 2.40- 2.60	WS4	D			Moderately weak - moderately strong grey/bro Very thin laminae 1 - 4 mm. Rare quartz grave gravel (Mylor Slate Formation)	wn METAMUDSTONE. el. Arising as a clayey	-2.30		- - -	
- - 2.70- 3.00 -	WS4	D	C 64						- - (1.09) -	
- -				8,14/18,18,12,21/10 mm					- - -	
								of W/S 3.3		
								ness of bas not proven)		
Remarks:							Logged	IBv: Che	cked By:	
Core recovery:							CS			
0 - 1m 80% 1 - 2m 80% 2 - 3m 90%						Scale: 1:25		oved By:		
							FIG No.			
Notes: For explanation of symbols and abbreviations, see Key Sheet.										

Solutions Ltd		agsgrour	ndsolutions.cor	m		Sheet: 1 of 1				
Equipment & Methods.					Project Name: Ponsharden Cemetery	Job No:				
Modular window sampleSupport Used:None Backfill: Bentonite and arisings					Project Location: Falmouth		A2292			
Dackiiii. Deriioriile anu ansmys					Client: PDP Green Consulting Ltd					
					Client. PDP Green Consulting Ltd					
Co-ordinates: E:					Ground Level (m):	Date Started:02/03/2021				
N:						Date Completed:02/03/2021				
Samples	and In	situ Test	ing						Depth (Thick)	
Depth (m)	No.	Туре	Result	Field Records	DESCRIPTION		Level (m)	Legend	(m)	
_					MADE GROUND: Brown gravelly topsoil with (Made Ground)			(0.30)		
_							0.00		0.30	
_ 0.30- 0.50	1	D			Stiff brown/grey gravelly CLAY. Gravel is in abundance subrounded to		-0.30	<u> </u>	0.30	
_	·				subangular slate (Mylor Slate Formation)				Ĺ	
_					(imploi Glate i Gilliation)				1	
-									-	
0.70- 1.00	1	D							1	
_									†	
_			C 12	2,2/3,2,3,4					(1.50)	
_ 1.10- 1.30	1	D		2,2/3,2,3,4						
_									+	
_									}	
 _ 1.50- 1.70	2	D							<u> </u>	
		_								
-					M. d. add and a second a second and a second a second and		-1.80		1.80	
_ 1.80- 2.00	2	D			Moderately weak to moderately strong brown/y Very weak thin laminae 1 to 4 mm. Arising as	grey METAMODSTONE. a silty gravel		*******	-	
_			C 28		(Mylor Slate Formation)				}	
_ _ 2.10- 2.30	2	D		3,4/6,6,7,8						
-									}	
-									}	
_ 2.40- 2.60	3	D						*******	-	
_									- (1.62)	
									<u> </u>	
_ 2.80- 3.00	3	D							}	
_			C 50						}-	
_				17,8/50 mm/27,23/70 mm					-	
_				11111/27,23/70111111					}	
							-3.42	******	3.42	
								of W/S 3.4		
							(Thickr	ness of bas	sal layer	
								not proven)	
_							<u> </u>			
Remarks:							Logged		cked By:	
							CS Scale:		roved By:	
							1:25	App	oveu by.	
							FIG No.			
Notes: For explanation of symbols and abbreviations, see Key Sheet.										

AGS Ground Solutions Ltd 4 Bond Street, Redruth, Cornwall TR15 2QB 01209 202 409 agsgroundsolutions.com

AGS-GS STANDARD WINDOW SAMPLER LOG V2 A2292 PONSHARDEN.GPJ GSG-AGS3-STD TEMPLATE.GDT 25/3/21

Solutions Ltd	agsgrou	ndsolutions.com	Sheet: 1 of 1							
Equipment & Meth Modular window s Backfill: Bentonite	ample	rigSuppo sings	ort Used:None		Project Name: Ponsharden Cemetery Project Location: Falmouth		Job No: A2292			
Co-ordinates: E:					Client: PDP Green Consulting Ltd Ground Level (m):	Date Started:02/03/2021 Date Completed:02/03/2021				
N:		-:4- T4	u				Reduced		Depth	
Samples Depth (m)	No.	Type	Result	Field Records	DESCRIPTION	DESCRIPTION			(Thick) (m)	
- _ 0.10- 0.30 -	WS6	D			MADE GROUND: Brown gravelly topsoil with tree roots (Made Ground) Stiff brown/grey gravelly CLAY. Gravel is in abundance subrounded to				(0.30)	
0.40- 0.60 	WS6	D			subangular slate (Mylor Slate Formation)	oundance subjourned to			- - - -	
_ _ 0.80- 1.00 _ -	WS6	D	C 2	1,0/1,1,0,0					(1.00) - - -	
_ 1.10- 1.30 - - _ 1.40- 1.60	WS6	D D		1,0/1,1,0,0	Moderately weak to moderately strong brown/y Very weak thin laminae 1 to 4 mm. Arising as (Mylor Slate Formation)	grey METAMUDSTONE. a silty gravel	1.30		1.30	
- - - 1.80- 2.00	WS6		0.07		(Mylor State Pormation)				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
_ 2.10- 2.30 2.40- 2.60	WS6	D D	C 27	4,5/5,6,6,10					(1.93)	
- - - 2.70- 3.00	WS6								, , , , ,	
- - -			C 50	8,13/19,31/0 mm			-3.23		3.23	
							(Thickr	of W/S 3.3 ness of bas not proven	al layer	
Remarks:			-				Logged	By: Che	cked By:	
Core recovery: 0 - 1m 100% (0m - 1m) 1 - 2m 80% (1.2 - 2m) 2 - 3m 100% (2 - 3m)						CS Scale: 1:25		roved By:		
Notes: For evaluation of symbols and abbreviations, see Key Sheet							FIG No.	FIG No.		

Appendix 3 Geotechnical Laboratory Test Results

Unit 8 Harrowden Road
Brackmills Industrial Estate

lastic Limits
Northampton NN4 7EB

Environmental Science

Liquid and Plastic Limits

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: AGS Ground Solutions Ltd

Client Address: 4 Bond Street, Redruth,

Cornwall, TR15 2QB

Contact: Chloe Sheppard-Muir
Site Address: Ponsharden Cementry

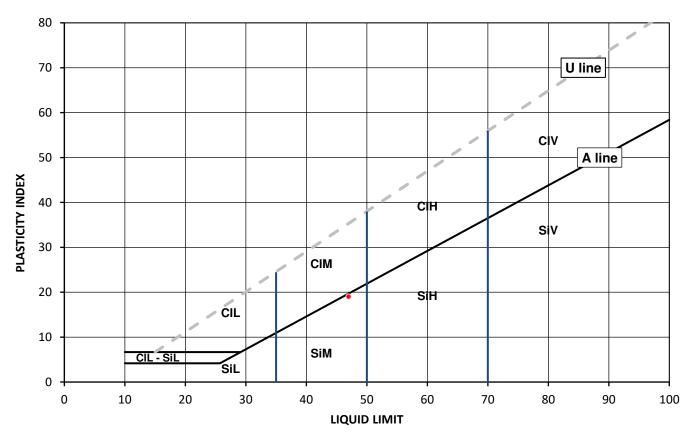
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: A2292 Job Number: 21-61887 Date Sampled: 03/03/2021

i2 Analytical Ltd

Date Sampled: 03/03/2021 Date Received: 10/03/2021 Date Tested: 19/03/2021

Sampled By: Client


Test Results:

Laboratory Reference:1799098Depth Top [m]: 1.50Hole No.:WS1Depth Base [m]: 1.70Sample Reference:Not GivenSample Type: D

