C/22/52

Structural Calculations

For

Proposed Alterations

At

Chepping Wycombe Parish Council

Contents

- 1.00 Design Data
- 2.00 Loadings
- 3.00 Structure over Ground Floor

1.00 Design Data

Timbers to be strength class C24 unless noted otherwise.

Steelwork to be grade 43.

Brickwork to be 20N/mm3 in 1. 1. 6. mortar unless noted otherwise.

Blockwork to be 3.6N/mm3 in 1. 1. 6. mortar unless noted otherwise.

NOTES

- 1. All steelwork to be shot blasted and painted.
- 2. All steels supporting existing walls to be wedged up at 1.0Mc/c to predeflect new beam prior to pinning up with 1-3 dry-pack incorporating 'Combex 100' expanding agent.
- 3. All beam ends to be built in solid each end.
- 4. Existing walls and floor over to be properly pinned propped and supported during construction.

2.0 Loadings

ROOF (PITCHED

	Dead Loads: Tiles	=	0.70	KN/m²
	Battens, Felt & Insulation	=	0.10	KN/m ²
	Rafters	=	0.10	KN/m²
(Ceiling	=	0.30	KN/m²
I	Dead Load Total	=	1.20	KN/m
- 5	Live Loads: Live Load on Roof (45° pitch)	=	0.50	KN/m²
	Live Load on Ceiling	=	0.25	KN/m²
į	Live Load Total	=	0.75	KN/m²
•	TOTAL	=	1.95	KN/m²
FIRS	ST FLOOR			
	Dead Loads:			
	Boarding	=	0.15	
	Joists	=	0.15	KN/m ²
	Ceiling	=	0.20	KN/m²
	Dead Load Total	=	0.50	KN/m
	Live Loads: Live Load on Floor	=	1.50	KN/m²
	Live Load Total	=	1.50	KN/m²
	TOTAL	=	2.00	KN/m²
WAL	LLS (ELEVATION AREA)			
	105mm Brick	=	2.50	KN/m²
	100mm Block 100mm Stud	=	1.50 0.50	KN/m ² KN/m ²

3.00 Structure over Ground Floor

3.01 - B1 - BEAM 1

Analysis for a simply-supported single-span beam to BS 5950 (with LTB)

TEDDS calculation version 1.0.02

		1		///	-	
Cnan	lanath	9	nortial	factors	£0=	laadina
Span	lenam	Oε	Daruai	IdCIOIS	IOI	ioaumu

Span	Factors	s for moments &	forces	Factors for deflection			
(mm)) γ _{fd} γ _{fi}		γfw	γdd γdi		γdw	
5100	1.40	1.60	0.00	1.00	1.00	1.00	

Load descriptions

Loads are applied normal to the major principal axis (x-axis) of the member.

Ref.	Category	Description
1	"Dead"	"WALL"
2	"Dead"	"FLOOR"
3	"Imposed"	"FLOOR"

Loading data (unfactored)

Ref.	Category	Туре	Load kN/m	Position mm	Load kN/m	Position mm
1	"Dead"	UDL	1.2	0	8	5100
2	"Dead"	UDL	1.7	0	≅N	5100
3	"Imposed"	UDL	8.7	0	(5 0)	5100

Analysis results - entire span

Ra	R₀	F _{vy}	M _×		Deflect	ion: δEl _x
kN (fac)	kN (fac)	kN (fac)	kNm (fac)	Sense	kNm³	Direction
46.0	46.0	46.0	58.6	"Sagging"	102.54	"Down"

Unfactored support reactions

Support A;

Dead load; -7.5 kN;

Live load; -22.2 kN;

Wind load; 0.0 kN;

Support B;

Dead load; -7.5 kN;

Live load; -22.2 kN;

Wind load; 0.0 kN;

LTB segment results

Seg.	Xs	Xe	L _{LT}	M _{LT}	M _{mLT2}	M _{mLT3}	M _{mLT4}
	mm	mm	mm	kNm (fac)	kNm (fac)	kNm (fac)	kNm (fac)
1	0	5100	5100	58.6	44.0	58.6	44.0

Beam Loads

Member design checks for a simply-supported single-span beam to BS 5950 (with LTB)

Summary of results;

Material;	Grade = "S275";	p _y = 275 N/mm ² ;		
Section;	"UC 203x203x46";	Classification;	"Compact";	

Check;	Load;	Capacity;	Notes;	Result;
Deflection;	$\delta_{y_{max}} = 10.9 \text{ mm};$	$\delta_{lim} = 14.2 \text{ mm};$	Span / 360 or 14.2 mm;	Pass
Shear;	F _{vy} = 46.0 kN;	P _{vy} = 241.4 kN;	Low shear;	Pass;
Moment;	$M_x = 58.6 \text{ kNm};$	M _{cx} = 136.8 kNm;	Low shear;	Pass
LTB;	M _{LT} = 58.6 kNm;	M _b / m _{LT} = 106.1 kNm;	L _{E_LT} = 5.1 m; m _{LT} = 0.93;	Pass;