Soil Description: Dark brown clayey very sandy very silty GRAVEL

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
12	47	28	19	27

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Bushele

Monika Janoszek

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: AGS Ground Solutions Ltd

Client Address: 4 Bond Street, Redruth,

Cornwall, TR15 2QB

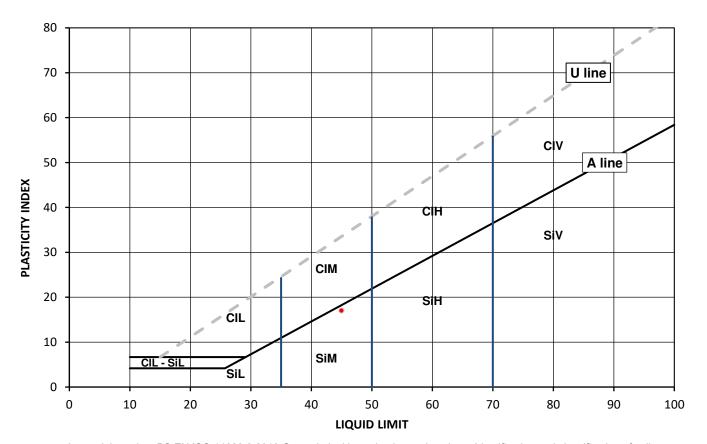
Contact: Chloe Sheppard-Muir
Site Address: Ponsharden Cementry

The Address.

Client Reference: A2292
Job Number: 21-61887
Date Sampled: 03/03/2021
Date Received: 10/03/2021
Date Tested: 19/03/2021

Sampled By: Client

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Test Results:

Laboratory Reference:1799099Depth Top [m]: 2.50Hole No.:WS1Depth Base [m]: 2.70Sample Reference:Not GivenSample Type: D

Soil Description: Dark brown very clayey very sandy silty GRAVEL

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
10	45	28	17	37

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed:

Monika Janoszek
PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Liquid and Plastic Limits

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

AGS Ground Solutions Ltd Client:

Client Address: 4 Bond Street, Redruth,

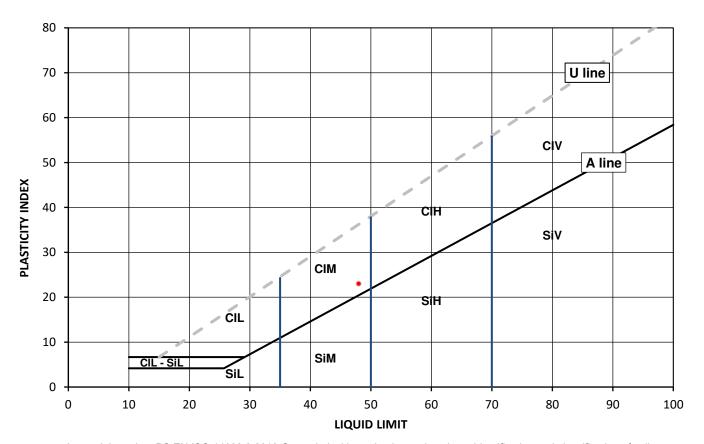
Cornwall, TR15 2QB

Contact: Chloe Sheppard-Muir Site Address: Ponsharden Cementry

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: A2292 Job Number: 21-61887 Date Sampled: 03/03/2021 Date Received: 10/03/2021

> Date Tested: 19/03/2021 Sampled By: Client


Test Results:

Laboratory Reference: 1799100 Depth Top [m]: 2.80 WS1 Depth Base [m]: 3.00 Hole No.: Sample Reference: Not Given Sample Type: D

Soil Description: Dark brown clayey very sandy silty GRAVEL

Tested after >425um removed by hand Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
6.8	48	25	23	21

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: Harika

Monika Janoszek

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: AGS Ground Solutions Ltd

Client Address: 4 Bond Street, Redruth,

Cornwall, TR15 2QB

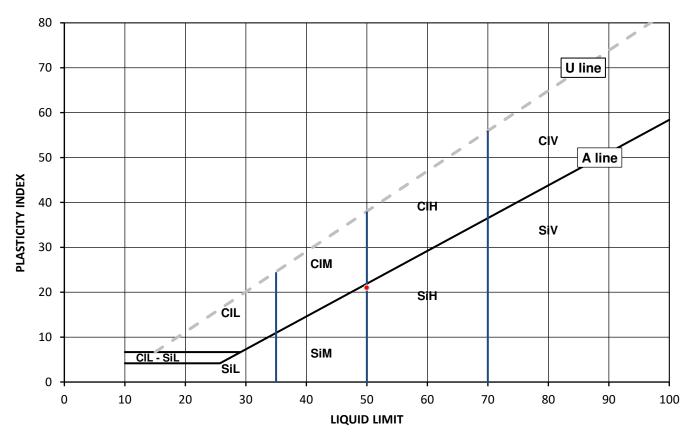
Contact: Chloe Sheppard-Muir
Site Address: Ponsharden Cementry

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: A2292 Job Number: 21-61887 Date Sampled: 03/03/2021

Date Received: 10/03/2021 Date Tested: 19/03/2021 Sampled By: Client

Testing carried out at iz Arialytical Elitheut, dr. Floriletow 39, 41-711 Nuda Siaska, Foland


Test Results:

Laboratory Reference:1799101Depth Top [m]: 3.80Hole No.:WS1Depth Base [m]: 4.00Sample Reference:Not GivenSample Type: D

Soil Description: Dark brown sandy silty very gravelly SHALES

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
7.1	50	29	21	22

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed:

Monika Janoszek

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Unit 8 Harrowden F Brackmills Industria astic Limits Northampton NN4

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Liquid and Plastic Limits

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: AGS Ground Solutions Ltd

Client Address: 4 Bond Street, Redruth,

Cornwall, TR15 2QB

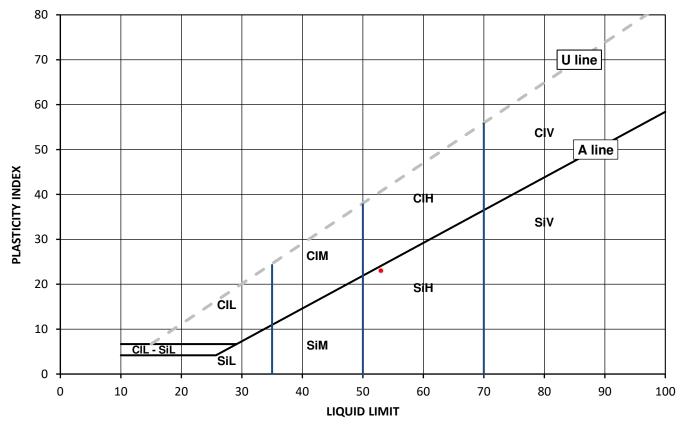
Contact: Chloe Sheppard-Muir
Site Address: Ponsharden Cementry

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: A2292
Job Number: 21-61887
Date Sampled: 03/03/2021
Date Received: 10/03/2021
Date Tested: 19/03/2021

Sampled By: Client

Testing carried out at 12 Analytical Elimited, dr. Floritoriow 35, 41771 Adda Glaska, Folding


Test Results:

Laboratory Reference:1799102Depth Top [m]: 1.40Hole No.:WS2Depth Base [m]: 1.60Sample Reference:Not GivenSample Type: D

Soil Description: Dark brown clayey silty sandy GRAVEL

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
16	53	30	23	43

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Janoszek

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

GF 232.10

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: AGS Ground Solutions Ltd

Client Address: 4 Bond Street, Redruth,

Cornwall, TR15 2QB

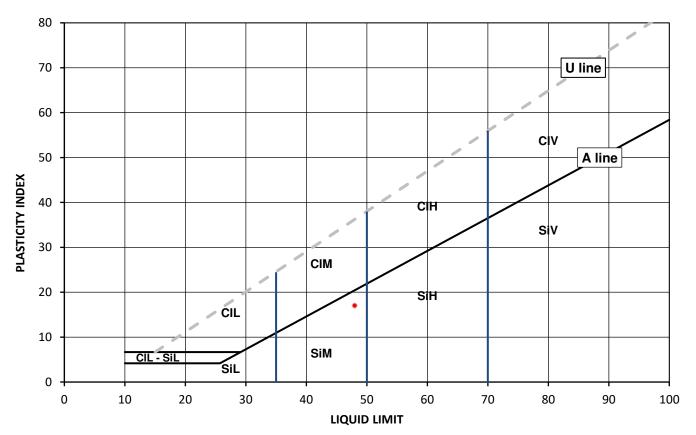
Contact: Chloe Sheppard-Muir
Site Address: Ponsharden Cementry

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: A2292
Job Number: 21-61887
Date Sampled: 03/03/2021
Date Received: 10/03/2021
Date Tested: 19/03/2021

Sampled By: Client

Testing carried out at iz Arialytical Elitheut, dr. Floriletow 39, 41-711 Nuda Siaska, Foland


Test Results:

Laboratory Reference:1799103Depth Top [m]: 1.50Hole No.:WS3Depth Base [m]: 1.70Sample Reference:Not GivenSample Type: D

Soil Description: Brown very sandy very clayey very silty GRAVEL

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
13	48	31	17	39

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt М Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Janoszek

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Client:

TEST CERTIFICATE

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5 AGS Ground Solutions Ltd

Client Address: 4 Bond Street, Redruth,

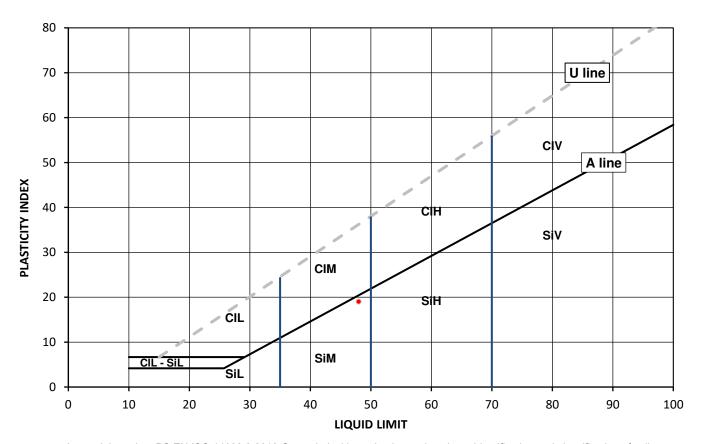
Cornwall, TR15 2QB

Contact: Chloe Sheppard-Muir Site Address: Ponsharden Cementry

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: A2292 Job Number: 21-61887 Date Sampled: 03/03/2021 Date Received: 10/03/2021 Date Tested: 19/03/2021

Sampled By: Client


Test Results:

Laboratory Reference: 1799104 Depth Top [m]: 2.80 WS3 Depth Base [m]: 3.00 Hole No.: Sample Reference: Not Given Sample Type: D

Soil Description: Dark brown clayey sandy silty GRAVEL

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
6.4	48	29	19	22

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed: Harika

Monika Janoszek

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing. Bushele

Page 1 of 1 **Date Reported: 24/03/2021** GF 232.10

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Liquid and Plastic Limits

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

AGS Ground Solutions Ltd Client:

Client Address: 4 Bond Street, Redruth,

Cornwall, TR15 2QB

Contact: Chloe Sheppard-Muir Site Address: Ponsharden Cementry

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: A2292 Job Number: 21-61887

Date Sampled: 03/03/2021 Date Received: 10/03/2021 Date Tested: 19/03/2021

Sampled By: Client


Test Results:

Laboratory Reference: 1799105 Depth Top [m]: 1.50 WS4 Depth Base [m]: 1.70 Hole No.: Sample Reference: Not Given Sample Type: D

Soil Description: Dark brown sandy clayey silty GRAVEL

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
14	58	31	27	29

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: Harika

Monika Janoszek

PL Deputy Head of Geotechnical Section

Bushele Page 1 of 1 for and on behalf of i2 Analytical Ltd

Date Reported: 24/03/2021

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: AGS Ground Solutions Ltd

Client Address: 4 Bond Street, Redruth,

Cornwall, TR15 2QB

Contact: Chloe Sheppard-Muir
Site Address: Ponsharden Cementry

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: A2292
Job Number: 21-61887
Date Sampled: 03/03/2021
Date Received: 10/03/2021
Date Tested: 19/03/2021

Sampled By: Client

Depth Top [m]: 2.40

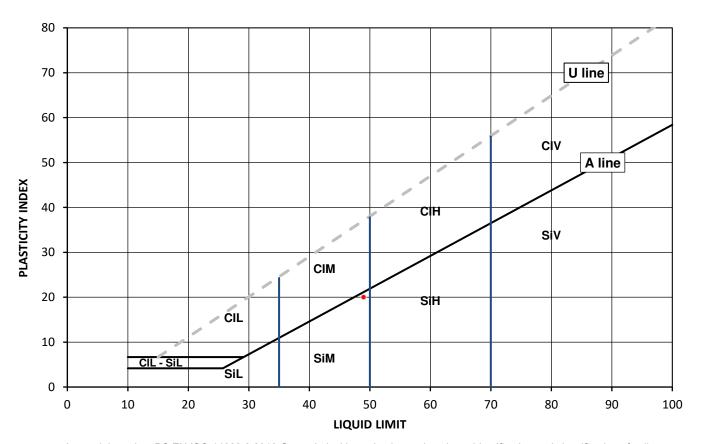
Depth Base [m]: 2.60

Sample Type: D

Toot Docultor

Test Results:

Laboratory Reference: 1799106


Hole No.: WS4

Sample Reference: Not Given

Soil Description: Dark brown sandy clayey silty GRAVEL

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
7.4	49	29	20	23

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Bushele

Monika Janoszek
PL Deputy Head of Geotechnical Section

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

AGS Ground Solutions Ltd Client:

Client Address: 4 Bond Street, Redruth,

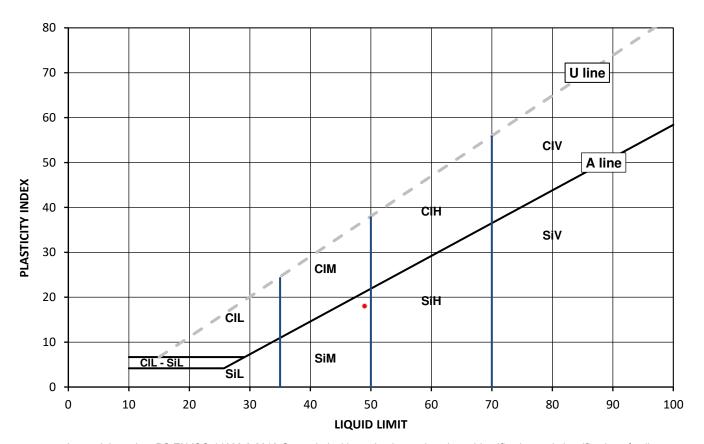
Cornwall, TR15 2QB

Contact: Chloe Sheppard-Muir Site Address: Ponsharden Cementry

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: A2292 Job Number: 21-61887 Date Sampled: 03/03/2021 Date Received: 10/03/2021 Date Tested: 19/03/2021

Sampled By: Client


Test Results:

Laboratory Reference: 1799107 Depth Top [m]: 1.50 WS5 Depth Base [m]: 1.70 Hole No.: Sample Reference: Not Given Sample Type: D

Soil Description: Dark brown clayey sandy silty GRAVEL with fragments of shale

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
12	49	31	18	26

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: Harika

Monika Janoszek

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Bushele

Date Reported: 24/03/2021

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: AGS Ground Solutions Ltd

Client Address: 4 Bond Street, Redruth,

Cornwall, TR15 2QB

Contact: Chloe Sheppard-Muir

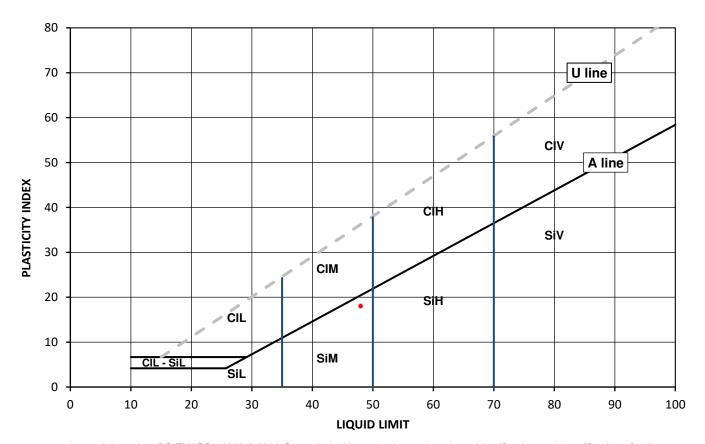
Site Address: Ponsharden Cementry

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: A2292 Job Number: 21-61887 Date Sampled: 03/03/2021 Date Received: 10/03/2021

> Date Tested: 19/03/2021 Sampled By: Client

resting carried out at iz Arialytical Littileu, di. Plotiletow 59, 41-711 Ruda Slaska, Polatic


Test Results:

Laboratory Reference:1799108Depth Top [m]: 2.80Hole No.:WS5Depth Base [m]: 3.00Sample Reference:Not GivenSample Type: D

Soil Description: Dark brown clayey sandy silty GRAVEL

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
15	48	30	18	24

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Janoszek

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

suing or testing.

Page 1 of 1

ioi and on benan of 12 Analytical Ltd

Date Reported: 24/03/2021

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Liquid and Plastic Limits

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

AGS Ground Solutions Ltd Client:

Client Address: 4 Bond Street, Redruth,

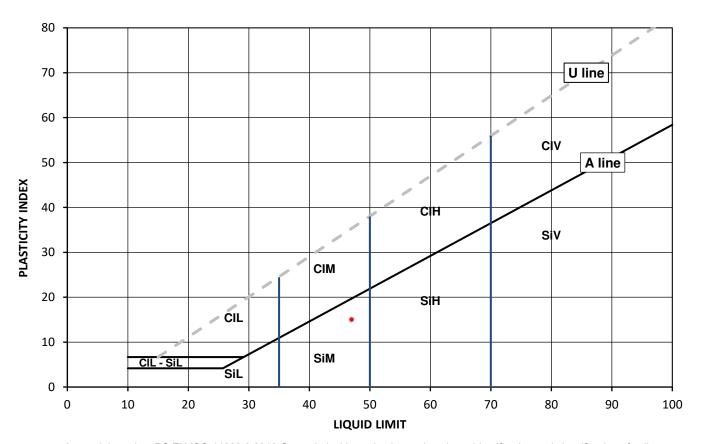
Cornwall, TR15 2QB

Contact: Chloe Sheppard-Muir Site Address: Ponsharden Cementry

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: A2292 Job Number: 21-61887 Date Sampled: 03/03/2021 Date Received: 10/03/2021 Date Tested: 19/03/2021

Sampled By: Client


Test Results:

Laboratory Reference: 1799109 Depth Top [m]: 1.40 WS6 Depth Base [m]: 1.60 Hole No.: Sample Reference: Not Given Sample Type: D

Soil Description: Dark brown sandy very clayey very silty GRAVEL

Sample Preparation: Tested after washing to remove >425um

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
15	47	32	15	39

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: Harika

Monika Janoszek

Date Reported: 24/03/2021

PL Deputy Head of Geotechnical Section

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Bushele

for and on behalf of i2 Analytical Ltd

GF 232.10

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

AGS Ground Solutions Ltd Client:

Client Address: 4 Bond Street, Redruth,

Cornwall, TR15 2QB

Contact: Chloe Sheppard-Muir Site Address: Ponsharden Cementry

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: A2292 Job Number: 21-61887 Date Sampled: 03/03/2021

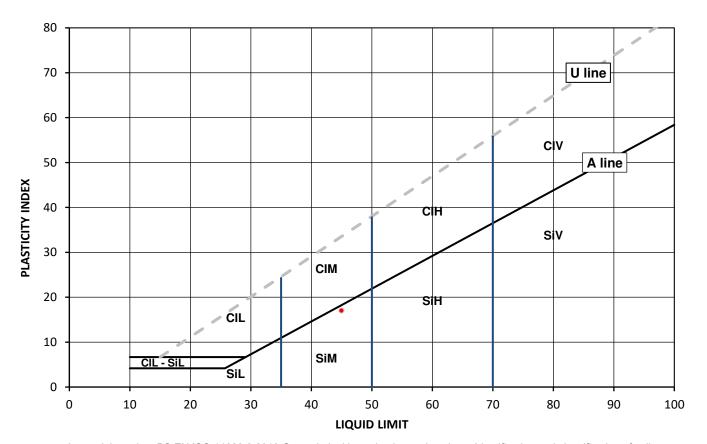
Date Received: 10/03/2021 Date Tested: 19/03/2021

Sampled By: Client

Depth Top [m]: 2.70

Depth Base [m]: 3.00

Sample Type: D


Test Results:

Laboratory Reference: 1799110 WS6 Hole No.: Sample Reference: Not Given

Soil Description: Brown clayey silty sandy GRAVEL

Tested after washing to remove >425um Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
13	45	28	17	44

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed: Harika

Monika Janoszek PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

Summary of Classification Test Results

Tested in Accordance with:

Client: AGS Ground Solutions Ltd Moisture Content by BS 1377-2: 1990: Clause 3.2; Water Content by BS EN 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

Client Address: 4 Bond Street, Redruth, Cornwall, TR15 2QB

Chloe Sheppard-Muir Contact: Site Address: Ponsharden Cementry

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written

approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: A2292

Job Number: 21-61887 Date Sampled: 03/03/2021 Date Received: 10/03/2021

Date Tested: 19/03/2021

Sampled By: Client

Test results

			Sample	2				Content	Content W]		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Moisture Co	Water Coni [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
1799098	WS1	Not Given	1.50	1.70	D	Dark brown clayey very sandy very silty GRAVEL	Atterberg 1 Point	12		27	47	28	19					
1799099	WS1	Not Given	2.50	2.70	D	Dark brown very clayey very sandy silty GRAVEL	Atterberg 1 Point	10		28	45	28	17					
1799100	WS1	Not Given	2.80	3.00	D	Dark brown clayey very sandy silty GRAVEL	Atterberg 1 Point	6.8		21	48	25	23					
1799101	WS1	Not Given	3.80	4.00	D	Dark brown sandy silty very gravelly SHALES	Atterberg 1 Point	7.1		22	50	29	21					
1799102	WS2	Not Given	1.40	1.60	D	Dark brown clayey silty sandy GRAVEL	Atterberg 1 Point	16		43	53	30	23					
1799103	WS3	Not Given	1.50	1.70	D	Brown very sandy very clayey very silty GRAVEL	Atterberg 1 Point	13		39	48	31	17					
1799104	WS3	Not Given	2.80	3.00	D	Dark brown clayey sandy silty GRAVEL	Atterberg 1 Point	6.4		22	48	29	19					
1799105	WS4	Not Given	1.50	1.70	D	Dark brown sandy clayey silty GRAVEL	Atterberg 1 Point	14		29	58	31	27					
1799106	WS4	Not Given	2.40	2.60	D	Dark brown sandy clayey silty GRAVEL	Atterberg 1 Point	7.4		23	49	29	20					
1799107	WS5	Not Given	1.50	1.70	D	Dark brown clayey sandy silty GRAVEL with fragments of shale	Atterberg 1 Point	12		26	49	31	18					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Houke