3.02 - B2 - BEAM 2

Analysis for a simply-supported single-span beam to BS 5950 (with LTB)

TEDDS calculation version 1.0.02

Span length & partial factors for loading

Span	Factor	Factors for moments & forces Factors for deflection			on		
(mm)	γfd	γfi	γfi γfw		γdd γdi γdw		
900	1.40	1.60	0.00	1.00	1.00	1.00	

Load descriptions

Loads are applied normal to the major principal axis (x-axis) of the member.

Ref.	Category	Description
1	"Dead"	"WALL"
2	"Dead"	"B1"
3	"Imposed"	"B1"

Loading data (unfactored)

Ref.	Category	Туре	Load	Position	Load	Position
			kN/m	mm	kN/m	mm
1	"Dead"	UDL	14.4	0	-	900
2	"Dead"	Point load	8.0 kN	800	5	-
3	"Imposed"	Point load	22.0 kN	800	=	-

Analysis results - entire span

Ra	R₀	F _{vy}	M _×		Deflection: δEI _x	
kN (fac)	kN (fac)	kN (fac)	kNm (fac)	Sense	kNm³	Direction
14.2	50.3	50.3	5.0	"Sagging"	0.27	"Down"

Unfactored support reactions

Support A; Dead load; -7.4 kN;

Live load; -2.4 kN;

Wind load; 0.0 kN;

Support B; Dead load; -13.6 kN;

Live load; -19.6 kN;

Wind load; 0.0 kN;

LTB segment results

Seg.	Xs	Xe	Llt	MLT	M _{mLT2}	M _{mLT3}	M _{mLT4}
	mm	mm	mm	kNm (fac)	kNm (fac)	kNm (fac)	kNm (fac)
1	0	900	900	5.0	2.7	4.4	5.0

Beam Loads

Member design checks for a simply-supported single-span beam to BS 5950 (with LTB)

Summary of results;

Material;	Grade = "S275";	p _y = 275 N/mm ² ;	
Section;	"UB 203x102x23";	Classification;	"Plastic";

Check;	Load;	Capacity;	Notes;	Result;
Deflection;	$\delta_{y_{max}} = 0.1 \text{ mm};$	δ_{lim} = 2.5 mm;	Span / 360 or 2.5 mm;	Pass
Shear;	F _{vy} = 50.3 kN;	P _{vy} = 181.1 kN;	Low shear;	Pass;
Moment;	M _x = 5.0 kNm;	M _{cx} = 64.4 kNm;	Low shear;	Pass
LTB;	M _{LT} = 5.0 kNm;	M _b / m _{LT} = 74.5 kNm;	L _{E_LT} = 0.9 m; m _{LT} = 0.86 ;	Pass;

.

3.03 - P1 - PADSTONE 1

MASONRY BEARING DESIGN TO BS5628-1:2005

TEDDS calculation version 1.0.06

Masonry details

Masonry type;

Aggregate concrete blocks (25% or less formed

voids)

Compressive strength of unit;

 $p_{unit} = 3.6 \text{ N/mm}^2$

Mortar designation;

iii

Least horizontal dimension of masonry units;

 $I_{unit} = 100 \text{ mm}$

Height of masonry units;

h_{unit} = 215 mm

Category of masonry units;

Category II

Category of construction control;

Normal

Partial safety factor for material strength;

 γ_m = 3.5

Thickness of load bearing leaf; Effective thickness of masonry wall; t = 100 mm t_{ef} = 150 mm

Height of masonry wall;

h = **2400** mm

Effective height of masonry wall;

h_{ef} = **1800** mm

Bearing details

Beam spanning in plane of wall

Width of bearing;

B = 100 mm

Length of bearing;

 $I_b = 600 \text{ mm}$

Compressive strength from Table 2 BS5628:Part 1 - aggregate concrete blocks (25% or less formed voids)

Mortar designation;

Mortar = "iii"

Block compressive strength;

 $p_{unit} = 3.6 \text{ N/mm}^2$

Characteristic compressive strength (Table 2c);

 $f_{kc} = 1.70 \text{ N/mm}^2$

Characteristic compressive strength (Table 2d);

 $f_{kd} = 3.50 \text{ N/mm}^2$

Height of solid block;

hunit = 215.0 mm;

Least horizontal dimension;

I_{unit} = 100.0 mm

Block ratio;

ratio = h_{unit} / I_{unit} = 2.2

Characteristic compressive strength; $f_k = 3.50 \text{ N/mm}^2$

Loading details

Characteristic concentrated dead load; $G_k = 14 \text{ kN}$ Characteristic concentrated imposed load; $Q_k = 20 \text{ kN}$