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

GF 234.12 Page 1 of 1 Date Reported: 24/03/2021

Summary of Classification Test Results

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Client Address: AGS Ground Solutions Ltd

4 Bond Street, Redruth,

Moisture Content by BS 1377-2: 1990: Clause 3.2; Water Content by BS EN 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

Client Reference: A2292

Job Number: 21-61887 Date Sampled: 03/03/2021 Date Received: 10/03/2021

Date Tested: 19/03/2021

Sampled By: Client

Contact: Chloe S

Chloe Sheppard-Muir Ponsharden Cementry

Cornwall, TR15 2QB

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

Site Address:

			Sample	2				ntent	tent		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Moisture Content [W]	Water Content [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%		Mg/m3	Mg/m3	Mg/m3	%	
1799108	WS5	Not Given	2.80	3.00	D	Dark brown clayey sandy silty GRAVEL	Atterberg 1 Point	15		24	48	30	18					
1799109	WS6	Not Given	1.40	1.60	D	Dark brown sandy very clayey very silty GRAVEL	Atterberg 1 Point	15		39	47	32	15					
1799110	WS6	Not Given	2.70	3.00	D	Brown clayey silty sandy GRAVEL	Atterberg 1 Point	13		44	45	28	17					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Marika

Monika Janoszek
PL Deputy Head of Geotechnical Section
for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1 **Date Reported:** 24/03/2021

GF 234.12

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: AGS Ground Solutions Ltd Client Reference: A2292
Client Address: Job Number: 21-61887
4 Bond Street, Redruth, Cornwall, TR15 2QB
Date Sampled: 03/03/202

Contact: Chloe Sheppard-Muir Date Sampled: 03/03/2021

Contact: Chloe Sheppard-Muir Date Tested: 19/03/2021

Site Address: Ponsharden Cementry Sampled By: Client


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:1799098Depth Top [m]: 1.50Hole No.:WS1Depth Base [m]: 1.70Sample Reference:Not GivenSample Type: D

Sample Description: Dark brown clayey very sandy very silty GRAVEL

Sample Preparation: Sample was quartered, oven dried at 107.6 °C and broken down by hand.

Siev	ing	Sedime	Sedimentation					
Particle Size mm	% Passing	Particle Size mm	% Passing					
500	100	0.0630	24					
300	100	0.0517	22					
150	100	0.0368	21					
125	100	0.0262	20					
90	100	0.0186	19					
75	100	0.0138	16					
63	100	0.0017	2					
50	100							
37.5	92							
28	92							
20	90							
14	88							
10	82							
6.3	72							
5	69							
3.35	62	Particle density	(assumed)					
2	52	2.65	Mg/m3					
1.18	44							
0.6	35							
0.425	32							
0.3	29							
0.212	27							
0.15	26							
0.063	24	1						

Sample Proportions	% dry mass				
Very coarse	0				
Gravel	48				
Sand	29				
Silt	19				
Clay	4				

Grading Analysis	s	
D100	mm	50
D60	mm	3.08
D30	mm	0.332
D10	mm	0.00537
Uniformity Coefficient		570
Curvature Coefficient		6.7

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed:

Monika Janoszek PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Brokke

Date Reported: 24/03/2021

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Sampled By: Client

 Client:
 AGS Ground Solutions Ltd
 Client Reference:
 A2292

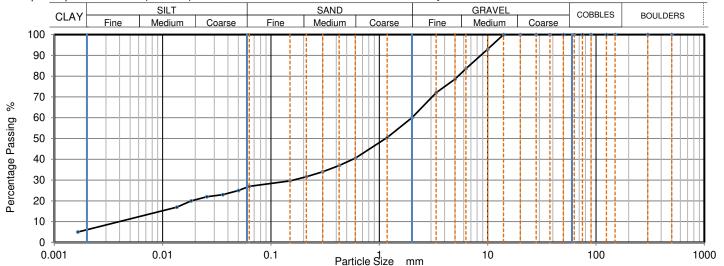
 Client Address:
 4 Bond Street, Redruth, Cornwall, TR15 2QB
 Job Number: 21-61887
 21-61887

 Contact:
 Chloe Sheppard-Muir
 Date Received: 10/03/2021

 Date Tested: 19/03/2021

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:


Site Address:

Laboratory Reference:1799099Depth Top [m]: 2.50Hole No.:WS1Depth Base [m]: 2.70Sample Reference:Not GivenSample Type: D

Sample Description: Dark brown very clayey very sandy silty GRAVEL

Ponsharden Cementry

Sample Preparation: Sample was quartered, oven dried at 107.6 °C and broken down by hand.

Siev	ring	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	27
300	100	0.0502	25
150	100	0.0359	23
125	100	0.0256	22
90	100	0.0183	20
75	100	0.0135	17
63	100	0.0016	5
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	93		
6.3	84		
5	79		
3.35	72	Particle density	(assumed)
2	60	2.65	Mg/m3
1.18	51		_
0.6	41]	
0.425	37		
0.3	34		
0.212	32		
0.15	30]	
0.063	27		

Sample Proportions	% dry mass
Very coarse	0
Gravel	40
Sand	33
Silt	21
Clay	6

Grading Analysis	3	
D100	mm	14
D60	mm	2
D30	mm	0.161
D10	mm	0.00401
Uniformity Coefficient		500
Curvature Coefficient		3.2

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed:

Monika Janoszek
Pl. Deputy Head of Geo

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Page 1 of 1

Brokke

Date Reported: 24/03/2021

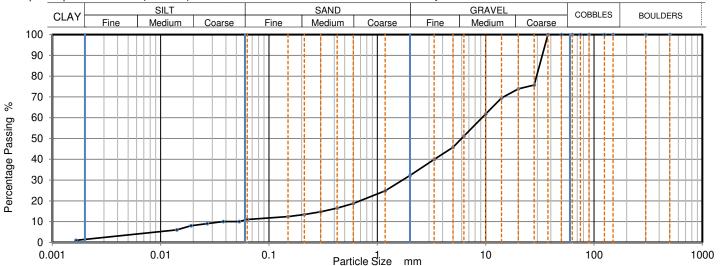
Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

AGS Ground Solutions Ltd Client Reference: A2292 Client: Client Address: Job Number: 21-61887 4 Bond Street, Redruth, Date Sampled: 03/03/2021 Cornwall, TR15 2QB

Date Received: 10/03/2021 Date Tested: 19/03/2021 Contact: Chloe Sheppard-Muir Site Address: Ponsharden Cementry Sampled By: Client


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference: 1799100 Depth Top [m]: 2.80 WS1 Depth Base [m]: 3.00 Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Dark brown clayey very sandy silty GRAVEL

Sample Preparation: Sample was quartered, oven dried at 107.6 °C and broken down by hand.