Design concentrated load; $F = (G_k \times 1.4) + (Q_k \times 1.6) = 51.6 \text{ kN}$

Characteristic distributed dead load; $g_k = 0.0 \text{ kN/m}$ Characteristic distributed imposed load; $q_k = 0.0 \text{ kN/m}$

Design distributed load; $f = (g_k \times 1.4) + (q_k \times 1.6) = 0.0 \text{ kN/m}$

Masonry bearing type

Bearing type; Not applicable Bearing safety factor; $\gamma_{\text{bear}} = 1.00$

Check design bearing without a spreader

Design bearing stress; $f_{ca} = F / (B \times I_b) + f / t = 0.860 \text{ N/mm}^2$ Allowable bearing stress; $f_{cp} = \gamma_{bear} \times f_k / \gamma_m = 1.000 \text{ N/mm}^2$

PASS - Allowable bearing stress exceeds design bearing stress

Check design bearing at 0.4 × h below the bearing level

Slenderness ratio; h_{ef} / t_{ef} = 12.00 Eccentricity at top of wall; e_x = 0.0 mm

From BS5628:1 Table 7

Capacity reduction factor; β = 0.99 Length of bearing distributed at 0.4 × h; I_d = 1560 mm

Maximum bearing stress; $f_{ca} = F / (I_{d} \times t) + f / t = 0.331 \text{ N/mm}^{2}$ Allowable bearing stress; $f_{cp} = \beta \times f_{k} / \gamma_{m} = 0.990 \text{ N/mm}^{2}$

PASS - Allowable bearing stress at 0.4 x h below bearing level exceeds design bearing stress

3.04 - P3 - PADSTONE 3

MASONRY BEARING DESIGN TO BS5628-1:2005

TEDDS calculation version 1.0.06

Masonry details

Masonry type;

voids)

Compressive strength of unit;

Mortar designation;

Least horizontal dimension of masonry units;

Height of masonry units;

Category of masonry units;

Category of construction control;

Partial safety factor for material strength;

Thickness of load bearing leaf;

Effective thickness of masonry wall;

Height of masonry wall;

Effective height of masonry wall;

Aggregate concrete blocks (25% or less formed

 $p_{unit} = 3.6 \text{ N/mm}^2$

lunit = 100 mm

h_{unit} = **215** mm

Category II

Normal $y_{m} = 3.5$

t = 100 mm

tef = 100 mm

h = 2400 mm

hef = 1800 mm

Bearing details

Beam spanning out of plane of wall

Width of bearing;

B = 200 mm

Length of bearing;

 $I_b = 100 \text{ mm}$

Edge distance;

 $x_{edge} = 1000 \text{ mm}$

Compressive strength from Table 2 BS5628:Part 1 - aggregate concrete blocks (25% or less formed voids)

Mortar designation;

Mortar = "iii"

Block compressive strength;

 $p_{unit} = 3.6 \text{ N/mm}^2$

Characteristic compressive strength (Table 2c);

 $f_{kc} = 1.70 \text{ N/mm}^2$

Characteristic compressive strength (Table 2d);

 $f_{kd} = 3.50 \text{ N/mm}^2$

Height of solid block;

h_{unit} = 215.0 mm;

Least horizontal dimension;

l_{unit} = 100.0 mm

Block ratio;

ratio = hunit / lunit = 2.2

Ratio between 0.6 and 4.5 - OK

Characteristic compressive strength;

 $f_k = 3.50 \text{ N/mm}^2$

Loading details

Characteristic concentrated dead load;

 $G_k = 8 kN$

Characteristic concentrated imposed load;

 $Q_k = 22 kN$

Design concentrated load;

 $F = (G_k \times 1.4) + (Q_k \times 1.6) = 46.4 \text{ kN}$

Characteristic distributed dead load;

 $g_k = 0.0 \text{ kN/m}$

Characteristic distributed imposed load;

 $q_k = 0.0 \text{ kN/m}$

Design distributed load;

 $f = (g_k \times 1.4) + (g_k \times 1.6) = 0.0 \text{ kN/m}$

Masonry bearing type

Bearing type;

Type 2

Bearing safety factor;

 $\gamma_{\text{bear}} = 1.50$

Check design bearing without a spreader

Design bearing stress; Allowable bearing stress; $f_{ca} = F / (B \times I_b) + f / t = 2.320 \text{ N/mm}^2$

 $f_{cp} = \gamma_{bear} \times f_k / \gamma_m = 1.500 \text{ N/mm}^2$

FAIL - Design bearing stress exceeds allowable bearing stress, use a spreader

Spreader details

Length of spreader;

 $I_s = 400 \text{ mm}$

Depth of spreader;

h_s = **215** mm

Edge distance;