Siev	ing	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
500	100	0.0630	11			
300	100	0.0530	10			
150	100	0.0377	10			
125	100	0.0268	9			
90	100	0.0191	8			
75	100	0.0141	6			
63	100	0.0017	1			
50	100					
37.5	100					
28	76					
20	74					
14	70					
10	62					
6.3	51					
5	46					
3.35	40	Particle density	(assumed)			
2	32	2.65	Mg/m3			
1.18	25					
0.6	19]				
0.425	17	1				
0.3	15	1				
0.212	13					
0.15	12	1				
0.063	11	1				

Sample Proportions	% dry mass			
Very coarse	0			
Gravel	68			
Sand	21			
Silt	10			
Clay	1			

Grading Analysis	;	
D100	mm	37.5
D60	mm	9.25
D30	mm	1.71
D10	mm	0.0447
Uniformity Coefficient		210
Curvature Coefficient		7.1

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3 Remarks:

> Signed: Hacika

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing. Bushele

Page 1 of 1 **Date Reported: 24/03/2021**

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

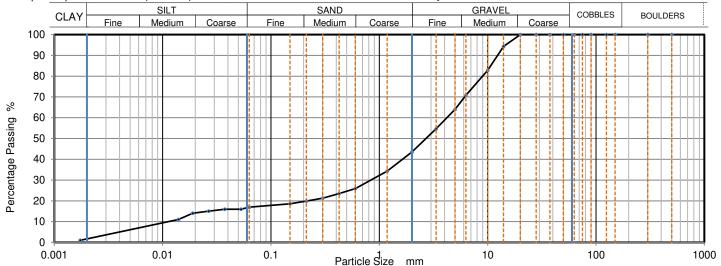
Client: AGS Ground Solutions Ltd
Client Address:

4 Bond Street, Redruth, Cornwall, TR15 2QB

Contact: Chloe Sheppard-Muir
Site Address: Ponsharden Cementry

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: A2292
Job Number: 21-61887
Date Sampled: 03/03/2021
Date Received: 10/03/2021
Date Tested: 19/03/2021


Sampled By: Client

Test Results:

Laboratory Reference:1799101Depth Top [m]: 3.80Hole No.:WS1Depth Base [m]: 4.00Sample Reference:Not GivenSample Type: D

Sample Description: Dark brown sandy silty very gravelly SHALES

Sample Preparation: Sample was quartered, oven dried at 107.6 °C and broken down by hand.

Siev	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	17
300	100	0.0530	16
150	100	0.0375	16
125	100	0.0266	15
90	100	0.0189	14
75	100	0.0140	11
63	100	0.0017	1
50	100		
37.5	100		
28	100		
20	100		
14	94		
10	83		
6.3	71		
5	64		
3.35	55	Particle density	(assumed)
2	44	2.65	Mg/m3
1.18	34		
0.6	26		
0.425	24		
0.3	21	1	
0.212	20		
0.15	19	1	
0.063	17	1	

Sample Proportions	% dry mass
Very coarse	0
Gravel	56
Sand	26
Silt	16
Clay	2

Grading Analysis		
D100	mm	20
D60	mm	4.21
D30	mm	0.835
D10	mm	0.0104
Uniformity Coefficient		400
Curvature Coefficient		16

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed:

Brokke

Monika Janoszek
PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 24/03/2021

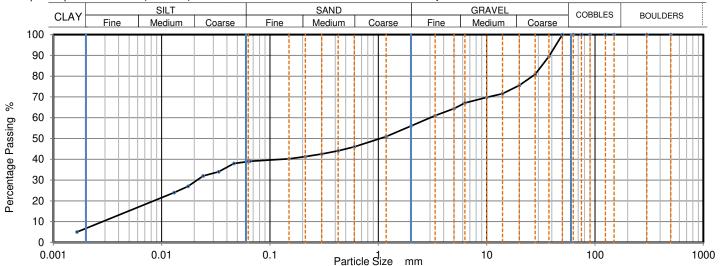
Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: AGS Ground Solutions Ltd Client Reference: A2292
Client Address: Job Number: 21-61887
4 Bond Street, Redruth, Cornwall, TR15 2QB Date Received: 10/03/2021

Contact: Chloe Sheppard-Muir Date Tested: 19/03/2021
Site Address: Ponsharden Cementry Sampled By: Client


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:1799102Depth Top [m]: 1.40Hole No.:WS2Depth Base [m]: 1.60Sample Reference:Not GivenSample Type: D

Sample Description: Dark brown clayey silty sandy GRAVEL

Sample Preparation: Sample was quartered, oven dried at 107.6 °C and broken down by hand.

Siev	ring	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0652	39
300	100	0.0465	38
150	100	0.0336	34
125	100	0.0241	32
90	100	0.0175	27
75	100	0.0130	24
63	100	0.0017	5
50	100		
37.5	90		
28	81		
20	76		
14	72		
10	70		
6.3	67		
5	64		
3.35	61	Particle density	(assumed)
2	56	2.65	Mg/m3
1.18	51		
0.6	46		
0.425	44		
0.3	43		
0.212	41		
0.15	40]	
0.063	39		

Sample Proportions	% dry mass
Very coarse	0
Gravel	44
Sand	17
Silt	33
Clay	6

Grading Analysis		
D100	mm	50
D60	mm	3.01
D30	mm	0.021
D10	mm	0.00295
Uniformity Coefficient		1000
Curvature Coefficient		0.05

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Signed: Marika Brokkle

Monika Janoszek
PL Deputy Head of Geotechnical Section
for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Date Reported: 24/03/2021 GF

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

 Client:
 AGS Ground Solutions Ltd
 Client Reference: A2292

 Client Address:
 Job Number: 21-61887

 4 Bond Street, Redruth, Cornwall, TR15 2QB
 Date Sampled: 03/03/2021

Cornwall, TR15 2QB

Chloe Sheppard-Muir

Ponsharden Cementry

Date Sampled: 05/03/2021

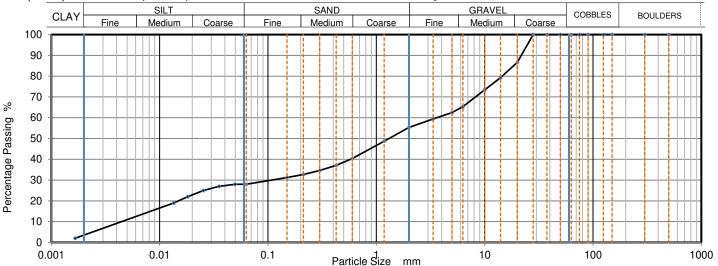
Date Received: 10/03/2021

Date Tested: 19/03/2021

Sampled By: Client

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:


Site Address:

Contact:

Laboratory Reference:1799103Depth Top [m]: 1.50Hole No.:WS3Depth Base [m]: 1.70Sample Reference:Not GivenSample Type: D

Sample Description: Brown very sandy very clayey very silty GRAVEL

Sample Preparation: Sample was quartered, oven dried at 107.6 °C and broken down by hand.

Siev	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	28
300	100	0.0495	28
150	100	0.0353	27
125	100	0.0253	25
90	100	0.0181	22
75	100	0.0135	19
63	100	0.0017	2
50	100		
37.5	100		
28	100		
20	87		
14	79		
10	73		
6.3	65		
5	63		
3.35	59	Particle density	(assumed)
2	55	2.65	Mg/m3
1.18	49		
0.6	40	1	
0.425	37	1	
0.3	35	1	
0.212	33		
0.15	31	1	
0.063	28	1	

Sample Proportions	% dry mass
Very coarse	0
Gravel	45
Sand	27
Silt	24
Clay	4

Grading Analysis	s	
D100	mm	28
D60	mm	3.62
D30	mm	0.103
D10	mm	0.00435
Uniformity Coefficient		830
Curvature Coefficient		0.68

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed:

Brokke

Monika Janoszek PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

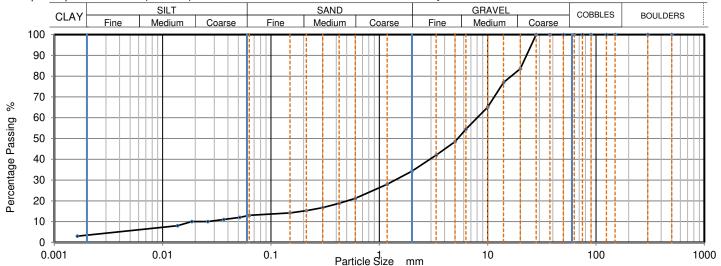
Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

AGS Ground Solutions Ltd Client Reference: A2292 Client: Client Address: Job Number: 21-61887 4 Bond Street, Redruth,

Date Sampled: 03/03/2021 Cornwall, TR15 2QB Date Received: 10/03/2021 Date Tested: 19/03/2021 Contact: Chloe Sheppard-Muir Site Address: Ponsharden Cementry Sampled By: Client


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference: 1799104 Depth Top [m]: 2.80 WS3 Depth Base [m]: 3.00 Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Dark brown clayey sandy silty GRAVEL

Sample Preparation: Sample was quartered, oven dried at 107.6 °C and broken down by hand.

Siev	ring	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	13
300	100	0.0515	12
150	100	0.0366	11
125	100	0.0260	10
90	100	0.0185	10
75	100	0.0137	8
63	100	0.0016	3
50	100		
37.5	100		
28	100		
20	84		
14	77		
10	65		
6.3	55		
5	49		
3.35	42	Particle density	(assumed)
2	34	2.65	Mg/m3
1.18	28		
0.6	21		
0.425	19		
0.3	17		
0.212	15		
0.15	14		
0.063	13		

Sample Proportions	% dry mass
Very coarse	0
Gravel	66
Sand	21
Silt	10
Clay	3

Grading Analysis	i	
D100	mm	28
D60	mm	8
D30	mm	1.4
D10	mm	0.0211
Uniformity Coefficient		380
Curvature Coefficient		12

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing

The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3 Remarks:

Signed:

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Bushele laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1 **Date Reported: 24/03/2021** GF 100.20

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: AGS Ground Solutions Ltd Client Reference: A2292
Client Address: 4 Bond Street, Redruth, Cornwall, TR15 2QB

AGS Ground Solutions Ltd Client Reference: A2292
Job Number: 21-61887
Date Sampled: 03/03/2021

Cornwall, TR15 2QB

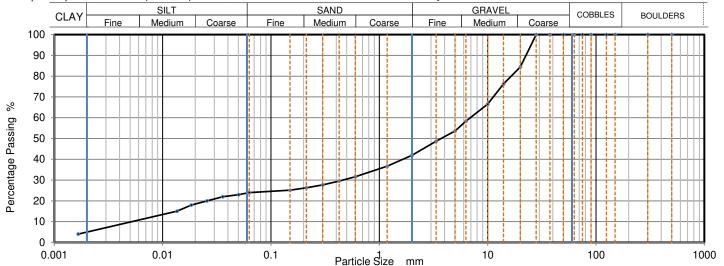
Date Received: 10/03/2021

Contact: Chloe Sheppard-Muir

Date Tested: 19/03/2021

Site Address: Ponsharden Cementry

Sampled By: Client


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:1799105Depth Top [m]: 1.50Hole No.:WS4Depth Base [m]: 1.70Sample Reference:Not GivenSample Type: D

Sample Description: Dark brown sandy clayey silty GRAVEL

Sample Preparation: Sample was quartered, oven dried at 107.6 °C and broken down by hand.

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	24
300	100	0.0504	23
150	100	0.0358	22
125	100	0.0256	20
90	100	0.0184	18
75	100	0.0136	15
63	100	0.0017	4
50	100		
37.5	100		
28	100		
20	84		
14	76		
10	67		
6.3	58		
5	54		
3.35	49	Particle density	(assumed)
2	42	2.65	Mg/m3
1.18	37		
0.6	32	1	
0.425	30		
0.3	28		
0.212	26		
0.15	25	1	
0.063	24	1	

Sample Proportions	% dry mass
Very coarse	0
Gravel	58
Sand	18
Silt	19
Clay	5

Grading Analysis		
D100	mm	28
D60	mm	6.92
D30	mm	0.46
D10	mm	0.00493
Uniformity Coefficient		1400
Curvature Coefficient		6.2

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Signed: Morika Janokile

Monika Janoszek
PL Deputy Head of Geotechnical Section
for and on behalf of i2 Analytical Ltd

Date Reported: 24/03/2021

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

 Client:
 AGS Ground Solutions Ltd
 Client Reference: A2292

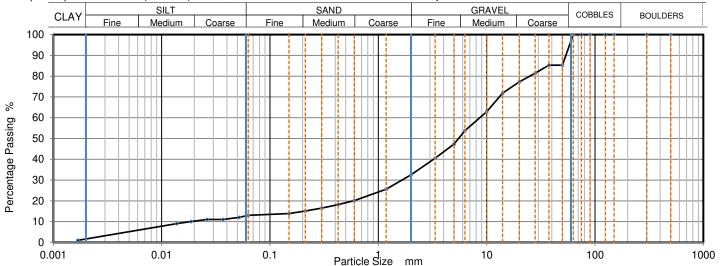
 Client Address:
 4 Bond Street, Redruth, Cornwall, TR15 2QB
 Job Number: 21-61887

 Date Sampled: 03/03/202
 Date Sampled: 03/03/202

Contact: Chloe Sheppard-Muir Date Sampled: 03/03/2021

Contact: Chloe Sheppard-Muir Date Tested: 19/03/2021

Site Address: Ponsharden Cementry Sampled By: Client


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:1799106Depth Top [m]: 2.40Hole No.:WS4Depth Base [m]: 2.60Sample Reference:Not GivenSample Type: D

Sample Description: Dark brown sandy clayey silty GRAVEL

Sample Preparation: Sample was quartered, oven dried at 107.6 °C and broken down by hand.

Siev	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	13
300	100	0.0517	12
150	100	0.0368	11
125	100	0.0262	11
90	100	0.0186	10
75	100	0.0138	9
63	100	0.0017	1
50	85		
37.5	85		
28	81		
20	77		
14	72		
10	63		
6.3	54		
5	47		
3.35	41	Particle density	(assumed)
2	33	2.65	Mg/m3
1.18	26		
0.6	20	1	
0.425	18	1	
0.3	17	1	
0.212	15		
0.15	14		
0.063	13		

Sample Proportions	% dry mass
Very coarse	0
Gravel	68
Sand	20
Silt	10
Clay	2

Grading Analysis		
D100	mm	63
D60	mm	8.62
D30	mm	1.65
D10	mm	0.0191
Uniformity Coefficient		450
Curvature Coefficient		17

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Signed:

Monika Janoszek
PL Deputy Head of Geotechnical Section
for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

AGS Ground Solutions Ltd Client: Client Address:

4 Bond Street, Redruth, Cornwall, TR15 2QB

Contact: Chloe Sheppard-Muir Site Address: Ponsharden Cementry

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: A2292 Job Number: 21-61887 Date Sampled: 03/03/2021 Date Received: 10/03/2021 Date Tested: 19/03/2021 Sampled By: Client

Test Results:

Laboratory Reference: 1799107 Depth Top [m]: 1.50 WS5 Depth Base [m]: 1.70 Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Dark brown clayey sandy silty GRAVEL with fragments of shale Sample Preparation: Sample was quartered, oven dried at 107.6 °C and broken down by hand.