 $s_{edge} = max(0 \text{ mm}, x_{edge} - (l_s - B) / 2) = 900 \text{ mm}$

Spreader bearing type

Bearing type;

Type 2

Bearing safety factor;

 $\gamma_{\text{bear}} = 1.50$

Check design bearing with a spreader

Loading acts at midpoint of spreader

Design bearing stress;

 $f_{ca} = F / (I_s \times t) + f / t = 1.160 \text{ N/mm}^2$

Allowable bearing stress;

 $f_{cp} = \gamma_{bear} \times f_k / \gamma_m = 1.500 \text{ N/mm}^2$

PASS - Allowable bearing stress exceeds design bearing stress

Check design bearing at 0.4 × h below the bearing level

Slenderness ratio;

 $h_{ef} / t_{ef} = 18.00$

Eccentricity at top of wall;

e_x = **0.0** mm

From BS5628:1 Table 7

Capacity reduction factor;

 $\beta = 0.84$

Length of bearing distributed at $0.4 \times h$;

I_d = **2120** mm

Maximum bearing stress;

 $f_{ca} = F / (I_d \times t) + f / t = 0.219 \text{ N/mm}^2$

Allowable bearing stress;

 $f_{cp} = \beta \times f_k / \gamma_m = 0.836 \text{ N/mm}^2$

PASS - Allowable bearing stress at 0.4 x h below bearing level exceeds design bearing stress

3.05 - B3 - BEAM 3

TEDDS calculation version 1.0.02

Span length & partial factors for loading

Span	Factors for moments & forces			Factors for deflection		
(mm)	γfd	γfi	γfw	γdd	γdi	γdw
3050	1.00	1.00	1.00	1.00	1.00	1.00

Load descriptions

Loads are applied normal to the major principal axis (x-axis) of the member.

Ref.	Category	Description
1	"Dead"	"FLOOR"
2	"Imposed"	"FLOOR"

Loading data (unfactored)

Ref.	Category	Туре	Load	Position	Load	Position
// <u></u>			kN/m	mm	kN/m	mm
1	"Dead"	UDL	1.7	0	i u s	3050
2	"Imposed"	UDL	8.7	0	-	3050

Analysis results - entire span

$W_{tot} = 31.8 \text{ kN}$							
15.9	15.9	15.9	12.1	"Sagging"	11.75	"Down"	-
kN (fac)	kN (fac)	kN (fac)	kNm (fac)	Sense	kNm³	Direction	
Ra	R₀	V	M		Deflection: δEI		
Analysis result	5 chare span						

Unfactored support reactions

Support A; D

Dead load; -2.7 kN;

Live load; -13.3 kN;

Wind load; 0.0 kN;

Support B;

Dead load; -2.7 kN;

Live load; -13.3 kN;

Wind load; 0.0 kN;

Beam Loads

Typical flitch beam details

FLITCH BEAM CALCULATIONS TO BS5268-2:2002

Timber section properties

Breadth of timber;

 $b_t = 50 \text{ mm};$

Depth of timber;

 $d_t = 200$

mm

Number of timbers;

 $N_t = 2$;

Strength class;

C24

Steel section properties

Breadth of steel;

 $b_s = 12 \text{ mm};$

Depth of steel;

 $d_s = 200$

mm

Number of plates;

 $N_s = 1$:

Bending stress;

 $p_y = 275$

N/mm²

Check bending stress in timber

Permissible bending stress;

 $\sigma_{m_adm} = 8.626 \text{ N/mm}^2;$

Applied bending stress;

 $\sigma_{m_a} =$

5.550 N/mm²

PASS - Timber stress not exceeded in bending

Check bending stress in steel

Permissible bending stress;

 $p_y = 275 \text{ N/mm}^2$;

Applied bending stress;

σ_{m_a_s} =

105 N/mm²

PASS - Steel stress not exceeded in bending

Check shear stress in timber

Permissible shear stress;

 $\tau_{adm} = 0.781 \text{ N/mm}^2$;

Applied shear stress;

 $\tau_a = 0.364$

N/mm²

PASS - Timber stress not exceeded in shear

Check beam deflection

Permissible deflection;

 $\delta_{adm} = 9.2 \text{ mm};$

Calculated deflection;

 $\delta_{\text{actual}} = 6.6$

mm

PASS - Deflection is acceptable

Check bearing stress in timber

Permissible bearing stress;

 $\sigma_{cp1} = 2.400 \text{ N/mm}^2$;

Applied bearing stress;

 $\sigma_{c_a} = 1.591$

N/mm²

PASS - Timber compressive stress not exceeded at bearing

Bolting requirements

Provide a minimum of 3 No.12 mm diameter bolts at each end of the beam

Provide 12 mm diameter bolts at a maximum of 500 mm centres along the length of the beam