Siev	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	20
300	100	0.0501	19
150	100	0.0356	18
125	100	0.0255	16
90	100	0.0183	15
75	100	0.0135	13
63	100	0.0017	2
50	100		
37.5	97		
28	92		
20	84		
14	75		
10	66		
6.3	57		
5	49		
3.35	43	Particle density	(assumed)
2	35	2.65	Mg/m3
1.18	29		
0.6	24		
0.425	23		
0.3	21		
0.212	21		
0.15	20		
0.063	20	1	

Sample Proportions	% dry mass
Very coarse	0
Gravel	66
Sand	15
Silt	16
Clay	3

Grading Analysis		
D100	mm	50
D60	mm	7.52
D30	mm	1.31
D10	mm	0.00737
Uniformity Coefficient		1000
Curvature Coefficient		31

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed: Harika

Monika Janoszek PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Bushele

Date Reported: 24/03/2021

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

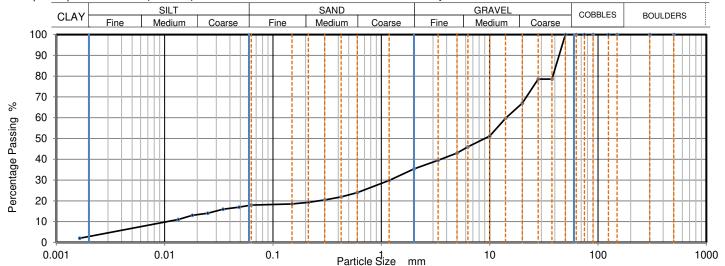
AGS Ground Solutions Ltd Client: Client Address:

4 Bond Street, Redruth, Cornwall, TR15 2QB

Contact: Chloe Sheppard-Muir Site Address: Ponsharden Cementry

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: A2292 Job Number: 21-61887 Date Sampled: 03/03/2021 Date Received: 10/03/2021 Date Tested: 19/03/2021


Sampled By: Client

Test Results:

Laboratory Reference: 1799108 Depth Top [m]: 2.80 WS5 Depth Base [m]: 3.00 Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Dark brown clayey sandy silty GRAVEL

Sample Preparation: Sample was quartered, oven dried at 107.6 °C and broken down by hand.

Siev	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	18
300	100	0.0485	17
150	100	0.0345	16
125	100	0.0249	14
90	100	0.0180	13
75	100	0.0134	11
63	100	0.0016	2
50	100		
37.5	79		
28	79		
20	67		
14	60		
10	51		
6.3	46		
5	43		
3.35	40	Particle density	(assumed)
2	35	2.65	Mg/m3
1.18	30		
0.6	24		
0.425	22		
0.3	20		
0.212	19		
0.15	19		
0.063	18	1	

Sample Proportions	% dry mass
Very coarse	O O
Gravel	65
Sand	18
Silt	14
Clay	3

Grading Analysis	\$	
D100	mm	50
D60	mm	14.2
D30	mm	1.2
D10	mm	0.0114
Uniformity Coefficient		1300
Curvature Coefficient		8.9

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3 Remarks:

> Hacika Bushele

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Date Reported: 24/03/2021

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Signed:

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Sampled By: Client

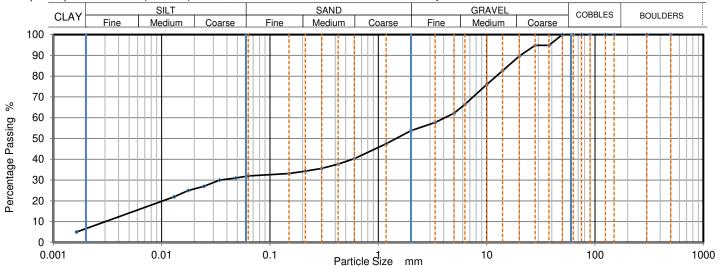
 Client:
 AGS Ground Solutions Ltd
 Client Reference: A2292

 Client Address:
 4 Bond Street, Redruth, Cornwall, TR15 2QB
 Job Number: 21-61887

 Date Sampled: 03/03/2021
 Date Received: 10/03/2021

 Contact:
 Chloe Sheppard-Muir
 Date Tested: 19/03/2021

Site Address: Ponsharden Cementry


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:1799109Depth Top [m]: 1.40Hole No.:WS6Depth Base [m]: 1.60Sample Reference:Not GivenSample Type: D

Sample Description: Dark brown sandy very clayey very silty GRAVEL

Sample Preparation: Sample was quartered, oven dried at 107.6 °C and broken down by hand.

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	32
300	100	0.0480	31
150	100	0.0342	30
125	100	0.0245	27
90	100	0.0176	25
75	100	0.0131	22
63	100	0.0016	5
50	100		
37.5	95		
28	95		
20	90		
14	83		
10	76		
6.3	66		
5	62		
3.35	58	Particle density	(assumed)
2	54	2.65	Mg/m3
1.18	48		
0.6	40	1	
0.425	38	1	
0.3	36	1	
0.212	34		
0.15	33		
0.063	32		

Sample Proportions	% dry mass
Very coarse	0
Gravel	46
Sand	22
Silt	25
Clay	7

Grading Analysis	\$	
D100	mm	50
D60	mm	4.11
D30	mm	0.0391
D10	mm	0.00292
Uniformity Coefficient		1400
Curvature Coefficient		0.13

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed:

Monika Janoszek PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Brokke

Date Reported: 24/03/2021 **GF 100.20**

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

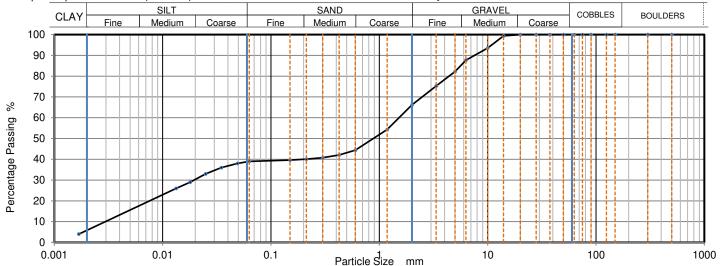
i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

AGS Ground Solutions Ltd Client Reference: A2292 Client: Client Address: Job Number: 21-61887 4 Bond Street, Redruth, Cornwall, TR15 2QB

Date Sampled: 03/03/2021 Date Received: 10/03/2021 Chloe Sheppard-Muir Date Tested: 19/03/2021 Ponsharden Cementry Sampled By: Client

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:


Site Address:

Contact:

Laboratory Reference: 1799110 Depth Top [m]: 2.70 WS6 Depth Base [m]: 3.00 Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Brown clayey silty sandy GRAVEL

Sample Preparation: Sample was quartered, oven dried at 107.6 °C and broken down by hand.

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	39
300	100	0.0489	38
150	100	0.0348	36
125	100	0.0249	33
90	100	0.0180	29
75	100	0.0133	26
63	100	0.0017	4
50	100		
37.5	100		
28	100		
20	100		
14	99		
10	94		
6.3	88		
5	82		
3.35	75	Particle density	(assumed)
2	66	2.65	Mg/m3
1.18	54		_
0.6	44]	
0.425	42		
0.3	41		
0.212	40		
0.15	40	1	
0.063	39		

Sample Proportions	% dry mass
Very coarse	0
Gravel	34
Sand	27
Silt	33
Clay	6

Grading Analysis		
D100	mm	20
D60	mm	1.52
D30	mm	0.0191
D10	mm	0.00289
Uniformity Coefficient		530
Curvature Coefficient		0.083

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed: Harika

Monika Janoszek

Date Reported: 24/03/2021

PL Deputy Head of Geotechnical Section

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Page 1 of 1

Brokke

for and on behalf of i2 Analytical Ltd